1
|
Yang M, Deng Z, Zhu Y, Xu C, Ding C, Zhang Y, Zhang M, Zhang M. Advancements in herbal medicine-based nanozymes for biomedical applications. Chin Med J (Engl) 2025:00029330-990000000-01500. [PMID: 40169370 DOI: 10.1097/cm9.0000000000003584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 04/03/2025] Open
Abstract
ABSTRACT Nanozymes are a distinct category of nanomaterials that exhibit catalytic properties resembling those of enzymes such as peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Nanozymes derived from Chinese herbal medicines exhibit the catalytic functions of their enzyme mimics, while retaining the specific medicinal properties of the herb (termed "herbzymes"). These nanozymes can be categorized into three main groups based on their method of synthesis: herb carbon dot nanozymes, polyphenol-metal nanozymes, and herb extract nanozymes. The reported catalytic activities of herbzymes include POD, SOD, CAT, and GPx. This review presents an overview of the catalytic activities and potential applications of nanozymes, introduces the novel concept of herbzymes, provides a comprehensive review of their classification and synthesis, and discusses recent advances in their biomedical applications. Furthermore, we also discuss the significance of research into herbzymes, including the primary challenges faced and future development directions.
Collapse
Affiliation(s)
- Mei Yang
- Department of Organ Procurement and Allocation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chenxi Xu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chenguang Ding
- Department of Organ Procurement and Allocation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| |
Collapse
|
2
|
Yu L, Qin X, Liang B, Liu J. Traditional Chinese Medicine-Based Nanoformulations for Enhanced Photothermal Therapy of Cancer. ACS Biomater Sci Eng 2025; 11:694-709. [PMID: 39844481 DOI: 10.1021/acsbiomaterials.4c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Photothermal therapy (PTT) has shown promise in the ablation of small, unresectable tumors by boosting the tumor's temperature above 50 °C. However, the high local temperature-induced cancer cell necrosis could create severe local inflammation, which may deteriorate normal tissues and increase tumor spreading. Although mild photothermal therapy (MPTT) at 42-45 °C could avoid the undesired side effect to some extent with minimal nonspecific heat diffusion, the self-protective behavior of tumors during MPTT results in an unsatisfactory therapeutic effect. Inspired by the widespread applications of traditional Chinese medicine (TCM) in various ailments, we also extensively explored the use of TCM in PTT and MPTT. In this Review, we summarize the application and function of TCM in PTT and MPTT, including the following: (1) TCM improves the performance of PTT and MPTT by elevating the photothermal conversion ability of photothermal agents (PTAs) and overcoming the self-protective effect of tumors, (2) PTT enhances TCM-based chemotherapy by improving the sensitivity and cellular uptake of TCM in tumors, and (3) natural TCM and metal-chelated TCM-based nanoparticles could directly act as PTAs for carrier-free combination therapy. We expect this Review will further illuminate TCM's utility and applicability in cancer treatment and create new combination strategies for theragnostic use.
Collapse
Affiliation(s)
- Lin Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| | - Xueying Qin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| | - Bing Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| |
Collapse
|
3
|
Song D, Zhang J, Hu X, Liu X. Progress in the treatment of Alzheimer's disease based on nanosized traditional Chinese medicines. J Mater Chem B 2025; 13:1548-1572. [PMID: 39711283 DOI: 10.1039/d4tb02062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Traditional Chinese medicine (TCM) has been employed for centuries in treating and managing Alzheimer's disease (AD). However, their effective delivery to target sites can be a major challenge. This is due to their poor water solubility, low bioavailability, and potential toxicity. Furthermore, the blood-brain barrier (BBB) is a major obstacle to effective TCM delivery, significantly reducing efficacy. Advancements in nanotechnology and its applications in TCM (nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain area. This review summarizes the recent advances in nanocarrier-based delivery systems for different types of active constituents of TCM for AD, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones. Besides, the main challenges and opportunities for the future development of these advanced TCM nanocarriers are emphasized. In conclusion, this review provides valuable insights and guidance for utilizing nanocarriers to shape future TCM drug delivery.
Collapse
Affiliation(s)
- Dan Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Xiaoyan Liu
- West China Hospital of Sichuan University, 610041, China
| |
Collapse
|
4
|
Liu H, Jin X, Liu S, Liu X, Pei X, Sun K, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. Recent advances in self-targeting natural product-based nanomedicines. J Nanobiotechnology 2025; 23:31. [PMID: 39833846 PMCID: PMC11749302 DOI: 10.1186/s12951-025-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Natural products, recognized for their potential in disease prevention and treatment, have been integrated with advanced nano-delivery systems to create natural product-based nanomedicines, offering innovative approaches for various diseases. Natural products derived from traditional Chinese medicine have their own targeting effect and remarkable therapeutic effect on many diseases, but there are some shortcomings such as poor physical and chemical properties. The construction of nanomedicines using the active ingredients of natural products has become a key step in the modernization research process, which could be used to make up for the defects of natural products such as low solubility, large dosage, poor bioavailability and poor targeting. Nanotechnology enhances the safety, selectivity, and efficacy of natural products, positioning natural product-based nanomedicines as promising candidates in medicine. This review outlines the current status of development, the application in different diseases, and safety evaluation of natural product-based nanomedicines, providing essential insights for further exploration of the synergy between natural products and nano-delivery systems in disease treatment.
Collapse
Affiliation(s)
- Haifan Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xingyue Jin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyue Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Pei
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
5
|
Diao N, Liu Y, Wang W, Cao M, Liu X, Yang W, Cao Y, Sun T, Pei H, Guo C, Chen D. Resveratrol nanocrystals based dissolving microneedles with highly efficient for rheumatoid arthritis. Drug Deliv Transl Res 2025; 15:203-215. [PMID: 38556538 DOI: 10.1007/s13346-024-01581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
Rheumatoid arthritis (RA) is a common immune disease characterized mainly by erosive arthritis with extensive clinical sequelae. Resveratrol (Res) has pharmacological effects in the treatment of RA, but it has not been widely used in the clinic due to its poor water solubility and low bioavailability. In this study, a drug delivery system (Res-NC MNs) of dissolved microneedles (MNs) loaded with Res nanocrystals (NC) was designed for the treatment of RA. Res-NC MNs can improve the drawbacks of long-term oral drug delivery with toxic side effects and low compliance associated with intra-articular drug delivery. In this study, Res-NC was prepared by media milling and loaded into soluble microneedles prepared from hyaluronic acid (HA) by vacuum casting for the treatment of RA. HA has high mechanical strength and can penetrate the cuticle layer of the skin for effective drug delivery. In in vivo pharmacodynamic experiments, Res-NC MNs achieved better therapeutic efficacy in the treatment of RA compared with oral Res. These findings suggest that Res-NC MNs may be an effective and promising drug delivery strategy for the treatment of RA.
Collapse
Affiliation(s)
- Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Yan Liu
- Yantai Food and Drug Inspection and Testing Center, Yantai, 264035, PR China
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Xiaowei Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Weili Yang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Yuxin Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Tianying Sun
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Huijie Pei
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, Yushan 10 Road, Qingdao, 266003, PR China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
6
|
Li DH, Wen QE, Feng RQ, Qiao C, Tian XT. Use of traditional Chinese medicine bezoars and bezoar-containing preparations in hepatocarcinoma. World J Gastrointest Oncol 2024; 16:4770-4777. [PMID: 39678798 PMCID: PMC11577376 DOI: 10.4251/wjgo.v16.i12.4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/12/2024] Open
Abstract
This manuscript used network pharmacology and experimental verification to analyze the anti-hepatocarcinoma mechanism of action of bezoars in traditional Chinese medicine (TCM), discovering that it can affect the immune cells within the tumor microenvironment and related pathways to produce inhibitory effects in liver cancer. In TCM, bezoars have a unique therapeutic advantage in the prevention and treatment of tumors. They play an anti-tumorigenic role by regulating the immune microenvironment through multi-component, multi-target and multi-pathway mechanisms. With the application of nanotechnology, bezoars and their compound preparations have been developed into anti-cancer drugs with unique therapeutic advantages, providing novel treatment options for tumor patients.
Collapse
Affiliation(s)
- De-Hui Li
- Department of Oncology II, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang 050000, Hebei Province, China
| | - Qian-Er Wen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Rui-Qi Feng
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Chang Qiao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Tong Tian
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
7
|
Zhang F, Sun F, Yu L, Li F, Liu L, Cao X, Zhang Y, Wu L. A Novel Platform Featuring Nanomagnetic Ligand Fishing Based on Fixed-Orientation Immobilized Magnetic Beads for Screening Potential Cyclooxygenase-2 Inhibitors from Panax notoginseng Leaves. Molecules 2024; 29:5801. [PMID: 39683958 DOI: 10.3390/molecules29235801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
A novel screening platform based on an Fe3O4@C@PDA-Ni2+@COX-2 ligand fishing combination with high-performance liquid chromatography-mass spectrometry was first designed, synthesized, and employed to screen and identify COX-2 inhibitors from Panax notoginseng leaves. The obtained magnetic nanoparticles exhibit outstanding preconcentration ability that allows for controlling the enzyme orientation to avoid enzyme active site blocking, conformational changes, or denaturing during immobilization. The as-prepared Fe3O4@C@PDA-Ni2+@COX-2 composite was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectrometry (FT-IR), Xray powder diffraction (XRD), thermal gravimetric analyzer (TGA), vibrating sample magnetometer (VSM), and Zeta potential analysis. The analytical parameters influencing the magnetic solid-phase fishing efficiency were optimized by univariate and multivariate methods (Box-Behnken design) by testing a positive control and celecoxib with active and inactive COX-2. Under the optimized ligand fishing conditions, twelve potential COX-2 inhibitors were screened and characterized in Panax notoginseng leaves. The results indicate that the proposed method provides a simple, feasible, selective, and effective platform for the efficient screening and identification of active compounds from Chinese herbal medicine. It has guiding significance for the synthesis and development of novel anti-inflammatory drugs, and provides a reference for the efficient discovery of anti-inflammatory drugs or lead compounds from the complex system of Chinese herbal medicine.
Collapse
Affiliation(s)
- Fan Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Fan Sun
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Lequan Yu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Fei Li
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Lixia Liu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiaoyan Cao
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yi Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Lijie Wu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
8
|
Zhang Y, Zhang Q, Li C, Zhou Z, Lei H, Liu M, Zhang D. Advances in cell membrane-based biomimetic nanodelivery systems for natural products. Drug Deliv 2024; 31:2361169. [PMID: 38828914 PMCID: PMC11149581 DOI: 10.1080/10717544.2024.2361169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Active components of natural products, which include paclitaxel, curcumin, gambogic acid, resveratrol, triptolide and celastrol, have promising anti-inflammatory, antitumor, anti-oxidant, and other pharmacological activities. However, their clinical application is limited due to low solubility, instability, low bioavailability, rapid metabolism, short half-life, and strong off-target toxicity. To overcome these drawbacks, cell membrane-based biomimetic nanosystems have emerged that avoid clearance by the immune system, enhance targeting, and prolong drug circulation, while also improving drug solubility and bioavailability, enhancing drug efficacy, and reducing side effects. This review summarizes recent advances in the preparation and coating of cell membrane-coated biomimetic nanosystems and in their applications to disease for targeted natural products delivery. Current challenges, limitations, and prospects in this field are also discussed, providing a research basis for the development of multifunctional biomimetic nanosystems for natural products.
Collapse
Affiliation(s)
- Yifeng Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Qian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Chunhong Li
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Ziyun Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| |
Collapse
|
9
|
Chen Y, Tang Y, Li Y, Rui Y, Zhang P. Enhancing the Efficacy of Active Pharmaceutical Ingredients in Medicinal Plants through Nanoformulations: A Promising Field. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1598. [PMID: 39404324 PMCID: PMC11478102 DOI: 10.3390/nano14191598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
This article explores the emerging field of nanomedicine as a drug delivery system, aimed at enhancing the therapeutic efficacy of active pharmaceutical ingredients in medicinal plants. The traditional methods of applying medicinal plants present several limitations, such as low bioavailability, poor solubility, challenges in accurately controlling drug dosage, and inadequate targeting. Nanoformulations represent an innovative approach in drug preparation that employs nanotechnology to produce nanoscale particles or carriers, which are designed to overcome these limitations. Nanoformulations offer distinct advantages, significantly enhancing the solubility and bioavailability of drugs, particularly for the poorly soluble components of medicinal plants. These formulations effectively enhance solubility, thereby facilitating better absorption and utilization by the human body, which in turn improves drug efficacy. Furthermore, nanomedicine enables targeted drug delivery, ensuring precise administration to the lesion site and minimizing side effects on healthy tissues. Additionally, nanoformulations can regulate drug release rates, extend the duration of therapeutic action, and enhance the stability of treatment effects. However, nanoformulations present certain limitations and potential risks; their stability and safety require further investigation, particularly regarding the potential toxicity with long-term use. Nevertheless, nanomaterials demonstrate substantial potential in augmenting the efficacy of active pharmaceutical ingredients in medicinal plants, offering novel approaches and methodologies for their development and application.
Collapse
Affiliation(s)
- Yuhao Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuying Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
- Tangshan Jinhai New Material Co., Ltd., Tangshan 063000, China
- Faculty of Resources and Environment, China Agricultural University, Shanghe County Baiqiao Town Science and Technology Courtyard, Jinan 250100, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Chu K, Liu J, Zhang X, Wang M, Yu W, Chen Y, Xu L, Yang G, Zhang N, Zhao T. Herbal Medicine-Derived Exosome-Like Nanovesicles: A Rising Star in Cancer Therapy. Int J Nanomedicine 2024; 19:7585-7603. [PMID: 39081899 PMCID: PMC11287466 DOI: 10.2147/ijn.s477270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Plant-derived exosome-like nanovesicles (PDNVs) are small nanoscale vesicles containing lipids, RNAs, proteins and some plant natural products secreted by plant cells. Over the last decade, PDNVs have garnered significant interest due to its exceptional therapeutic benefits in the treatment of various diseases. Herbal medicine, as a medicinal plant, plays an important role in the treatment of diseases including cancer. Especially in recent years, the function of herbal medicine derived exosome-like nanovesicles (HMDNVs) in the treatment of cancer has been widely concerned, and has become a research hotspot of nanomedicine. In this review, the biological characteristics, functions and the therapeutic advantages of PDNVs are reviewed, as well as the recent achievements and research progress of HMDNVs in cancer treatment, demonstrating its enormous promise as a cancer therapy, and new insights are provided for future research and development of anti-tumor drugs.
Collapse
Affiliation(s)
- Kaifei Chu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Jie Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Xu Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Minran Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Wanping Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Yuyue Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Lingling Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Geng Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Naru Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| |
Collapse
|
11
|
Zhang YB, Wang JF, Wang MX, Peng J, Kong XD, Tian J. Nano-based drug delivery systems for active ingredients from traditional Chinese medicine: Harnessing the power of nanotechnology. Front Pharmacol 2024; 15:1405252. [PMID: 38910887 PMCID: PMC11190311 DOI: 10.3389/fphar.2024.1405252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction: Traditional Chinese medicine (TCM) is gaining worldwide popularity as a complementary and alternative medicine. The isolation and characterization of active ingredients from TCM has become optional strategies for drug development. In order to overcome the inherent limitations of these natural products such as poor water solubility and low bioavailability, the combination of nanotechnology with TCM has been explored. Taking advantage of the benefits offered by the nanoscale, various drug delivery systems have been designed to enhance the efficacy of TCM in the treatment and prevention of diseases. Methods: The manuscript aims to present years of research dedicated to the application of nanotechnology in the field of TCM. Results: The manuscript discusses the formulation, characteristics and therapeutic effects of nano-TCM. Additionally, the formation of carrier-free nanomedicines through self-assembly between active ingredients of TCM is summarized. Finally, the paper discusses the safety behind the application of nano-TCM and proposes potential research directions. Discussion: Despite some achievements, the safety of nano-TCM still need special attention. Furthermore, exploring the substance basis of TCM formulas from the perspective of nanotechnology may provide direction for elucidating the scientific intension of TCM formulas.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Tian
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
12
|
Zhang F, Sun G, Zhao R, Yang F, Jiang X, Song S, Zhang J, Shen H, Shen J. Zwitterion-Modified MXene Quantum Dot as a Nanocarrier for Traditional Chinese Medicine Sanguinarine Delivery and Its Application for Photothermal-Chemotherapy Synergistic Antibacterial and Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11381-11389. [PMID: 38776135 DOI: 10.1021/acs.langmuir.3c03992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The nanomaterialization of traditional Chinese medicine (TCM) has aroused widespread interest among researchers. Sanguinarine (SAN) is a kind of TCM with good antibacterial properties, which has important applications in anti-infection of wounds. Additionally, the combination of photothermal therapy and chemotherapy can overcome bacterial resistance, further improving bactericidal and wound healing efficiency. In this paper, we prepared an antibacterial agent by loading SAN on the zwitterion-modified MXene quantum dot nanocarrier (SAN@AHEP@Ta4C3), realizing pH/NIR controlled drug release and photothermal/chemotherapy synergistic antibacterial and wound healing. The particle size of SAN@AHEP@Ta4C3 is about 120 nm, and it has a good water solubility and stability. In addition, it also has excellent photothermal conversion performance (η = 39.2%), which can effectively convert light energy into heat energy under near-infrared (NIR) laser irradiation, further promoting drug release and achieving bactericidal effects by synergistic chemotherapy and photothermal therapy. The in vitro and in vivo experiments show that SAN@AHEP@Ta4C3 exhibits an excellent antibacterial effect against Staphylococcus aureus and Escherichia coli, and it can effectively promote the wound healing of mice. Moreover, the SAN@AHEP@Ta4C3 also has good biocompatibility and has no side effects on normal tissue and organs. This work introduces a multifunctional antibacterial agent based on TCM and hot-spot material MXene, which will have considerable application prospects in biomedical fields.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Gaoqi Sun
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Rong Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - He Shen
- CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Peng Y, Yang Z, Li J, Liu S. Research progress on nanotechnology of traditional Chinese medicine to enhance the therapeutic effect of osteoarthritis. Drug Deliv Transl Res 2024; 14:1517-1534. [PMID: 38225521 DOI: 10.1007/s13346-024-01517-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic condition that primarily impacts the articular cartilage and surrounding bone tissue, resulting in joint inflammation and structural deterioration. The etiology of OA is multifaceted and intricately linked to the oxidative stress response of joint tissue. Oxidative stress (OS) in OA leads to the creation of reactive oxygen species (ROS) and other oxidizing agents, resulting in detrimental effects on chondrocytes. This oxidative damage diminishes the flexibility and robustness of cartilage, thereby expediting the progression of joint deterioration. Therefore, the antioxidant effect is crucial in the treatment of OA. Currently, a considerable number of components found in traditional Chinese medicine (TCM) have been scientifically demonstrated to exhibit remarkable antioxidant and anti-inflammatory properties. Nevertheless, the utilization of this program is considerably constrained as a result of intrinsic deficiencies, notably stability concerns. The successful amalgamation of TCM components with nanotechnology has properly tackled these concerns and enhanced the efficacy of therapeutic results. The objective of this study is to delineate the antioxidant characteristics of nano-TCM and assess the current inventory of literature pertaining to the application of nano-TCM in the treatment of OA. In conclusion, this paper will now turn to the constraints and potential avenues for the advancement of nano-TCM within the realm of OA therapy.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Jinling Li
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
14
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
15
|
Lin S, Cui J, Li X, Chen S, Gao K, Mei X. Modified ZIF-8 Nanoparticles for Targeted Metabolic Treatment of Acute Spinal Cord Injury. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38499046 DOI: 10.1021/acsami.3c13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The activation of proinflammatory M1-type macrophages in the injured lesion accelerates the progression of a spinal cord injury (SCI). However, adverse side effects during systemic treatments targeting M1 macrophages have limited their applications. Nanoplatforms are novel carriers of traditional Chinese medicine because of their great efficiency to deliver and accumulation in the lesion. Herein, we synthesized a modified zeolitic imidazolate framework-8 (ZIF-8) nanoplatform for internalization and accumulation in the injured spinal cord and effective administration for SCI. In vitro and in vivo experiments suggested that Prussian blue and Schisandrin B modified ZIF-8 effectively accumulated in M1 macrophages, inhibited reactive oxygen species (ROS), and polarized the macrophage from proinflammatory M1 to anti-inflammatory M2 for rapid tissue infiltration by reprogramming the metabolic macrophages phenotype. This nanoplatform achieves a synergistic therapeutic effect of immunomodulation and neuroprotection, thereby shedding new light on the application of ZIF-8, and provides great potential for SCI.
Collapse
Affiliation(s)
- Sen Lin
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121002, P. R. China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou 010, P. R. China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou 010, P. R. China
| | - Jingwen Cui
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou 010, P. R. China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou 010, P. R. China
| | - Xiang Li
- Harbin Medical University, Harbin 150086, P. R. China
| | - Shurui Chen
- Cardiac Intensive Care Unit, Cardiovascular Hospital, Guangdong Second Provincial General Hospital, Guangzhou 510317, P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou 510317, P. R. China
| | - Kai Gao
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining 272111, P. R. China
| | - Xifan Mei
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121002, P. R. China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou 010, P. R. China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou 010, P. R. China
| |
Collapse
|
16
|
Lv X, Wang X, Wang X, Han Y, Chen H, Hao Y, Zhang H, Cui C, Gao Q, Zheng Z. Research progress in arthritis treatment with the active components of Herba siegesbeckiae. Biomed Pharmacother 2023; 169:115939. [PMID: 38007937 DOI: 10.1016/j.biopha.2023.115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Arthritis is a group of diseases characterized by joint pain, swelling, stiffness, and limited movement. Osteoarthritis, rheumatoid arthritis, and gouty arthritis are the most common types of arthritis. Arthritis severely affects the quality of life of patients and imposes a heavy financial and medical burden on their families and society at large. As a widely used traditional Chinese medicine, Herba siegesbeckiae has many pharmacological effects such as anti-inflammatory and analgesic, anti-ischemic injury, cardiovascular protection, and hypoglycemic. In addition, it has significant therapeutic effects on arthritis. The rich chemical compositions of H. siegesbeckiae primarily include diterpenoids, sesquiterpenoids, and flavonoids. As one of the main active components of H. siegesbeckiae, kirenol and quercetin play a vital role in reducing arthritis symptoms. In the present study, the research progress in arthritis treatment with the active components of H. siegesbeckiae is reviewed.
Collapse
Affiliation(s)
- Xiaoqian Lv
- Binzhou Medical University, 264003 Yantai, China
| | - Xiaoyu Wang
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Xuelei Wang
- Binzhou Medical University, 264003 Yantai, China
| | - Yunna Han
- Binzhou Medical University, 264003 Yantai, China
| | - Haoyue Chen
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Yuwen Hao
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Hao Zhang
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Chao Cui
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Qiang Gao
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China.
| | - Zuncheng Zheng
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China.
| |
Collapse
|
17
|
Zhou H, Zhang M, Cao H, Du X, Zhang X, Wang J, Bi X. Research Progress on the Synergistic Anti-Tumor Effect of Natural Anti-Tumor Components of Chinese Herbal Medicine Combined with Chemotherapy Drugs. Pharmaceuticals (Basel) 2023; 16:1734. [PMID: 38139860 PMCID: PMC10748242 DOI: 10.3390/ph16121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The application of chemotherapy drugs in tumor treatment has a long history, but the lack of selectivity of drugs often leads to serious side effects during chemotherapy. The natural anti-tumor ingredients derived from Chinese herbal medicine are attracting increased attention due to their diverse anti-tumor effects, abundant resources, and minimal side effects. An effective anti-tumor strategy may lie in the combination of these naturally derived anti-tumor ingredients with conventional chemotherapy drugs. This approach could potentially inhibit tumor growth and the development of drug resistance in tumor cells while reducing the adverse effects of chemotherapy drugs. This review provides a comprehensive overview of the combined therapy strategies integrating natural anti-tumor components from Chinese herbal medicine with chemotherapy drugs in current research. We primarily summarize various compounds in Chinese herbal medicine exhibiting natural anti-tumor activities and the relevant mechanisms in synergistic anti-tumor combination therapy. The focus of this paper is on underlining that this integrative approach, combining natural anti-tumor components of Chinese herbal medicine with chemotherapy drugs, presents a novel cancer treatment methodology, thereby providing new insights for future oncological research.
Collapse
Affiliation(s)
- Hongrui Zhou
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Mengxue Zhang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Huihui Cao
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Xintong Du
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Xin Zhang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jin Wang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang 110036, China
- Key Laboratory for Chronic Diseases Molecular Mechanism Research and Nutritional Intervention of Shenyang, Shenyang 110036, China
| |
Collapse
|
18
|
Ren C, Ke Q, Fan X, Ning K, Wu Y, Liang J. The shape-dependent inhibitory effect of rhein/silver nanocomposites on porcine reproductive and respiratory syndrome virus. DISCOVER NANO 2023; 18:126. [PMID: 37817016 PMCID: PMC10564707 DOI: 10.1186/s11671-023-03900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Traditional Chinese medicines (TCMs)/nanopreparations as viral antagonists exhibited a structure-function correlation, i.e., the differences in surface area/volume ratio caused by the variations in shape and size could result in different biochemical properties and biological activities, suggesting an important impact of morphology and structure on the antiviral activity of TCM-based nanoparticles. However, few studies paid attention to this aspect. Here, the effect of TCM-based nanoparticles with different morphologies on their antiviral activity was explored by synthesizing rhein/silver nanocomposites (Rhe@AgNPs) with spherical (S-Rhe/Ag) and linear (L-Rhe/Ag) morphologies, using rhein (an active TCM ingredient) as a reducing agent and taking its self-assembly advantage. Using porcine reproductive and respiratory syndrome virus (PRRSV) as a model virus, the inhibitory effects of S-Rhe/Ag and L-Rhe/Ag on PRRSV were compared. Results showed that the product morphology could be regulated by varying pH values, and both S- and L-Rhe/Ag exhibited good dispersion and stability, but with a smaller size for L-Rhe/Ag. Antiviral experiments revealed that Rhe@AgNPs could effectively inhibit PRRSV infection, but the antiviral effect was morphology-dependent. Compared with L-Rhe/Ag, S-Rhe/Ag could more effectively inactivate PRRSV in vitro and antagonize its adsorption, invasion, replication, and release stages. Mechanistic studies indicated that Rhe@AgNPs could reduce the production of reactive oxygen species (ROS) induced by PRRSV infection, and S-Rhe/Ag also had stronger ROS inhibitory effect. This work confirmed the inhibitory effect of Rhe@AgNPs with different morphologies on PRRSV and provided useful information for treating PRRSV infection with metal nanoparticles synthesized from TCM ingredients.
Collapse
Affiliation(s)
- Caifeng Ren
- State Key Laboratory of Agricultural Microbiology, College of Resource and Environment, College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiyun Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
| | - Xiaoxia Fan
- State Key Laboratory of Agricultural Microbiology, College of Resource and Environment, College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Keke Ning
- College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuan Wu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Resource and Environment, College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
19
|
Kang C, Wang J, Li R, Gong J, Wang K, Wang Y, Wang Z, He R, Li F. Smart Targeted Delivery Systems for Enhancing Antitumor Therapy of Active Ingredients in Traditional Chinese Medicine. Molecules 2023; 28:5955. [PMID: 37630208 PMCID: PMC10459615 DOI: 10.3390/molecules28165955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
As a therapeutic tool inherited for thousands of years, traditional Chinese medicine (TCM) exhibits superiority in tumor therapy. The antitumor active components of TCM not only have multi-target treatment modes but can also synergistically interfere with tumor growth compared to traditional chemotherapeutics. However, most antitumor active components of TCM have the characteristics of poor solubility, high toxicity, and side effects, which are often limited in clinical application. In recent years, delivering the antitumor active components of TCM by nanosystems has been a promising field. The advantages of nano-delivery systems include improved water solubility, targeting efficiency, enhanced stability in vivo, and controlled release drugs, which can achieve higher drug-delivery efficiency and bioavailability. According to the method of drug loading on nanocarriers, nano-delivery systems can be categorized into two types, including physically encapsulated nanoplatforms and chemically coupled drug-delivery platforms. In this review, two nano-delivery approaches are considered, namely physical encapsulation and chemical coupling, both commonly used to deliver antitumor active components of TCM, and we summarized the advantages and limitations of different types of nano-delivery systems. Meanwhile, the clinical applications and potential toxicity of nano-delivery systems and the future development and challenges of these nano-delivery systems are also discussed, aiming to lay the foundation for the development and practical application of nano-delivery systems of TCM in clinical settings.
Collapse
Affiliation(s)
- Chenglong Kang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianwen Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Ruotong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianing Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Kuanrong Wang
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Zhenghua Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruzhe He
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| |
Collapse
|
20
|
Liu Y, Zhao J, Chen J, Miao X. Nanocrystals in cosmetics and cosmeceuticals by topical delivery. Colloids Surf B Biointerfaces 2023; 227:113385. [PMID: 37270904 DOI: 10.1016/j.colsurfb.2023.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
The main issues with local delivery of cosmetics are their high sensitivity and limited drug loading of active pharmaceutical ingredient. Nanocrystal technology offers consumers cutting-edge and effective products and exhibits enormous development potential in the beauty business as a new delivery method to address the issue of low solubility and low permeability of sensitive chemicals. In this review, we described the processes for making NCs, along with the impacts of loading and the uses of different carriers. Among them, nanocrystalline loaded gel and emulsion are widely used and may further improve the stability of the system. Then, we introduced the beauty efficacy of drug NCs from five aspects: anti-inflammation and acne, anti-bacterial, lightening and freckle removal, anti-aging as well as UV protection. Following that, we presented the current scenario about stability and safety. Finally, the challenges and vacancy were discussed along with the potential uses of NCs in the cosmetics industry. This review serves as a resource for the advancement of nanocrystal technology in the cosmetics sector.
Collapse
Affiliation(s)
- Yi Liu
- Marine College, Shandong University, Weihai 264209, China; SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Jingru Zhao
- Marine College, Shandong University, Weihai 264209, China
| | - Jing Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
21
|
Xuan X, Zhang J, Fan J, Zhang S. Research progress of Traditional Chinese Medicine (TCM) in targeting inflammation and lipid metabolism disorder for arteriosclerosis intervention: A review. Medicine (Baltimore) 2023; 102:e33748. [PMID: 37144986 PMCID: PMC10158879 DOI: 10.1097/md.0000000000033748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Atherosclerosis (AS) is a chronic disease caused by inflammation and lipid deposition. Immune cells are extensively activated in the lesions, producing excessive pro-inflammatory cytokines, which accompany the entire pathological process of AS. In addition, the accumulation of lipid-mediated lipoproteins under the arterial intima is a crucial event in the development of AS, leading to vascular inflammation. Improving lipid metabolism disorders and inhibiting inflammatory reactions are the primary treatment methods currently used in medical practice to delay AS progression. With the development of traditional Chinese medicine (TCM), more mechanisms of action of the monomer of TCM, Chinese patent medicine, and compound prescription have been studied and explored. Research has shown that some Chinese medicines can participate in treating AS by targeting and improving lipid metabolism disorders and inhibiting inflammatory reactions. This review explores the research on Chinese herbal monomers, compound Chinese medicines, and formulae that improve lipid metabolism disorders and inhibit inflammatory reactions to provide new supplements for treating AS.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingyi Zhang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jilin Fan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiliang Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
Lin X, Yang X, Yang Y, Zhang H, Huang X. Research progress of traditional Chinese medicine as sensitizer in reversing chemoresistance of colorectal cancer. Front Oncol 2023; 13:1132141. [PMID: 36994201 PMCID: PMC10040588 DOI: 10.3389/fonc.2023.1132141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/27/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, the incidences and mortalities from colorectal cancer (CRC) have been increasing; therefore, there is an urgent need to discover newer drugs that enhance drug sensitivity and reverse drug tolerance in CRC treatment. With this view, the current study focuses on understanding the mechanism of CRC chemoresistance to the drug as well as exploring the potential of different traditional Chinese medicine (TCM) in restoring the sensitivity of CRC to chemotherapeutic drugs. Moreover, the mechanism involved in restoring sensitivity, such as by acting on the target of traditional chemical drugs, assisting drug activation, increasing intracellular accumulation of anticancer drugs, improving tumor microenvironment, relieving immunosuppression, and erasing reversible modification like methylation, have been thoroughly discussed. Furthermore, the effect of TCM along with anticancer drugs in reducing toxicity, increasing efficiency, mediating new ways of cell death, and effectively blocking the drug resistance mechanism has been studied. We aimed to explore the potential of TCM as a sensitizer of anti-CRC drugs for the development of a new natural, less-toxic, and highly effective sensitizer to CRC chemoresistance.
Collapse
Affiliation(s)
- Xiang Lin
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yushang Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangbin Zhang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xuan Huang,
| |
Collapse
|
23
|
Zeng M, Guo D, Fernández-Varo G, Zhang X, Fu S, Ju S, Yang H, Liu X, Wang YC, Zeng Y, Casals G, Casals E. The Integration of Nanomedicine with Traditional Chinese Medicine: Drug Delivery of Natural Products and Other Opportunities. Mol Pharm 2023; 20:886-904. [PMID: 36563052 DOI: 10.1021/acs.molpharmaceut.2c00882] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The integration of progressive technologies such as nanomedicine with the use of natural products from traditional medicine (TM) provides a unique opportunity for the longed-for harmonization between traditional and modern medicine. Although several actions have been initiated decades ago, a disparity of reasons including some misunderstandings between each other limits the possibilities of a truly complementation. Herein, we analyze some common challenges between nanomedicine and traditional Chinese medicine (TCM). These challenges, if solved in a consensual way, can give a boost to such harmonization. Nanomedicine is a recently born technology, while TCM has been used by the Chinese people for thousands of years. However, for these disciplines, the regulation and standardization of many of the protocols, especially related to the toxicity and safety, regulatory aspects, and manufacturing procedures, are under discussion. Besides, both TCM and nanomedicine still need to achieve a wider social acceptance. Herein, we first briefly discuss the strengths and weaknesses of TCM. This analysis serves to focus afterward on the aspects where TCM and nanomedicine can mutually help to bridge the existing gaps between TCM and Western modern medicine. As discussed, many of these challenges can be applied to TM in general. Finally, recent successful cases in scientific literature that merge TCM and nanomedicine are reviewed as examples of the benefits of this harmonization.
Collapse
Affiliation(s)
- Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Dongdong Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Guillermo Fernández-Varo
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036 Barcelona, Spain.,Department of Biomedicine, University of Barcelona, 08007 Barcelona, Spain
| | - Xu Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Siqi Fu
- Department of Dermatology, Second Xiangya Hospital Central South University, Changsha 410011, China
| | - Shijie Ju
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Huiling Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xingfei Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Ya-Chao Wang
- The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha 410008, China.,First Clinical Department of Changsha Medical University, Changsha 410219, China
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
24
|
Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed Pharmacother 2022; 156:113912. [DOI: 10.1016/j.biopha.2022.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
|
25
|
Ke G, Zhang J, Gao W, Chen J, Liu L, Wang S, Zhang H, Yan G. Application of advanced technology in traditional Chinese medicine for cancer therapy. Front Pharmacol 2022; 13:1038063. [PMID: 36313284 PMCID: PMC9606699 DOI: 10.3389/fphar.2022.1038063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Although cancer has seriously threatened people’s health, it is also identified by the World Health Organization as a controllable, treatable and even curable chronic disease. Traditional Chinese medicine (TCM) has been extensively used to treat cancer due to its multiple targets, minimum side effects and potent therapeutic effects, and thus plays an important role in all stages of tumor therapy. With the continuous progress in cancer treatment, the overall efficacy of cancer therapy has been significantly improved, and the survival time of patients has been dramatically prolonged. In recent years, a series of advanced technologies, including nanotechnology, gene editing technology, real-time cell-based assay (RTCA) technology, and flow cytometry analysis technology, have been developed and applied to study TCM for cancer therapy, which efficiently improve the medicinal value of TCM and accelerate the research progress of TCM in cancer therapy. Therefore, the applications of these advanced technologies in TCM for cancer therapy are summarized in this review. We hope this review will provide a good guidance for TCM in cancer therapy.
Collapse
Affiliation(s)
- Gaofeng Ke
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wufeng Gao
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Luotong Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| | - Guojun Yan
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| |
Collapse
|
26
|
Che Q, Luo T, Shi J, He Y, Xu DL. Mechanisms by Which Traditional Chinese Medicines Influence the Intestinal Flora and Intestinal Barrier. Front Cell Infect Microbiol 2022; 12:863779. [PMID: 35573786 PMCID: PMC9097517 DOI: 10.3389/fcimb.2022.863779;pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 08/20/2024] Open
Abstract
The effect of a drug on the intestinal flora and the intestinal barrier is an important evaluation index for drug safety and efficacy. Chemical synthetic drugs are widely used due to their advantages of fast efficacy and low doses, but they are prone to cause drug resistance and inhibit proton pumps, which may harm intestinal health. Traditional Chinese medicine (TCM) has been applied clinically for thousands of years, and how TCMs regulate intestinal health to achieve their effects of disease treatment has become a hot research topic that needs to be resolved. This paper reviews the recent research on the effects of TCMs on intestinal microorganisms and the intestinal mucosal barrier after entering the intestine, discusses the interaction mechanisms between TCMs and intestinal flora, and details the repair effect of TCMs on the intestinal mucosal barrier to provide a reference for the development, utilization, and modernization of TCM.
Collapse
Affiliation(s)
- Qingya Che
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Tingting Luo
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Junhua Shi
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihuai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - De-Lin Xu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
27
|
Che Q, Luo T, Shi J, He Y, Xu DL. Mechanisms by Which Traditional Chinese Medicines Influence the Intestinal Flora and Intestinal Barrier. Front Cell Infect Microbiol 2022; 12:863779. [PMID: 35573786 PMCID: PMC9097517 DOI: 10.3389/fcimb.2022.863779] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 01/14/2023] Open
Abstract
The effect of a drug on the intestinal flora and the intestinal barrier is an important evaluation index for drug safety and efficacy. Chemical synthetic drugs are widely used due to their advantages of fast efficacy and low doses, but they are prone to cause drug resistance and inhibit proton pumps, which may harm intestinal health. Traditional Chinese medicine (TCM) has been applied clinically for thousands of years, and how TCMs regulate intestinal health to achieve their effects of disease treatment has become a hot research topic that needs to be resolved. This paper reviews the recent research on the effects of TCMs on intestinal microorganisms and the intestinal mucosal barrier after entering the intestine, discusses the interaction mechanisms between TCMs and intestinal flora, and details the repair effect of TCMs on the intestinal mucosal barrier to provide a reference for the development, utilization, and modernization of TCM.
Collapse
Affiliation(s)
- Qingya Che
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Tingting Luo
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Junhua Shi
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihuai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - De-Lin Xu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|