1
|
Shan Y, Zhao J, Wei K, Jiang P, Shi Y, Chang C, Zheng Y, Zhao F, Li Y, He B, Zhou M, Liu J, Li L, Guo S, He D. Multi-target RNA interference: A disruptive next-generation strategy for precision treatment of rheumatoid arthritis. Int Immunopharmacol 2025; 159:114890. [PMID: 40394795 DOI: 10.1016/j.intimp.2025.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/14/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic joint inflammation. Existing therapeutic regimens, including disease-modifying anti-rheumatic drugs (DMARDs) and biologics, exhibit incomplete efficacy and pronounced limitations. RNA interference (RNAi) utilizing small interfering RNA (siRNA) facilitates the precise silencing of key pathological drivers in rheumatoid arthritis (RA), such as tumor necrosis factor-alpha (TNF-α), interleukins IL-1 and IL-6, as well as pivotal inflammatory pathways including NF-κB. This comprehensive systematic review meticulously analyzes 140 studies focusing on therapeutic siRNA for RA. The utilization of siRNA in RA involves the profound inhibition of macrophage and fibroblast-like synoviocyte (FLS) activation through the strategic targeting of TNF, RELA, and MAPK/JAK signaling pathways. In addition, siRNA diminishes inflammatory responses by suppressing critical inflammasome constituents like NLRP3 and fosters the reestablishment of immune equilibrium via downregulation of Th17 differentiation factors and augmentation of regulatory T cell (Treg) functions. It also directly reduces the aggressiveness of FLS by inhibiting pathological signaling components such as CCN1, KHDRBS1 and E2F2. Experimental studies in rodent models have demonstrated that targeted delivery of siRNA via nanoparticles against pathogenic mediators significantly suppresses paw inflammation and mitigates joint destruction. Although challenges such as stability, off-target effects, and efficient delivery remain, advancements in molecular modifications and nanoparticle technology offer promising solutions to these obstacles. In conclusion, unlike the traditional single-target DMARDs or biologics, multi-target RNA interference presents a highly precise mechanism to inhibit intracellular inflammatory cascade and joint damage progression in RA, offering a potential deterrent to disease advancement.
Collapse
Affiliation(s)
- Yu Shan
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Fuyu Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yunshen Li
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bingheng He
- Department of rehabilitation, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Zhou
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jia Liu
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Smith CT, Wang Z, Lewis JS. Engineering antigen-presenting cells for immunotherapy of autoimmunity. Adv Drug Deliv Rev 2024; 210:115329. [PMID: 38729265 DOI: 10.1016/j.addr.2024.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Autoimmune diseases are burdensome conditions that affect a significant fraction of the global population. The hallmark of autoimmune disease is a host's immune system being licensed to attack its tissues based on specific antigens. There are no cures for autoimmune diseases. The current clinical standard for treating autoimmune diseases is the administration of immunosuppressants, which weaken the immune system and reduce auto-inflammatory responses. However, people living with autoimmune diseases are subject to toxicity, fail to mount a sufficient immune response to protect against pathogens, and are more likely to develop infections. Therefore, there is a concerted effort to develop more effective means of targeting immunomodulatory therapies to antigen-presenting cells, which are involved in modulating the immune responses to specific antigens. In this review, we highlight approaches that are currently in development to target antigen-presenting cells and improve therapeutic outcomes in autoimmune diseases.
Collapse
Affiliation(s)
- Clinton T Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhenyu Wang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Tu AB, Krishna G, Smith KR, Lewis JS. Harnessing Immunomodulatory Polymers for Treatment of Autoimmunity, Allergy, and Transplant Rejection. Annu Rev Biomed Eng 2024; 26:415-440. [PMID: 38959388 DOI: 10.1146/annurev-bioeng-110122-014306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Autoimmunity, allergy, and transplant rejection are a collection of chronic diseases that are currently incurable, drastically decrease patient quality of life, and consume considerable health care resources. Underlying each of these diseases is a dysregulated immune system that results in the mounting of an inflammatory response against self or an innocuous antigen. As a consequence, afflicted patients are required to adhere to lifelong regimens of multiple immunomodulatory drugs to control disease and reclaim agency. Unfortunately, current immunomodulatory drugs are associated with a myriad of side effects and adverse events, such as increased risk of cancer and increased risk of serious infection, which negatively impacts patient adherence rates and quality of life. The field of immunoengineering is a new discipline that aims to harness endogenous biological pathways to thwart disease and minimize side effects using novel biomaterial-based strategies. We highlight and discuss polymeric micro/nanoparticles with inherent immunomodulatory properties that are currently under investigation in biomaterial-based therapies for treatment of autoimmunity, allergy, and transplant rejection.
Collapse
Affiliation(s)
- Allen B Tu
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Gaddam Krishna
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Kevin R Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, Davis, California, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
4
|
Ruan L, Cai X, Qian R, Bei S, Wu L, Cao J, Shen S. Live macrophages loaded with Fe 3O 4 and sulfasalazine for ferroptosis and photothermal therapy of rheumatoid arthritis. Mater Today Bio 2024; 24:100925. [PMID: 38226012 PMCID: PMC10788618 DOI: 10.1016/j.mtbio.2023.100925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/26/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by the infiltration of inflammatory cells and proliferation of synovial cells. It can cause cartilage and bone damage as well as disability and is regarded as an incurable chronic disease. Available therapies cannot prevent the development of diseases due to the high toxicity of the therapeutic agents and the inefficient drug delivery. Ferroptosis, an iron-dependent manner of lipid peroxidative cell death, indicates great potential for RA therapy due to ability to damage the infiltrated inflammatory cells and proliferated fibroblast-like synoviocytes. Here, we use macrophages as vector to deliver Fe3O4 nanoparticles and sulfasalazine (SSZ) for ferroptosis and photothermal therapy of RA. The inherent property of migration towards the inflamed joints under the guidance of inflammatory factors enables macrophages to targetedly deliver the payload into the RA. Upon the irradiation of the near infrared light, the Fe3O4 nanoparticles convert the light into heat to damage the proliferated synovium. Meanwhile, the iron released from Fe3O4 nanoparticles works with SSZ to generate synergetic ferroptosis effect. The resident inflammatory cells and proliferated synovium are efficiently damaged by the ferroptosis and photothermal effect, showing pronounced therapeutic effect for RA.
Collapse
Affiliation(s)
- Li Ruan
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xinxi Cai
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Rui Qian
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shifang Bei
- The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Lin Wu
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jin Cao
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Song Shen
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
5
|
Singh V, Vihal S, Rana R, Rathore C. Nanocarriers for Cannabinoid Delivery: Enhancing Therapeutic Potential. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:247-261. [PMID: 39356097 DOI: 10.2174/0126673878300347240718100814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 10/03/2024]
Abstract
Medical cannabis has potential therapeutic benefits in managing pain, anxiety, depression, and neurological and movement disorders. Phytocannabinoids derived from the cannabis plant are responsible for their pharmacological and therapeutic properties. However, the complexity of cannabis components, especially cannabinoids, poses a challenge to effective medicinal administration. Even with the increasing acceptance of cannabis-based medicines, achieving consistent bioavailability and targeted distribution remains difficult. Conventional administration methods are plagued by solubility and absorption problems requiring innovative solutions. After conducting a thorough review of research papers and patents, it has become evident that nanotechnology holds great promise as a solution. The comprehensive review of 36 research papers has yielded valuable insights, with 7 papers reporting enhanced bioavailability, while others have focused on improvements in release, solubility, and stability. Additionally, 19 patents have been analyzed, of which 7 specifically claim enhanced bioavailability, while the remaining patents describe various formulation methods. These patents outline effective techniques for encapsulating cannabis using nanocarriers, effectively addressing solubility and controlled release. Studies on the delivery of cannabis using nanocarriers focus on improving bioavailability, prolonging release, and targeting specific areas. This synthesis highlights the potential of nanotechnology to enhance cannabis therapies and pave the way for innovative interventions and precision medicine.
Collapse
Affiliation(s)
- Varun Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Samar Vihal
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, 160036, India
| |
Collapse
|
6
|
Chen J, Wu X, Yu R. Unraveling the Therapeutic Mechanism of Saussurea involucrata against Rheumatoid Arthritis: A Network Pharmacology and Molecular Modeling-Based Investigation. Nutrients 2023; 15:4294. [PMID: 37836578 PMCID: PMC10574426 DOI: 10.3390/nu15194294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease with a global prevalence of approximately 0.46%, causing significant impairments in patients' quality of life and an economic burden. Saussurea involucrata (SI) has long been used in traditional medicine to treat RA, but its underlying mechanism remains unclear. This study utilized network pharmacology and molecular docking to explore the potential pharmacological effects of bioactive compounds in SI on RA. A total of 27 active compounds were identified, along with 665 corresponding targets. Additionally, 593 disease-related targets were obtained from multiple databases, with 119 common targets shared with SI. The high-ranking targets mainly belong to the MAPK family and NF-κB pathway, including MAPK14, MAPK1, RELA, TNF, and MAPK8, all of which are associated with inflammation and joint destruction in RA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed significant pathways related to IL-17 signaling, Th17 cell differentiation, and osteoclast differentiation. Molecular docking and dynamic simulations demonstrated strong interactions between several flavonoids and RA-related targets. Xuelianlactone, Involucratin, and Flazin exhibit outstanding binding efficacy with targets such as MAPK1, MAPK8, and TNF. These findings provide valuable insights into the therapeutic potential of SI for RA and offer directions for further drug development.
Collapse
Affiliation(s)
- Jinghua Chen
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining 810001, China
| | - Xiaoke Wu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining 810001, China
| | - Ruitao Yu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (J.C.)
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining 810001, China
| |
Collapse
|
7
|
Yang X, Xia H, Liu C, Wu Y, Liu X, Cheng Y, Wang Y, Xia Y, Yue Y, Cheng X, Jia R. The novel delivery-exosome application for diagnosis and treatment of rheumatoid arthritis. Pathol Res Pract 2023; 242:154332. [PMID: 36696804 DOI: 10.1016/j.prp.2023.154332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic degenerative disease characterized by persistent systemic synovitis, with a high risk of stiffness, pain, and swelling. It may affect the other extra-articular tissues. There is no ideal treatment for this disease at present, and it can only be controlled by medication to alleviate the prognosis. Exosomes are small vesicles secreted by various cells in the organism under normal or pathological conditions, and play a role in immune response, antigen presentation, cell migration, cell differentiation, tumor invasion and so on. Due to the adverse effects of conventional drugs and treatments in the treatment of RA, exosomes, as a nanocarrier with many advantages, can have a great impact on the loading of drugs for the treatment of RA. This article reviews the role of exosomes in the pathogenesis of RA and the progress of exosome-based therapy for RA.
Collapse
Affiliation(s)
- Xinying Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China.
| | - Chang Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Xinyi Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230031, People's Republic of China; School of Life Science, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ruoyang Jia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| |
Collapse
|
8
|
Rezaei Kahmini F, Shahgaldi S, Azimi M, Mansourabadi AH. Emerging therapeutic potential of regulatory T (Treg) cells for rheumatoid arthritis: New insights and challenges. Int Immunopharmacol 2022; 108:108858. [PMID: 35597122 DOI: 10.1016/j.intimp.2022.108858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune-related disorder characterized by chronic inflammation. Although the etiopathogenesis of RA still remains to be clarified, it is supposed that the breakdown of immune self-tolerance may contribute to the development of RA. Thus, restoring of immune tolerance at the site of inflammation is the ultimate goal of RA treatment. Regulatory T cells (Treg cells) are the main suppressive cells that maintain tolerance and inhibit immunity against auto-antigen. Of note, recent studies demonstrated the efficacy of adoptive transfer of Treg cells in the modulation of the unwanted immune response, which makes them an ideal candidate to maintain immune homeostasis and restore antigen-specific tolerance in the case of RA and other autoimmune diseases. This review intends to submit recent finding of Treg cells-based therapies in RA with a focus on strategies applied to improve the therapeutic value of Treg cells to restore immune tolerance.
Collapse
Affiliation(s)
- Fatemeh Rezaei Kahmini
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shahab Shahgaldi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mansourabadi
- Department of Immunology, School of medicine, Tehran University of Medical Sciences, Tehran, Iran; Immunogenetics Research Network (IgReN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
9
|
Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010146. [PMID: 35011376 PMCID: PMC8746670 DOI: 10.3390/molecules27010146] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a group of disorders characterized by uncontrolled cell growth that affects around 11 million people each year globally. Nanocarrier-based systems are extensively used in cancer imaging, diagnostics as well as therapeutics; owing to their promising features and potential to augment therapeutic efficacy. The focal point of research remains to develop new-fangled smart nanocarriers that can selectively respond to cancer-specific conditions and deliver medications to target cells efficiently. Nanocarriers deliver loaded therapeutic cargos to the tumour site either in a passive or active mode, with the least drug elimination from the drug delivery systems. This review chiefly focuses on current advances allied to smart nanocarriers such as dendrimers, liposomes, mesoporous silica nanoparticles, quantum dots, micelles, superparamagnetic iron-oxide nanoparticles, gold nanoparticles and carbon nanotubes, to list a few. Exhaustive discussion on crucial topics like drug targeting, surface decorated smart-nanocarriers and stimuli-responsive cancer nanotherapeutics responding to temperature, enzyme, pH and redox stimuli have been covered.
Collapse
|
10
|
Maisel K. Overcoming transport barrier to immunotherapies. Drug Deliv Transl Res 2021; 11:2271-2272. [PMID: 34674161 DOI: 10.1007/s13346-021-01080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Katharina Maisel
- Department of Bioengineering, University of Maryland College Park, College Park, MD, USA.
| |
Collapse
|