1
|
Chen P, Wang Y, Cai Z, Lu X. Enhanced bioaccessibility of cyclolinopeptides via zein-cyclodextrin nanoparticles: Simulated gastrointestinal digestion and cellular uptake study. Food Chem 2025; 471:142841. [PMID: 39808983 DOI: 10.1016/j.foodchem.2025.142841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Cyclolinopeptides (CLS) are hydrophobic cyclic peptides in flaxseed with multiple bioactive activities. This study developed zein (Z)-cyclodextrin (CD) binary nanoparticles (NPs) as an oral delivery system for CLS. Z-CD NP had a smaller diameter (Dh) and better encapsulation effect on CLS. Formation of CLS-loaded NPs was driven by hydrogen bonds and electrostatic interactions. Presence of CD improved the thermal, pH and storage stabilities of NPs. Besides, CD prevented premature release of CLS in the stomach and enhanced the bioaccessibility of CLS to a maximum of 86.71 % ± 2.20 %. Lipid-raft-mediated endocytosis was involved in the cell uptake of NPs, where the addition of CD significantly facilitated the uptake of NPs. Z-CD NPs also enhanced absorption and reduced secretion of CLS after digestion. Overall, this study provides a simple approach to enhance the oral delivery efficiency of CLS by modulating Z-based NPs with CD.
Collapse
Affiliation(s)
- Peifang Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| | - Zizhe Cai
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| |
Collapse
|
2
|
Naftaly S, Pery T, Mhajne R, Ashkar A, Davidovich-Pinhas M, Zinger A. Harnessing the Potential of Human Breast Milk to Boost Intestinal Permeability for Nanoparticles and Macromolecules. J Control Release 2025; 379:768-785. [PMID: 39842727 DOI: 10.1016/j.jconrel.2025.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
The intricate interplay between human breast milk, nanoparticles, and macromolecules holds promise for innovative nutritional delivery strategies. Compared to bovine milk and infant formula, this study explores human breast milk's role in modulating intestinal permeability and its impact on nanoparticle and macromolecule transport. Comparative analysis with bovine milk and infant formula reveals significant elevations in permeability with human breast milk, accompanied by a decrease in transepithelial electrical resistance, suggesting enhanced paracellular transport. Mechanistically, human breast milk reduces Zonula occludens-1 levels, suggesting a regulatory role in intestinal barrier function. Through in vitro and ex vivo evaluations, we aim to understand better the mechanisms behind enhanced permeability and how human breast milk affects nanoparticle physicochemical properties, potentially modulating their behavior. Specifically, human breast milk improves the intestinal permeability of liposomes in a porcine intestinal model, with associated changes in the composition of milk proteins corona related to liposome charge. These findings underscore the unexploited potential of human breast milk in facilitating transport across the intestinal barrier, offering novel avenues for human nutritional delivery and therapeutic interventions.
Collapse
Affiliation(s)
- Si Naftaly
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Topaz Pery
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Rawan Mhajne
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Areen Ashkar
- Faculty of Biotechnology and Food Engineering, Technion, Israel
| | - Maya Davidovich-Pinhas
- Faculty of Biotechnology and Food Engineering, Technion, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Assaf Zinger
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Cardiovascular Sciences Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Neurosurgery Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Resnick Sustainability Center of Catalysis, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Bruce and Ruth Rappaport Cancer Research Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
3
|
Brishti MR, Venkatraman G, Baba ASBH, Yajit NLM, Karsani SA. Natural Bioactive Compounds Enriched Functional Yogurt: Impact on the Probiotic Bacteria and Its Potential Health Benefits. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10461-1. [PMID: 39934501 DOI: 10.1007/s12602-025-10461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Recently, there has been a high demand for the development of yogurt-based nutraceuticals and functional medications. This surge is primarily driven by the increasing global need for pharmaceutical and nutraceutical products, arising from widespread nutrient deficiencies and the emergence of various communicable and non-communicable diseases (NCDs), including respiratory infections, cancer, gastrointestinal, diabetes, obesity, and cardiovascular diseases. Probiotic yogurt provides an effective medium for delivering essential nutrients to the human body. Additionally, various prebiotic combinations, such as bioactive compounds from plants, animals, and microbes, can enrich the viability of probiotics, nutritional value, and efficacy. However, the gastric environment can significantly impact the viability of probiotic microorganisms as well as the absorption of nutrients and bioactive molecules. Therefore, utilizing biopolymer-based encapsulation for functional nutrients, metal nanostructures, and medications can improve the bioavailability of these compounds, protect the probiotics from gastric enzymes, increase nutrient and microbial absorption in colonic fluids, and enhance the antioxidant level in the body. This review investigates various methods for producing yogurt enriched with prebiotic and probiotic combinations alongside techniques such as microencapsulation, emulsification, and the incorporation of metal nanoparticles. Key factors such as viability, texture, and syneresis are examined to optimize yogurt-based nutraceuticals and functional medications.
Collapse
Affiliation(s)
- Moumika Rahman Brishti
- Department of Biochemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical @ Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | | | - Noor Liana Mat Yajit
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Department of Biochemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Vedarethinam V, Jeevanandam J. Role of nanotechnology in microbiome drug development. HUMAN MICROBIOME DRUG TARGETS 2025:245-263. [DOI: 10.1016/b978-0-443-15435-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Wang L, Meng Q, Su CH. From Food Supplements to Functional Foods: Emerging Perspectives on Post-Exercise Recovery Nutrition. Nutrients 2024; 16:4081. [PMID: 39683475 DOI: 10.3390/nu16234081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Effective post-exercise recovery is vital for optimizing athletic performance, focusing on muscle repair, glycogen replenishment, rehydration, and inflammation management. This review explores the evolving trend from traditional supplements, such as protein, carbohydrates, creatine, and branched-chain amino acids (BCAAs), toward functional foods rich in bioactive compounds. Evidence highlights the benefits of functional foods like tart cherry juice (anthocyanins), turmeric-seasoned foods, and sources of omega-3 fatty acids, including fish, flaxseeds, chia seeds, and walnuts, for mitigating oxidative stress and inflammation. Additionally, probiotics and prebiotics support gut health and immune function, which are integral to effective recovery. Personalized nutrition, informed by genetic and metabolic profiling, is examined as a promising approach to tailor recovery strategies. A systematic search across PubMed, Web of Science, and Google Scholar (2000-2024) identified studies with high empirical rigor and relevance to recovery outcomes. Findings underscore the need for further research into nutrient interactions, dosage optimization, and long-term effects on athletic performance. Integrating functional foods with personalized nutrition presents a comprehensive framework for enhanced recovery, greater resilience to physical stress, and sustained performance in athletes.
Collapse
Affiliation(s)
- Lifeng Wang
- Public Sports Department, Xuhai College, China University of Mining and Technology, Xuzhou 221008, China
| | - Qing Meng
- School of Physical Education, Huaqiao University, Xiamen 361021, China
- Sport and Health Research Center, Huaqiao University, Xiamen 361021, China
| | - Chun-Hsien Su
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 111396, Taiwan
| |
Collapse
|
6
|
El-Marasy SA, AbouSamra MM, Moustafa PE, Mabrok HB, Ahmed-Farid OA, Galal AF, Farouk H. Anti-depressant effect of Naringenin-loaded hybridized nanoparticles in diabetic rats via PPARγ/NLRP3 pathway. Sci Rep 2024; 14:13559. [PMID: 38866877 PMCID: PMC11169681 DOI: 10.1038/s41598-024-62676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Naringenin (NAR) has various biological activities but low bioavailability. The current study examines the effect of Naringenin-loaded hybridized nanoparticles (NAR-HNPs) and NAR on depression induced by streptozotocin (STZ) in rats. NAR-HNPs formula with the highest in vitro NAR released profile, lowest polydispersity index value (0.21 ± 0.02), highest entrapment efficiency (98.7 ± 2.01%), as well as an acceptable particle size and zeta potential of 415.2 ± 9.54 nm and 52.8 ± 1.04 mV, respectively, was considered the optimum formulation. It was characterized by differential scanning calorimetry, examined using a transmission electron microscope, and a stability study was conducted at different temperatures to monitor its stability efficiency showing that NAR-HNP formulation maintains stability at 4 °C. The selected formulation was subjected to an acute toxicological test, a pharmacokinetic analysis, and a Diabetes mellitus (DM) experimental model. STZ (50 mg/kg) given as a single i.p. rendered rats diabetic. Diabetic rat groups were allocated into 4 groups: one group received no treatment, while the remaining three received oral doses of unloaded HNPs, NAR (50 mg/kg), NAR-HNPs (50 mg/kg) and NAR (50 mg/kg) + peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, GW9662 (1mg/kg, i.p.) for three weeks. Additional four non-diabetic rat groups received: distilled water (normal), free NAR, and NAR-HNPs, respectively for three weeks. NAR and NAR-HNPs reduced immobility time in forced swimming test and serum blood glucose while increasing serum insulin level. They also reduced cortical and hippocampal 5-hydroxyindoeacetic acid, 3,4-Dihydroxy-phenylacetic acid, malondialdehyde, NLR family pyrin domain containing-3 (NLRP3) and interleukin-1beta content while raised serotonin, nor-epinephrine, dopamine and glutathione level. PPAR-γ gene expression was elevated too. So, NAR and NAR-HNPs reduced DM-induced depression by influencing brain neurotransmitters and exhibiting anti-oxidant and anti-inflammatory effects through the activation PPAR-γ/ NLRP3 pathway. NAR-HNPs showed the best pharmacokinetic and therapeutic results.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Mona M AbouSamra
- Pharmaceutical Technology Department, Pharmaceutical Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hoda B Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | | | - Asmaa F Galal
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
7
|
Vital Júnior AC, da Silva MB, Monteiro SS, Pasquali MADB. The Therapeutic Potential of Harpagophytum procumbens and Turnera subulata and Advances in Nutraceutical Delivery Systems in Neurodegenerative Diseases. Pharmaceuticals (Basel) 2024; 17:660. [PMID: 38794230 PMCID: PMC11125440 DOI: 10.3390/ph17050660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
This review article covers the therapeutic potential of the plants Harpagophytum procumbens and Turnera subulata in the treatment of neurodegenerative diseases. Despite the recognition of their beneficial properties, there is notable shortage of specific clinical and in vitro studies on these species regarding neurodegenerative diseases. Compounds such as harpagosides and vite-xin-2-O-rhamnoside, found in Harpagophytum procumbens and Turnera subulata, respectively, as well as other antioxidants and anti-inflammatory agents, are associated with mechanisms of action that involve reducing oxidative stress and modulating the inflammatory response, indicating their therapeutic potential in these pathologies. Additionally, the use of nutraceuticals derived from medicinal plants has emerged as a promising approach, offering natural therapeutic alternatives. However, the pressing need for studies focusing on the pharmacokinetics, safety, and pharmacological interactions of these extracts for the treatment of neurodegenerative diseases is emphasized. This review also evaluated advances in nutraceutical delivery systems, highlighting technological innovations that can optimize the precise delivery of these compounds to patients. Such findings highlight the gaps in the study of these plants for the treatment of neurodegenerative diseases and, at the same time, the potential for opening new perspectives in the treatment of neurodegenerative diseases, providing expectations for innovative solutions in this critical domain of medicine.
Collapse
Affiliation(s)
- Antonio Carlos Vital Júnior
- Post-Graduate Program in Biochemistry and Molecular Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Mikaelly Batista da Silva
- Center for Technology and Natural Resources, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Shênia Santos Monteiro
- Center for Technology and Natural Resources, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Matheus Augusto de Bittencourt Pasquali
- Post-Graduate Program in Biochemistry and Molecular Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Graduate Program in Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| |
Collapse
|
8
|
Kang L, Han X, Chang X, Su Z, Fu F, Shan Y, Guo J, Li G. Redox-sensitive self-assembling polymer micelles based on oleanolic modified hydroxyethyl starch: Synthesis, characterisation, and oleanolic release. Int J Biol Macromol 2024; 266:131211. [PMID: 38552688 DOI: 10.1016/j.ijbiomac.2024.131211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Our study aimed at developing polymer micelles that possess redox sensitivity and excellent controlled release properties. 3,3'-dithiodipropionic acid (DTDPA, Abbreviation in synthetic polymers: SS) was introduced as ROS (Reactive oxygen species)response bond and connecting arm to couple hydroxyethyl starch (HES) with oleanolic acid (OA), resulting in the synthesis of four distinct grafting ratios of HES-SS-OA. FTIR (Fourier Transform infrared spectroscopy) and 1H NMR (1H Nuclear magnetic resonance spectra) were used to verify the triumphant combination of HES-SS-OA. Polymer micelles were found to encapsulate OA in an amorphous form, as indicated by the results of XRD (X-ray diffraction) and DSC (Differential scanning calorimetry). When the OA grafting rate on HES increased from 7.72 % to 11.75 %, the particle size decreased from 297.79 nm to 201.39 nm as the polymer micelles became compact due to enhanced hydrophobicity. In addition, the zeta potential changed from -16.42 mv to -25.78 mv, the PDI (polydispersity index) decreased from 0.3649 to 0.2435, and the critical micelle concentration (CMC) decreased from 0.0955 mg/mL to 0.0123 mg/mL. Results of erythrocyte hemolysis, cytotoxicity and cellular uptake illustrated that HES-SS-OA had excellent biocompatibility and minimal cytotoxicity for AML-12 cells. Disulfide bond breakage of HES-SS-OA in the presence of H2O2 and GSH confirmed the redox sensitivity of the HES-SS-OA micelles and their excellent controlled release properties for OA. These findings suggest that HES-SS-OA can be potentially used in the future as a healthcare drug and medicine for the prevention or adjuvant treatment of inflammation.
Collapse
Affiliation(s)
- Lingtao Kang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xiaolei Han
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Zhipeng Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Jiajing Guo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
9
|
Wang Q, Ma C, Wang N, Mao H. Effects of quercetin on the DNA methylation pattern in tumor therapy: an updated review. Food Funct 2024; 15:3897-3907. [PMID: 38535893 DOI: 10.1039/d3fo03831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Quercetin is a unique bioactive flavonoid, and is an excellent antioxidant and has anti-tumor effects by regulating different tumor-related processes like proliferation, apoptosis, invasion, and spread. The latest investigations reveal that quercetin may have the capability to influence DNA methylation modification, one of the primary factors in the development of tumors. Despite the fact that quercetin has significant therapeutic properties, its use as an anti-tumor medicine is constrained by its poor solubility, short half-life, and ineffective tumor targeting. Here, we review the structure and properties of quercetin, its capacity for DNA methylation modification in tumors, and the possibility of nanoscale delivery of quercetin for future tumor treatment.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Ma
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Nan Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Huixian Mao
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| |
Collapse
|
10
|
Lima M, Moreira B, Bertuzzi R, Lima-Silva A. Could nanotechnology improve exercise performance? Evidence from animal studies. Braz J Med Biol Res 2024; 57:e13360. [PMID: 38656076 PMCID: PMC11027182 DOI: 10.1590/1414-431x2024e13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
This review provides the current state of knowledge regarding the use of nutritional nanocompounds on exercise performance. The reviewed studies used the following nanocompounds: resveratrol-loaded lipid nanoparticles, folic acid into layered hydroxide nanoparticle, redox-active nanoparticles with nitroxide radicals, and iron into liposomes. Most of these nutritional nanocompounds seem to improve performance in endurance exercise compared to the active compound in the non-nanoencapsulated form and/or placebo. Nutritional nanocompounds also induced the following physiological and metabolic alterations: 1) improved antioxidant activity and reduced oxidative stress; 2) reduction in inflammation status; 3) maintenance of muscle integrity; 4) improvement in mitochondrial function and quality; 5) enhanced glucose levels during exercise; 6) higher muscle and hepatic glycogen levels; and 7) increased serum and liver iron content. However, all the reviewed studies were conducted in animals (mice and rats). In conclusion, nutritional nanocompounds are a promising approach to improving exercise performance. As the studies using nutritional nanocompounds were all conducted in animals, further studies in humans are necessary to better understand the application of nutritional nanocompounds in sport and exercise science.
Collapse
Affiliation(s)
- M.R. Lima
- Grupo de Pesquisa em Desempenho Humano, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
| | - B.J. Moreira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | - R. Bertuzzi
- Grupo de Estudos em Desempenho Aeróbio, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A.E. Lima-Silva
- Grupo de Pesquisa em Desempenho Humano, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
11
|
Wickramasinghe ASD, Attanayake AP, Kalansuriya P. Gelatine nanoparticles encapsulating three edible plant extracts as potential nanonutraceutical agents against type 2 diabetes mellitus. J Microencapsul 2024; 41:94-111. [PMID: 38410890 DOI: 10.1080/02652048.2024.2313230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
AIM To optimise, and characterise gelatine nanoparticles (GNPs) encapsulating plant extracts and evaluate the glucose-lowering potential. METHODS GNPs encapsulating plant extracts were prepared by desolvation method followed by adsorption. The GNPs were characterised by loading efficiency, loading capacity, particle size, zeta potential, SEM and FTIR. The glucose-lowering activity of GNPs was determined using oral glucose tolerance test in high-fat diet fed streptozotocin-induced Wistar rats. RESULTS Loading efficiency and capacity, particle mean diameter, and zeta potential of optimised GNPs 72.45 ± 13.03% w/w, 53.05 ± 26.16% w/w, 517 ± 48 nm and (-)23.43 ± 9.96 mV respectively. GNPs encapsulating aqueous extracts of C. grandis, S. auriculata, and ethanol 70% v/v extracts of M. koenigii showed glucose-lowering activity by 17.62%, 11.96% and 13.73% (p < 0.05) compared to the non-encapsulated extracts. FTIR analysis confirmed the encapsulation of phytoconstituents into GNPs. SEM imaging showed spherical GNPs (174 ± 46 nm). CONCLUSION GNPs encapsulating plant extracts show promising potential to be developed as nanonutraceuticals against diabetes.
Collapse
Affiliation(s)
| | | | - Pabasara Kalansuriya
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| |
Collapse
|
12
|
Altemimi AB, Farag HAM, Salih TH, Awlqadr FH, Al-Manhel AJA, Vieira IRS, Conte-Junior CA. Application of Nanoparticles in Human Nutrition: A Review. Nutrients 2024; 16:636. [PMID: 38474764 DOI: 10.3390/nu16050636] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nanotechnology in human nutrition represents an innovative advance in increasing the bioavailability and efficiency of bioactive compounds. This work delves into the multifaceted dietary contributions of nanoparticles (NPs) and their utilization for improving nutrient absorption and ensuring food safety. NPs exhibit exceptional solubility, a significant surface-to-volume ratio, and diameters ranging from 1 to 100 nm, rendering them invaluable for applications such as tissue engineering and drug delivery, as well as elevating food quality. The encapsulation of vitamins, minerals, and antioxidants within NPs introduces an innovative approach to counteract nutritional instabilities and low solubility, promoting human health. Nanoencapsulation methods have included the production of nanocomposites, nanofibers, and nanoemulsions to benefit the delivery of bioactive food compounds. Nutrition-based nanotechnology and nanoceuticals are examined for their economic viability and potential to increase nutrient absorption. Although the advancement of nanotechnology in food demonstrates promising results, some limitations and concerns related to safety and regulation need to be widely discussed in future research. Thus, the potential of nanotechnology could open new paths for applications and significant advances in food, benefiting human nutrition.
Collapse
Affiliation(s)
- Ammar B Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Halgord Ali M Farag
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
- Harem Research Center, Department of Nutrition and Diet Therapy, Harem Hospital, Sulaimani 46001, Iraq
| | - Tablo H Salih
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
- Harem Research Center, Department of Nutrition and Diet Therapy, Harem Hospital, Sulaimani 46001, Iraq
| | - Farhang H Awlqadr
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
| | | | - Italo Rennan Sousa Vieira
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| |
Collapse
|
13
|
Rosales-Murillo S, Sánchez-Bodón J, Hernández Olmos S, Ibarra-Vázquez M, Guerrero-Ramírez L, Pérez-Álvarez L, Vilas-Vilela J. Anthocyanin-Loaded Polymers as Promising Nature-Based, Responsive, and Bioactive Materials. Polymers (Basel) 2024; 16:163. [PMID: 38201828 PMCID: PMC10781030 DOI: 10.3390/polym16010163] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Consequently, reviews devoted to a general overview of these flavonoids have proliferated in recent years. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above cited areas. However, anthocyanin-based polymers have been scarcely reviewed in the literature. Accordingly, this review aims to be a systematic summary of the most recent approaches for the incorporation of anthocyanins into macro-, micro-, or nanostructured polymers. Moreover, this work describes the fundamentals of the applicability of smart anthocyanin-based polymers and offers an updated review of their most interesting applications as sensors, biological regulators, and active materials.
Collapse
Affiliation(s)
- S.S. Rosales-Murillo
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
| | - S.L. Hernández Olmos
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - M.F. Ibarra-Vázquez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
- Technological University of Jalisco, Guadalajara 44970, Mexico
| | - L.G. Guerrero-Ramírez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - L. Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - J.L. Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
14
|
Singh AK, Pal P, Pandey B, Goksen G, Sahoo UK, Lorenzo JM, Sarangi PK. Development of "Smart Foods" for health by nanoencapsulation: Novel technologies and challenges. Food Chem X 2023; 20:100910. [PMID: 38144773 PMCID: PMC10740092 DOI: 10.1016/j.fochx.2023.100910] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
Importance of nanotechnology may be seen by penetration of its application in diverse areas including the food sector. With investigations and advancements in nanotechnology, based on feedback from these diverse areas, ease, and efficacy are also increasing. The food sector may use nanotechnology to encapsulate smart foods for increased health, wellness, illness prevention, and effective targeted delivery. Such nanoencapsulated targeted delivery systems may further add to the economic and nutritional properties of smart foods like stability, solubility, effectiveness, safeguard against disintegration, permeability, and bioavailability of smart/bioactive substances. But in the way of application, the fabrication of nanomaterials/nanostructures has several challenges which range from figuring out the optimal technique for obtaining them to determining the most suitable form of nanostructure for a bioactive molecule of interest. This review precisely addresses concepts, recent advances in fabrication techniques as well as current challenges/glitches of nanoencapsulation with special reference to smart foods/bioactive components. Since dealing with food materials also raises the quest for safety and regulatory norms a brief overview of the safety and regulatory aspects of nanomaterials/nanoencapsulation is also presented.
Collapse
Affiliation(s)
- Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Priti Pal
- Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad, Road, Lucknow 226028, India
| | - Brijesh Pandey
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Turkey
| | | | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n◦ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| |
Collapse
|
15
|
Cheng Y, Liu J, Li L, Ren J, Lu J, Luo F. Advances in embedding techniques of anthocyanins: Improving stability, bioactivity and bioavailability. Food Chem X 2023; 20:100983. [PMID: 38144721 PMCID: PMC10740132 DOI: 10.1016/j.fochx.2023.100983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
The health benefits of anthocyanins have attracted extensive research interest. However, anthocyanins are sensitive to certain environmental and gastrointestinal conditions and have low oral bioavailability. It has been reported that delivery systems made in different ways could improve the stability, bioavailability and bioactivity of anthocyanins. This present review summarizes the factors affecting the stability of anthocyanins and the reasons for poor bioavailability, and various technologies for encapsulation of anthocyanins including microcapsules, nanoemulsions, microemulsions, Pickering emulsions, nanoliposomes, nanoparticles, hydrogels and co-assembly with amphiphilic peptides were discussed. In particular, the effects of these encapsulation technologies on the stability, bioavailability and bioactivities of anthocyanins in vitro and in vivo experiments are reviewed in detail, which provided scientific insights for anthocyanins encapsulation methods. However, the application of anthocyanins in food industry as well as the biological fate and functional pathways in vivo still need to be further explored.
Collapse
Affiliation(s)
- Yingying Cheng
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jiayi Liu
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Ling Li
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jun Lu
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
16
|
Dębińska A, Sozańska B. Dietary Polyphenols-Natural Bioactive Compounds with Potential for Preventing and Treating Some Allergic Conditions. Nutrients 2023; 15:4823. [PMID: 38004216 PMCID: PMC10674996 DOI: 10.3390/nu15224823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In light of the constantly increasing prevalence of allergic diseases, changes in dietary patterns have been suggested as a plausible environmental explanation for the development and progression of these diseases. Nowadays, much attention has been paid to the development of dietary interventions using natural substances with anti-allergy activities. In this respect, dietary polyphenols have been studied extensively as one of the most prominent natural bioactive compounds with well-documented anti-inflammatory, antioxidant, and immunomodulatory properties. This review aims to discuss the mechanisms underlying the potential anti-allergic actions of polyphenols related to their ability to reduce protein allergenicity, regulate immune response, and gut microbiome modification; however, these issues need to be elucidated in detail. This paper reviews the current evidence from experimental and clinical studies confirming that various polyphenols such as quercetin, curcumin, resveratrol, catechins, and many others could attenuate allergic inflammation, alleviate the symptoms of food allergy, asthma, and allergic rhinitis, and prevent the development of allergic immune response. Conclusively, dietary polyphenols are endowed with great anti-allergic potential and therefore could be used either for preventive approaches or therapeutic interventions in relation to allergic diseases. Limitations in studying and widespread use of polyphenols as well as future research directions are also discussed.
Collapse
Affiliation(s)
- Anna Dębińska
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wrocław Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland;
| | | |
Collapse
|
17
|
Albogamy NTS, Aboushoushah SF, Aljoud F, Organji H, Elbialy NS. Preparation and characterization of dextran-zein-curcumin nanoconjugate for enhancement of curcumin bioactivity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1891-1910. [PMID: 37000910 DOI: 10.1080/09205063.2023.2198389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Curcumin is one of the most important polyphenolic nutrients in pharmaceutical industries. Unfortunately, its poor solubility and bioavailability have hampered its clinical application. To improve curcumin solubility and bioavailability, a natural nanocarrier made from protein-polysaccharide conjugate has been developed. Following antisolvent precipitation method, zein (Z) nanoparticles coated with dextran sulphate (DS) have been fabricated as curcumin (C) nanocarrier (DSZCNPs). The physicochemical properties of the nanoconjugate were measured using different techniques. Morphologically, DSZCNPs appeared spherical and monodispersed in scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Curcumin encapsulation efficiency was ≈ 96%. DSZCNPs size was 180 nm and the polydispersity index value (PDI) 0.28. Zeta potential for DSZCNPs was -28.5 mV. DSZCNPs showed stability either for shelf storage (100 days) or at different pHs. Furthermore, DSZCNPs protected zein nanoparticles degradation in gastric environment and achieved controlled curcumin release in intestinal environment. DSZCNPs greatly enhanced the antioxidant activity of curcumin as demonstrated by DPPH assay. DSZCNPs had significant results in the reduction of colony forming unit (CFU%) against the tested microbes when compared with free curcumin. Also, the anticancer activity of DSZCNPs and free curcumin against hepatocellular carcinoma cells (HepG2) were assessed by MTT assay. IC50 for DSZCNPs was 13 µg/ml compared to 50 µg/ml for free curcumin indicating the therapeutic impact of DSZCNPs over free curcumin.Based on the above results, the developed zein-dextran nanocomplex exhibited high stability and improved the efficacy and bioactivity of curcumin suggesting its potential utility as nanovehicle for the hydrophobic drug curcumin.
Collapse
Affiliation(s)
- N T S Albogamy
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Physics Department, University College-Taraba, Taif University, Turbah, Kingdom of Saudi Arabia
| | - Samia F Aboushoushah
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F Aljoud
- Regenerative Medicine Unit-KFMRC, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H Organji
- Centre of Excellence in Desalination Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nihal S Elbialy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
18
|
Jeevanandam J, Tan KX, Rodrigues J, Danquah MK. Target-Specific Delivery and Bioavailability of Pharmaceuticals via Janus and Dendrimer Particles. Pharmaceutics 2023; 15:1614. [DOI: https:/doi.org/10.3390/pharmaceutics15061614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Nanosized Janus and dendrimer particles have emerged as promising nanocarriers for the target-specific delivery and improved bioavailability of pharmaceuticals. Janus particles, with two distinct regions exhibiting different physical and chemical properties, provide a unique platform for the simultaneous delivery of multiple drugs or tissue-specific targeting. Conversely, dendrimers are branched, nanoscale polymers with well-defined surface functionalities that can be designed for improved drug targeting and release. Both Janus particles and dendrimers have demonstrated their potential to improve the solubility and stability of poorly water-soluble drugs, increase the intracellular uptake of drugs, and reduce their toxicity by controlling the release rate. The surface functionalities of these nanocarriers can be tailored to specific targets, such as overexpressed receptors on cancer cells, leading to enhanced drug efficacy The design of these nanocarriers can be optimized by tuning the size, shape, and surface functionalities, among other parameters. The incorporation of Janus and dendrimer particles into composite materials to create hybrid systems for enhancing drug delivery, leveraging the unique properties and functionalities of both materials, can offer promising outcomes. Nanosized Janus and dendrimer particles hold great promise for the delivery and improved bioavailability of pharmaceuticals. Further research is required to optimize these nanocarriers and bring them to the clinical setting to treat various diseases. This article discusses various nanosized Janus and dendrimer particles for target-specific delivery and bioavailability of pharmaceuticals. In addition, the development of Janus-dendrimer hybrid nanoparticles to address some limitations of standalone nanosized Janus and dendrimer particles is discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Kei Xian Tan
- GenScript Biotech (Singapore) Pte. Ltd., 164, Kallang Way, Solaris@Kallang 164, Singapore 349248, Singapore
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403-2598, USA
| |
Collapse
|
19
|
Jeevanandam J, Tan KX, Rodrigues J, Danquah MK. Target-Specific Delivery and Bioavailability of Pharmaceuticals via Janus and Dendrimer Particles. Pharmaceutics 2023; 15:1614. [PMID: 37376062 PMCID: PMC10301094 DOI: 10.3390/pharmaceutics15061614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Nanosized Janus and dendrimer particles have emerged as promising nanocarriers for the target-specific delivery and improved bioavailability of pharmaceuticals. Janus particles, with two distinct regions exhibiting different physical and chemical properties, provide a unique platform for the simultaneous delivery of multiple drugs or tissue-specific targeting. Conversely, dendrimers are branched, nanoscale polymers with well-defined surface functionalities that can be designed for improved drug targeting and release. Both Janus particles and dendrimers have demonstrated their potential to improve the solubility and stability of poorly water-soluble drugs, increase the intracellular uptake of drugs, and reduce their toxicity by controlling the release rate. The surface functionalities of these nanocarriers can be tailored to specific targets, such as overexpressed receptors on cancer cells, leading to enhanced drug efficacy The design of these nanocarriers can be optimized by tuning the size, shape, and surface functionalities, among other parameters. The incorporation of Janus and dendrimer particles into composite materials to create hybrid systems for enhancing drug delivery, leveraging the unique properties and functionalities of both materials, can offer promising outcomes. Nanosized Janus and dendrimer particles hold great promise for the delivery and improved bioavailability of pharmaceuticals. Further research is required to optimize these nanocarriers and bring them to the clinical setting to treat various diseases. This article discusses various nanosized Janus and dendrimer particles for target-specific delivery and bioavailability of pharmaceuticals. In addition, the development of Janus-dendrimer hybrid nanoparticles to address some limitations of standalone nanosized Janus and dendrimer particles is discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Kei Xian Tan
- GenScript Biotech (Singapore) Pte. Ltd., 164, Kallang Way, Solaris@Kallang 164, Singapore 349248, Singapore;
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403-2598, USA
| |
Collapse
|
20
|
Tan M, Zhang X, Sun S, Cui G. Nanostructured steady-state nanocarriers for nutrients preservation and delivery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:31-93. [PMID: 37722776 DOI: 10.1016/bs.afnr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food bioactives possess specific physiological benefits of preventing certain diet-related chronic diseases or maintain human health. However, the limitations of the bioactives are their poor stability, lower water solubility and unacceptable bioaccessibility. Structure damage or degradation is often found for the bioactives under certain environmental conditions like high temperature, strong light, extreme pH or high oxygen concentration during food processing, packaging, storage and absorption. Nanostructured steady-state nanocarriers have shown great potential in overcoming the drawbacks for food bioactives. Various delivery systems including solid form delivery system, liquid form delivery system and encapsulation technology have been developed. The embedded food nutrients can largely decrease the loss and degradation during food processing, packaging and storage. The design and application of stimulus and targeted delivery systems can improve the stability, bioavailability and efficacy of the food bioactives upon oral consumption due to enzymatic degradation in the gastrointestinal tract. The food nutrients encapsulated in the smart delivery system can be well protected against degradation during oral administration, thus improving the bioavailability and releazing controlled or targeted release for food nutrients. The encapsulated food bioactives show great potential in nutrition therapy for sub-health status and disease. Much effort is required to design and prepare more biocompatible nanostructured steady-state nanocarriers using food-grade protein or polysaccharides as wall materials, which can be used in food industry and maintain the human health.
Collapse
Affiliation(s)
- Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China.
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| |
Collapse
|
21
|
Wadhwa G, Venkata Krishna K, Kumar Dubey S, Taliyan R. Design and biological evaluation of Repaglinide loaded polymeric nanocarriers for diabetes linked neurodegenerative disorder: QbD-driven optimization, in situ, in vitro and in vivo investigation. Int J Pharm 2023; 636:122824. [PMID: 36921745 DOI: 10.1016/j.ijpharm.2023.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Diabetes mellitus is a metabolic disorder characterized by inadequate insulin secretion and signaling dysfunction, leading to a vast spectrum of systemic complications. These complications trigger cascades of events that result in amyloid-beta plaque formation and lead to neurodegenerative disorders such as Alzheimer's. Repaglinide (REP) an insulinotropic agent, suppresses the down regulatory element antagonist modulator (DREAM) and enhances the ATF6 expression to provide neuroprotection following the DREAM/ATF6/apoptotic pathway. However, oral administration of REP for brain delivery becomes more complicated due to its physicochemical characteristics (high protein binding (>98%), low permeability, short half-life (∼1 h), low bioavailability). Therefore, to circumvent these problems, we develop a polymeric nanocarrier system (PNPs) by in-house synthesized di-block copolymer (PEG-PCL). PNPs were optimized using quality by design approach response surface methodology and characterized by particle size (112.53 ± 5.91 nm), PDI (0.157 ± 0.08), and zeta potential (-6.20 ± 0.82 mV). In vitro release study revealed that PNPs (∼70% in 48 h) followed the Korsmeyer-Peppas model with a Fickian diffusion release pattern, and in intestinal absorption assay PNPs showed increment of ∼1.3 folds compared of REP. Moreover, cellular studies confirmed that REP-loaded PNPs significantly enhance the cellular viability, uptake and reduce the peroxide-induced stress in neuroblastoma SHSY-5Y cells. Further, pharmacokinetic parameters of PNPs showed an increment in tmax (2.46-fold), and Cmax (1.25-fold) associated with REP. In the brain biodistribution study, REP loaded PNPs was sustained for 24 h whereas free REP sustained only for12 h. In DM induced neurodegenerative murine model, a significantly (p < 0.01) enhanced pharmacodynamic was observed in PNP treated group by estimating biochemical and behavioral parameters. Hence, oral administration of REP-loaded PNPs promotes efficient brain uptake and improved efficacy of REP in the diseased model.
Collapse
Affiliation(s)
- Geetika Wadhwa
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India; Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India; Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
22
|
Temova Rakuša Ž, Roškar R, Hickey N, Geremia S. Vitamin B 12 in Foods, Food Supplements, and Medicines-A Review of Its Role and Properties with a Focus on Its Stability. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010240. [PMID: 36615431 PMCID: PMC9822362 DOI: 10.3390/molecules28010240] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Vitamin B12, also known as the anti-pernicious anemia factor, is an essential micronutrient totally dependent on dietary sources that is commonly integrated with food supplements. Four vitamin B12 forms-cyanocobalamin, hydroxocobalamin, 5'-deoxyadenosylcobalamin, and methylcobalamin-are currently used for supplementation and, here, we provide an overview of their biochemical role, bioavailability, and efficacy in different dosage forms. Since the effective quantity of vitamin B12 depends on the stability of the different forms, we further provide a review of their main reactivity and stability under exposure to various environmental factors (e.g., temperature, pH, light) and the presence of some typical interacting compounds (oxidants, reductants, and other water-soluble vitamins). Further, we explore how the manufacturing process and storage affect B12 stability in foods, food supplements, and medicines and provide a summary of the data published to date on the content-related quality of vitamin B12 products on the market. We also provide an overview of the approaches toward their stabilization, including minimization of the destabilizing factors, addition of proper stabilizers, or application of some (innovative) technological processes that could be implemented and contribute to the production of high-quality vitamin B12 products.
Collapse
Affiliation(s)
| | - Robert Roškar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- Correspondence:
| |
Collapse
|
23
|
Ong R, Cornish J, Wen J. Nanoparticular and other carriers to deliver lactoferrin for antimicrobial, antibiofilm and bone-regenerating effects: a review. Biometals 2022; 36:709-727. [PMID: 36512300 PMCID: PMC9745744 DOI: 10.1007/s10534-022-00455-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
Bone and joint infections are a rare but serious problem worldwide. Lactoferrin’s antimicrobial and antibiofilm activity coupled with its bone-regenerating effects may make it suitable for improving bone and joint infection treatment. However, free lactoferrin (LF) has highly variable oral bioavailability in humans due to potential for degradation in the stomach and small intestine. It also has a short half-life in blood plasma. Therefore, encapsulating LF in nanocarriers may slow degradation in the gastrointestinal tract and enhance LF absorption, stability, permeability and oral bioavailability. This review will summarize the literature on the encapsulation of LF into liposomes, solid lipid nanoparticles, nanostructured lipid carriers, polymeric micro and nanoparticles and hydroxyapatite nanocrystals. The fabrication, characterization, advantages, disadvantages and applications of each system will be discussed and compared.
Collapse
Affiliation(s)
- Ray Ong
- grid.9654.e0000 0004 0372 3343Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, 1142 New Zealand
| | - Jillian Cornish
- grid.9654.e0000 0004 0372 3343Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, 1142 New Zealand
| | - Jingyuan Wen
- grid.9654.e0000 0004 0372 3343Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, 1142 New Zealand
| |
Collapse
|
24
|
Santos FH, Panda SK, Ferreira DCM, Dey G, Molina G, Pelissari FM. Targeting infections and inflammation through micro and nano-nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Sensor Technology and Intelligent Systems in Anorexia Nervosa: Providing Smarter Healthcare Delivery Systems. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1955056. [PMID: 36193321 PMCID: PMC9526573 DOI: 10.1155/2022/1955056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Ubiquitous technology, big data, more efficient electronic health records, and predictive analytics are now at the core of smart healthcare systems supported by artificial intelligence. In the present narrative review, we focus on sensing technologies for the healthcare of Anorexia Nervosa (AN). We employed a framework inspired by the Interpersonal Neurobiology Theory (IPNB), which posits that human experience is characterized by a flow of energy and information both within us (within our whole body), and between us (in the connections we have with others and with nature). In line with this framework, we focused on sensors designed to evaluate bodily processes (body sensors such as implantable sensors, epidermal sensors, and wearable and portable sensors), human social interaction (sociometric sensors), and the physical environment (indoor and outdoor ambient sensors). There is a myriad of man-made sensors as well as nature-based sensors such as plants that can be used to design and deploy intelligent systems for human monitoring and healthcare. In conclusion, sensing technologies and intelligent systems can be employed for smarter healthcare of AN and help to relieve the burden of health professionals. However, there are technical, ethical, and environmental sustainability issues that must be considered prior to implementing these systems. A joint collaboration of professionals and other members of the society involved in the healthcare of individuals with AN can help in the development of these systems. The evolution of cyberphysical systems should also be considered in these collaborations.
Collapse
|
26
|
Singh N, Handa M, Singh V, Kesharwani P, Shukla R. Lymphatic targeting for therapeutic application using nanoparticulate systems. J Drug Target 2022; 30:1017-1033. [PMID: 35722764 DOI: 10.1080/1061186x.2022.2092741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The lymphatic system has grasped attention of researchers to a greater extent. The conventional methods of lymphatic delivery are now being modified to include nanotechnology to enhance the targeting of the drug at the specific pathological site. Scientists have worked successfully on different drug loaded nanocarriers that are modulated for the lymphatic system targeting for the treatment of various fatal diseases. Huge strides have been made in methods of delivery of these drugs either individually or in combination along with nanoparticles, therapeutic genes, and vaccines. However, the products introduced for commercial use are almost near nil. Altogether, there are challenges that need to be resolved and studies that are meant to be done for further improvements. The current review focuses on the understanding and pathophysiology of the lymphatic system and changes that occur during disease, drug characteristics, and physicochemical parameters that influence the lymphatic uptake of drugs and different nanocarriers. We further highlight different potential results obtained over the years with nanocarriers and other delivery methods to effectively target the lymphatic system for their therapeutic application. The challenges and drawbacks governing the lack of products available clinically have also been discussed.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P, India-226002
| | - Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P, India-226002
| | - Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P, India-226002
| |
Collapse
|
27
|
Manocha S, Dhiman S, Grewal AS, Guarve K. Nanotechnology: An approach to overcome bioavailability challenges of nutraceuticals. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103418] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|