1
|
Khwatenge CN, Kimathi BM, Nahashon SN. Transcriptome Analysis and Expression of Selected Cationic Amino Acid Transporters in the Liver of Broiler Chicken Fed Diets with Varying Concentrations of Lysine. Int J Mol Sci 2020; 21:E5594. [PMID: 32764289 PMCID: PMC7460557 DOI: 10.3390/ijms21165594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022] Open
Abstract
Amino acids are known to play a key role in gene expression regulation. Amino acid signaling is mediated via two pathways: the mammalian target of rapamycin complex 1 (mTORC1) and the amino acid responsive (AAR) pathways. Cationic amino acid transporters (CATs) are crucial in these pathways due to their sensing, signaling and transport functions. The availability of certain amino acids plays a key role in the intake of other amino acids, hence affecting growth in young birds. However, the specific mechanism for regulating lysine transport for growth is not clear. In this study, we analyze the transcriptome profiles and mRNA expression of selected cationic amino acid transporters in the livers of broilers fed low and high lysine diets. Birds consumed high-lysine (1.42% lysine) or low-lysine (0.85% lysine) diets while the control group consumed 1.14% lysine diet. These concentrations of lysine represent 125% (high lysine), 75% (low lysine) and 100% (control), respectively, of the National Research Council's (NRC) recommendation for broiler chickens. After comparing the two groups, 210 differentially expressed genes (DEGs) were identified (fold change >1 and false discovery rate (FDR) <0.05). When comparing the high lysine and the low lysine treatments, there were 67 upregulated genes and 143 downregulated genes among these DEGs. Analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) enrichment analysis show that cellular growth, lipid metabolism and lysine metabolism pathways were among the significantly enriched pathways. This study contributes to a better understanding of the potential molecular mechanisms underlying the correlation between lysine intake, body weight gain (BWG) and feed intake (FI) in broiler chickens. Moreover, the DEGs obtained in this study may be used as potential candidate genes for further investigation of broiler growth customized responses to individualized nutrients such as amino acids.
Collapse
Affiliation(s)
- Collins N. Khwatenge
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA; (C.N.K.); (B.M.K.)
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Boniface M. Kimathi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA; (C.N.K.); (B.M.K.)
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Samuel N. Nahashon
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
2
|
The Control of Intestinal Inflammation: A Major Objective in the Research of Probiotic Strains as Alternatives to Antibiotic Growth Promoters in Poultry. Microorganisms 2020; 8:microorganisms8020148. [PMID: 31973199 PMCID: PMC7074883 DOI: 10.3390/microorganisms8020148] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/31/2022] Open
Abstract
The reduction of antimicrobial resistance is a major challenge for the scientific community. In a few decades, infections by resistant bacteria are forecasted to be the main cause of death in the world. The withdrawal of antibiotics as growth promoters and their preventive use in animal production is essential to avoid these resistances, but this may impair productivity and health due to the increase in gut inflammation. This reduction in productivity aggravates the problem of increasing meat demand in developing countries and limits the availability of raw materials. Probiotics are promising products to address this challenge due to their beneficial effects on microbiota composition, mucosal barrier integrity, and immune system to control inflammation. Although many modes of action have been demonstrated, the scientific community is not able to describe the specific effects that a probiotic should induce on the host to maximize both productivity and animal health. First, it may be necessary to define what are the innate immune pathways acting in the gut that optimize productivity and health and to then investigate which probiotic strain is able to induce the specific effect needed. This review describes several gaps in the knowledge of host-microbiota-pathogen interaction and the related mechanisms involved in the inflammatory response not demonstrated yet in poultry.
Collapse
|
3
|
Chen F, Wu P, Shen M, He M, Chen L, Qiu C, Shi H, Zhang T, Wang J, Xie K, Dai G, Wang J, Zhang G. Transcriptome Analysis of Differentially Expressed Genes Related to the Growth and Development of the Jinghai Yellow Chicken. Genes (Basel) 2019; 10:genes10070539. [PMID: 31319533 PMCID: PMC6678745 DOI: 10.3390/genes10070539] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022] Open
Abstract
The growth traits are important traits in chickens. Compared to white feather broiler breeds, Chinese local broiler breeds have a slow growth rate. The main genes affecting the growth traits of local chickens in China are still unclear and need to be further explored. This experiment used fast-growth and slow-growth groups of the Jinghai Yellow chicken as the research objects. Three males and three females with similar body weights were selected from the two groups at four weeks old and eight weeks old, respectively, with a total of 24 individuals selected. After slaughter, their chest muscles were taken for transcriptome sequencing. In the differentially expressed genes screening, all of the genes obtained were screened by fold change ≥ 2 and false discovery rate (FDR) < 0.05. For four-week-old chickens, a total of 172 differentially expressed genes were screened in males, where there were 68 upregulated genes and 104 downregulated genes in the fast-growth group when compared with the slow-growth group. A total of 31 differentially expressed genes were screened in females, where there were 11 upregulated genes and 20 downregulated genes in the fast-growth group when compared with the slow-growth group. For eight-week-old chickens, a total of 37 differentially expressed genes were screened in males. The fast-growth group had 28 upregulated genes and 9 downregulated genes when compared with the slow-growth group. A total of 44 differentially expressed genes were screened in females. The fast-growth group had 13 upregulated genes and 31 downregulated genes when compared with the slow-growth group. Through gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, many genes were found to be related to cell proliferation and differentiation, muscle growth, and cell division such as SNCG, MCL1, ARNTL, PLPPR4, VAMP1, etc. Real-time PCR results were consistent with the RNA-Seq data and validated the findings. The results of this study will help to understand the regulation mechanism of the growth and development of Jinghai Yellow chicken and provide a theoretical basis for improving the growth rate of Chinese local chicken breeds.
Collapse
Affiliation(s)
- Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Manman Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Cong Qiu
- Jiangsu Jinghai Poultry Group Co., Ltd., Nantong 226100, China
| | - Huiqiang Shi
- Jiangsu Jinghai Poultry Group Co., Ltd., Nantong 226100, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiahong Wang
- Upper School, Rutgers Preparatory School, NJ 08873, USA
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Wu P, Dai G, Chen F, Chen L, Zhang T, Xie K, Wang J, Zhang G. Transcriptome profile analysis of leg muscle tissues between slow- and fast-growing chickens. PLoS One 2018; 13:e0206131. [PMID: 30403718 PMCID: PMC6221307 DOI: 10.1371/journal.pone.0206131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
Chicken is widely favored by consumers because of some unique features. The leg muscles occupy an important position in the market. However, the specific mechanism for regulating muscle growth speed is not clear. In this experiment, we used Jinghai yellow chickens with different body weights at 300 days as research subjects. The chickens were divided into fast- and slow-growing groups, and we collected leg muscles after slaughtering for use in RNA-seq. After comparing the two groups, 87 differentially expressed genes (DEGs) were identified (fold change ≥ 2 and FDR < 0.05). The fast-growing group had 42 up-regulated genes and 45 down-regulated genes among these DEGs compared to the slow-growing group. Six items were significantly enriched in the biological process: embryo development ending in birth or egg hatching, chordate embryonic development, embryonic skeletal system development, and embryo development as well as responses to ketones and the sulfur compound biosynthetic process. Two significantly enriched pathways were found in the KEGG pathway analysis (P-value < 0.05): the insulin signaling pathway and the adipocytokine signaling pathway. This study provides a theoretical basis for the molecular mechanism of chicken growth and for improving the production of Jinghai yellow chicken.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Xiong D, Song L, Pan Z, Jiao X. Molecular cloning, characterization, and functional analysis of pigeon (Columba livia) Toll-like receptor 5. Poult Sci 2018; 97:4031-4039. [PMID: 29945253 DOI: 10.3382/ps/pey244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that are vital for the recognition of pathogen-associated molecular patterns. TLR5 is responsible for the recognition of bacterial flagellin to induce the NF-κB activation and innate immune responses. In this study, we cloned and identified the TLR5 gene from the King pigeon (Columba livia) designated as PiTLR5. Full-length PiTLR5 cDNA (2583 bp) encoded an 860-amino acid protein containing a signal peptide sequence, 10 leucine-rich repeat domains, a leucine-rich repeat C-terminal domain, a transmembrane domain, and an intracellular Toll-interleukin-1 receptor domain. Pigeon TLR5 mRNA expression was quantified by performing quantitative real-time PCR (qRT-PCR), which showed that PiTLR5 was broadly expressed in all examined tissues, with the highest expression in the liver, peripheral blood mononuclear cells, and spleen. PiTLR5-mediated innate immune responses were measured by determining its effects on NF-κB activation and cytokine expression. The results showed that HEK293T cells transfected with PiTLR5 robustly activated the NF-κB response to flagellin, but not other TLR stimuli, and induced significant upregulation of IL-1β, IL-8, TNF-α, and IFN-γ, indicating that PiTLR5 is a functional TLR5 homolog. Additionally, following flagellin stimulation of pigeon splenic lymphocytes, the levels of TLR5, NF-κB, IL-6, IL-8, CCL5, and IFN-γ mRNA, assessed using qRT-PCR, were significantly upregulated. Besides, TLR5 knockdown resulted in the significantly downregulated expression of NF-κB and related cytokines/chemokines. Triggering pigeon TLR5 contributes to significant upregulation of inflammatory cytokines and chemokines, suggesting that pigeon TLR5 plays an important role in the innate immune responses.
Collapse
Affiliation(s)
- Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
6
|
Zhang A, Xu J, Lai H, Huang W, Fang N, Chen R. Age-related changes and distribution of T cell markers (CD3 and CD4) and toll-like receptors(TLR2, TLR3,TLR4 and TLR7) in the duck lymphoid organs. Immunobiology 2017; 222:857-864. [PMID: 28356195 DOI: 10.1016/j.imbio.2017.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022]
Abstract
T lymphocytes and Toll-like receptors have been confirmed to have correlation with the ability to resistance to pathogenic challenges and play an important role in duck immune system. However, the information of ontogeny of T lymphocytes and Toll-like receptors is scarcely in duck. Therefore, to address these questions, we report the development and distribution of CD3 and CD4 by immunocytochemistry and the age-related mRNA level of duck T cell markers (CD3 and CD4) and Toll-like receptors (TLR2, TLR3, TLR4 and TLR7) by real time quantitative PCR in duck lymphoid organs (thymus, bursa of Fabricius and spleen). Results indicated that CD3 and CD4 positive cells can be observed in all test organs and partly change in an age-related way. CD4 positive T cell of duck spleen mainly distributed in periarterial lymphatic sheaths and red pulp, not in white pulp. Both of CD3 and CD4 were experienced significant increased wave twice in duck lymphoid organs and T cell dependent cellular immunity of duck may well established until 5 weeks old. The mRNA expression levels of duck TLRs were age and organ dependent, and duck TLR3 and TLR7 were significantly lower abundance in the spleen but higher in thymus and bursa of Fabricius, respectively. This study provide the essential knowledge of the ontogeny of T cells and Toll-like receptors in duck, which may shed lights on the T-cell mediate immunity and innate immunity in duck.
Collapse
Affiliation(s)
- Aiguo Zhang
- College of Veterinary Medicine, South China Agricultural University,483 Wushan Street, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Jiahua Xu
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Guangdong, Zhaoqing 526238, China
| | - Hanzhang Lai
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Guangdong, Zhaoqing 526238, China
| | - Wenke Huang
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Guangdong, Zhaoqing 526238, China
| | - Niran Fang
- College of Veterinary Medicine, South China Agricultural University,483 Wushan Street, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University,483 Wushan Street, Tianhe District, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
7
|
Zhang G, Zhang T, Wei Y, Ding F, Zhang L, Wang J. Functional identification of an exon 1 substitution in the myostatin gene and its expression in breast and leg muscle of the Bian chicken. Br Poult Sci 2016; 56:639-44. [DOI: 10.1080/00071668.2015.1113501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Zhou H, Luo M, Wen Y, Ma A, Luo Y, Yi Q, Chen J, Xiao L. [Expression of TLR5 in different types of non-small cell lung cancer cell lines and its activation mechanism]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:8-15. [PMID: 25603867 PMCID: PMC5999743 DOI: 10.3779/j.issn.1009-3419.2015.01.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND It has been proven that toll-like receptor 5 (TLR5) plaied an important role in the development of tumor. In our previous study, we found that the expression of TLR5 was remarkably higher in non-small cell lung cancer (NSCLC) tissues than that in normal tissues, but the activation of TLR5 signaling pathway in NSCLC was still unknown. The aim of this study is to investigate the expression of TLR5 in different types of NSCLC cell lines, and analyze the activity of the signaling pathway after stimulated by its specific exogenous ligand flagellin. METHODS The TLR5 protein was detected by immunofluorescence and Western blot in three kinds of NSCLC cell lines, and the TLR5 mRNA was detected by RT-PCR. Select the cell line of TLR5 highest expression as the research object, and select the suitable concentration of flagellin. NF-κB luciferase activity was detected to validate the TLR5 activation pathway through inhibitory signaling pathways by 0 μg/mL, 0.01 μg/mL, 0.1 μg/mL, 1 μg/mL, 10 μg/mL TLR5 antibody. The chosen cell line was transfected by TLR5 shRNA plasmid, and p-IKBα, IKBα, p-ERK1/2, ERK1/2 and p-JNK of untrasfected and transfected cells were detected in the activity of TLR5 signaling pathway by Western blot at 0 min, 10 min, 30 min and 60 min, respectively. RESULTS The expression of TLR5 was the highest in the lung adenocarcinoma cell line SPC-A-1 by immunofluorescence, mainly expressed on the cell membrane. NF-κB luciferase activity of SPC-A-1 cells was the highest, and the activity was increased in a dose-dependent manner. 0.1 μg/mL flagellin could significantly increase the NF-κB luciferase activity (P<0.05), while its activity could be inhibited by the TLR5 antibody in a negative correlation. Treated by 0.1 μg/mL flagellin, compared with that of 0 min group, the levels of p-IKBα, p-ERK1/2, p-JNK of SPC-A-1 cells increased significantly after 10 min, reached the peak at 30 min, and declined at 60 min (P<0.05). Compared with that of 10 min and 60 min group, the levels of p-IKBα, p-ERK1/2, p-JNK significantly increased at 30 min (P<0.05). While the levels of IKBα, ERK1/2 at 0 min, 10 min, 30 min and 60 min had no significant changes (P>0.05). SPC-A-1 cells transfected TLR5-shRNA were also stimulated by flagellin (0.1 μg/mL). At 0 min, 10 min, 30 min and 60 min, p-IKBα and p-JNK proteins could not be detected, and the levels of IKBα and ERK1/2 had no significant changes (P>0.05), but the levels of p-ERK1/2 significantly increased as time went on (P<0.05). CONCLUSIONS Exogenous ligand flagellin can activate TLR5 protein in NSCLC cell lines and initiate downstream signaling pathways. It may be relative to the development of NSCLC.
Collapse
Affiliation(s)
- Hui Zhou
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China;State Key Laboratory of Medical Genetics Central South University, Changsha 410078, China
| | - Mei Luo
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yige Wen
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Andi Ma
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yongzhong Luo
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Qing Yi
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jianhua Chen
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Ling Xiao
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
9
|
Vinkler M, Bainová H, Bryjová A, Tomášek O, Albrecht T, Bryja J. Characterisation of Toll-like receptors 4, 5 and 7 and their genetic variation in the grey partridge. Genetica 2015; 143:101-12. [PMID: 25626717 DOI: 10.1007/s10709-015-9819-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 01/18/2015] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) are a cornerstone of vertebrate innate immunity. In this study, we identified orthologues of TLR4, TLR5 and TLR7 (representing both bacterial- and viral-sensing TLRs) in the grey partridge (Perdix perdix), a European Galliform game bird species. The phylogeny of all three TLR genes follows the known phylogeny of Galloanserae birds, placing grey partridge TLRs (PePeTLRs) in close proximity to their turkey and pheasant orthologues. The predicted proteins encoded by the PePeTLR genes were 843, 862-863 and 1,047 amino acids long, respectively, and clearly showed all TLR structural features. To verify functionality in these genes we mapped their tissue-expression profiles, revealing generally high PePeTLR4 and PePeTLR5 expression in the thymus and absence of PePeTLR4 and PePeTLR7 expression in the brain. Using 454 next-generation sequencing, we then assessed genetic variation within these genes for a wild grey partridge population in the Czech Republic, EU. We identified 11 nucleotide substitutions in PePeTLR4, eight in PePeTLR5 and six in PePeTLR7, resulting in four, four and three amino acid replacements, respectively. Given their locations and chemical features, most of these non-synonymous substitutions probably have a minor functional impact. As the intraspecific genetic variation of the three TLR genes was low, we assume that either negative selection or a bottleneck may have reduced TLR population variability in this species.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague, Czech Republic, EU,
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Toll-like receptors (TLRs), evolutionarily conserved innate, are expressed in a wide variety of tissues and cell types, and they play key role in the innate immune system. Gene mutation is an important factor associated with some diseases risk and gene polymorphism of TLRs can influence their function to take part in the physiological process in the body. Chronic kidney disease causes high morbidity and mortality, and renal transplantation provides the optimal treatment for people with end-stage renal disease. Innate immune takes a most important role in renal transplantation. There are some studies reporting that TLRs gene polymorphism takes an important role in the renal transplantation. However, no review summed up the role of TLRs gene polymorphism in renal transplantation. The literatures were searched extensively and this review was performed to review the role of TLRs gene polymorphism in renal transplantation.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|