1
|
Asti V, Summer A, Ablondi M, Sartori C, Giontella A, Pilastro V, Mecocci S, Cappelli K, Mancin E, Oian A, Mantovani R, Capomaccio S, Sabbioni A. Selection signatures and inbreeding: exploring genetic diversity in five native horse breeds. BMC Vet Res 2025; 21:346. [PMID: 40380299 PMCID: PMC12082900 DOI: 10.1186/s12917-025-04794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025] Open
Abstract
Horses have undergone extensive natural and artificial selection, shaping the diversity of breeds observed today. Native Italian breeds present unique traits influenced by natural selection, such as adaptation to harsh climates, or hoof strength, but face challenges due to population declines and the reduction of their original breeding purpose. This study focuses on five local Italian breeds: Bardigiano, Haflinger, Maremmano, Murgese, and Italian Heavy Draught Horse, to understand how selection has shaped their populations. A total of 1620 individuals were genotyped with a medium-density SNP chip and remapped to EquCab3. After quality control, where data were filtered based on missing genotypes per SNP (> 0.10) and missing SNPs per sample (> 0.10), 1498 horses and 54,825 SNPs remained for analysis. Population structure and runs of homozygosity (ROH) were identified, and genomic inbreeding coefficients were calculated based on ROH coverage of autosomal SNPs. ROH islands shared by ≥ 70% of horses were identified as selection signatures, and candidate genes within these regions were annotated. The inbreeding coefficient (FROH) ranged from 0.15 to 0.23, with Bardigiano and Haflinger showing the highest values probably due to selective breeding, while Maremmano, Murgese, and Italian Heavy Draught Horse displayed lower FROH, reflecting a broader diversity. ROH islands were identified on 12 chromosomes, with 23 islands distributed among breeds. Cold-blooded breeds (Bardigiano, Haflinger, and Italian Heavy Draught Horse) showed the majority, particularly on Equine Chromosome 3 (ECA3). These islands overlapped with 83 quantitative trait loci (QTLs) and 76 genes associated with morphology and health. Health-related traits such as osteochondrosis and hoof health were linked to ROH patterns, particularly in Bardigiano and Haflinger, highlighting selection for disease resistance. Signature of selections were found in the proximity of MC1R and ASIP genes likely due to their role for coat color; especially in the Haflinger and Italian Heavy Draught Horse the genotype frequency of the BIEC2_816499 SNP which is in the vicinity of the causative mutation for chestnut coat color is due to linkage disequilibrium between the two. In conclusion, this study offered valuable insights that breeders could utilize to make sound decisions. This issue would ensure the maintenance of breed genetic diversity, and the preservation and improvement of the breed's distinct traits and health standards.
Collapse
Affiliation(s)
- Vittoria Asti
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Andrea Summer
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Michela Ablondi
- Department of Veterinary Science, University of Parma, Parma, Italy.
| | - Cristina Sartori
- Department of Agronomy, Natural Resources, Animals, and Environment, University of Padua, Food, Padua, Italy
| | - Andrea Giontella
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Sport Horse Research Centre (CRCS), University of Perugia, Perugia, Italy
| | - Valeria Pilastro
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Sport Horse Research Centre (CRCS), University of Perugia, Perugia, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Sport Horse Research Centre (CRCS), University of Perugia, Perugia, Italy
| | - Enrico Mancin
- Department of Agronomy, Natural Resources, Animals, and Environment, University of Padua, Food, Padua, Italy
| | - Angelica Oian
- Department of Agronomy, Natural Resources, Animals, and Environment, University of Padua, Food, Padua, Italy
| | - Roberto Mantovani
- Department of Agronomy, Natural Resources, Animals, and Environment, University of Padua, Food, Padua, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Sport Horse Research Centre (CRCS), University of Perugia, Perugia, Italy
| | - Alberto Sabbioni
- Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Martinez-Saez L, Marín-García PJ, Llobat ML. Osteochondrosis in horses: An overview of genetic and other factors. Equine Vet J 2025. [PMID: 40302410 DOI: 10.1111/evj.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/22/2025] [Indexed: 05/02/2025]
Abstract
Osteochondrosis (OC) is a frequent manifestation of developmental orthopaedic disease, and its severe clinical presentation is known as OC dissecans (OCD). OC is defined as a disruption of the endochondral ossification process in the epiphyseal cartilage, and this disease has been reported in different mammalian species, including humans, dogs, pigs, and horses. OCD is an important cause of lameness in sport horses and is a common cause of impaired orthopaedic potential, whose clinical signs may be of minimal magnitude or manifest as severe joint effusion or clinically noticeable lameness. The aetiology of OCD is unknown, although it has traditionally been considered to be multifactorial. In addition to genetic factors, associated factors include both non-genetic elements such as rapid growth, nutrition, trauma, anatomical conformation, and biomechanics. Since the prevalence of the disease varies greatly depending on the horse breed, from 13% in Swedish Warmblood to 53% in Lusitano breed, genetic factors have a great relevance in the appearance and development of OCD in horses. Many genetic modifications have been related, and the genes involved can be grouped into five clusters, related to fundamental functions for the correct development and regeneration of cartilage, such as collagen, laminin, cell signalling, matrix turnover, and transcriptional regulation. Changes in genes such as COL3A1, COL5A1, COL5A2, COL24A1, COL27A1 (collagen cluster), LAMB1 (laminin cluster), PTH, PHT receptors, and IHH (cell signalling), and genes encoding matrix metalloproteinases have been related to the occurrence and severity of diseases in different equine breeds. This review summarises the main factors associated with OC in horses, with particular emphasis on genetic factors.
Collapse
Affiliation(s)
- Lola Martinez-Saez
- Molecular Mechanisms of Zoonotic Diseases (MMOPS) Research Group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Pablo J Marín-García
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - M Lola Llobat
- Molecular Mechanisms of Zoonotic Diseases (MMOPS) Research Group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
3
|
Šimon M, Kaić A, Potočnik K. Unveiling Genetic Potential for Equine Meat Production: A Bioinformatics Approach. Animals (Basel) 2024; 14:2441. [PMID: 39199974 PMCID: PMC11350750 DOI: 10.3390/ani14162441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
In view of the predicted significant increase in global meat production, alternative sources such as horsemeat are becoming increasingly important due to their lower environmental impact and high nutritional value. This study aimed to identify SNP markers on the GeneSeek® Genomic Profiler™ Equine (Neogen, Lansing, MI, USA) that are important for horsemeat production traits. First, orthologous genes related to meat yield in cattle and common genes between horses and cattle within QTLs for body size and weight were identified. Markers for these genes were then evaluated based on predicted variant consequences, GERP scores, and positions within constrained elements and orthologous regulatory regions in pigs. A total of 268 markers in 57 genes related to meat production were analyzed. This resulted in 27 prioritized SNP markers in 22 genes, including notable markers in LCORL, LASP1, IGF1R, and MSTN. These results will benefit smallholder farmers by providing genetic insights for selective breeding that could improve meat yield. This study also supports future large-scale genetic analyses such as GWAS and Genomic Best Linear Unbiased Prediction (GBLUP). The results of this study may be helpful in improving the accuracy of genomic breeding values. However, limitations include reliance on bioinformatics without experimental validation. Future research can validate these markers and consider a wider range of traits to ensure accuracy in equine breeding.
Collapse
Affiliation(s)
- Martin Šimon
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia; (M.Š.); (K.P.)
| | - Ana Kaić
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Klemen Potočnik
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia; (M.Š.); (K.P.)
| |
Collapse
|
4
|
Reich P, Möller S, Stock KF, Nolte W, von Depka Prondzinski M, Reents R, Kalm E, Kühn C, Thaller G, Falker-Gieske C, Tetens J. Genomic analyses of withers height and linear conformation traits in German Warmblood horses using imputed sequence-level genotypes. Genet Sel Evol 2024; 56:45. [PMID: 38872118 PMCID: PMC11177368 DOI: 10.1186/s12711-024-00914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Body conformation, including withers height, is a major selection criterion in horse breeding and is associated with other important traits, such as health and performance. However, little is known about the genomic background of equine conformation. Therefore, the aim of this study was to use imputed sequence-level genotypes from up to 4891 German Warmblood horses to identify genomic regions associated with withers height and linear conformation traits. Furthermore, the traits were genetically characterised and putative causal variants for withers height were detected. RESULTS A genome-wide association study (GWAS) for withers height confirmed the presence of a previously known quantitative trait locus (QTL) on Equus caballus (ECA) chromosome 3 close to the LCORL/NCAPG locus, which explained 16% of the phenotypic variance for withers height. An additional significant association signal was detected on ECA1. Further investigations of the region on ECA3 identified a few promising candidate causal variants for withers height, including a nonsense mutation in the coding sequence of the LCORL gene. The estimated heritability for withers height was 0.53 and ranged from 0 to 0.34 for the conformation traits. GWAS identified significantly associated variants for more than half of the investigated conformation traits, among which 13 showed a peak on ECA3 in the same region as withers height. Genetic parameter estimation revealed high genetic correlations between these traits and withers height for the QTL on ECA3. CONCLUSIONS The use of imputed sequence-level genotypes from a large study cohort led to the discovery of novel QTL associated with conformation traits in German Warmblood horses. The results indicate the high relevance of the QTL on ECA3 for various conformation traits, including withers height, and contribute to deciphering causal mutations for body size in horses.
Collapse
Affiliation(s)
- Paula Reich
- Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, 37075, Göttingen, Germany.
| | - Sandra Möller
- Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Kathrin F Stock
- IT Solutions for Animal Production (vit), 27283, Verden, Germany
| | - Wietje Nolte
- Saxon State Office for Environment, Agriculture and Geology, 01468, Moritzburg, Germany
| | | | - Reinhard Reents
- IT Solutions for Animal Production (vit), 27283, Verden, Germany
| | - Ernst Kalm
- Institute of Animal Breeding and Husbandry, Kiel University, 24098, Kiel, Germany
| | - Christa Kühn
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059, Rostock, Germany
- Friedrich-Loeffler-Institute, 17493, Greifswald - Riems Island, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Kiel University, 24098, Kiel, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, 37075, Göttingen, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, 37075, Göttingen, Germany
| |
Collapse
|
5
|
Tong X, Chen D, Hu J, Lin S, Ling Z, Ai H, Zhang Z, Huang L. Accurate haplotype construction and detection of selection signatures enabled by high quality pig genome sequences. Nat Commun 2023; 14:5126. [PMID: 37612277 PMCID: PMC10447580 DOI: 10.1038/s41467-023-40434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
High-quality whole-genome resequencing in large-scale pig populations with pedigree structure and multiple breeds would enable accurate construction of haplotype and robust selection-signature detection. Here, we sequence 740 pigs, combine with 149 of our previously published resequencing data, retrieve 207 resequencing datasets, and form a panel of worldwide distributed wild boars, aboriginal and highly selected pigs with pedigree structures, amounting to 1096 genomes from 43 breeds. Combining with their haplotype-informative reads and pedigree structure, we accurately construct a panel of 1874 haploid genomes with 41,964,356 genetic variants. We further demonstrate its valuable applications in GWAS by identifying five novel loci for intramuscular fat content, and in genomic selection by increasing the accuracy of estimated breeding value by 36.7%. In evolutionary selection, we detect MUC13 gene under a long-term balancing selection, as well as NPR3 gene under positive selection for pig stature. Our study provides abundant genomic variations for robust selection-signature detection and accurate haplotypes for deciphering complex traits in pigs.
Collapse
Affiliation(s)
- Xinkai Tong
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
- College of Life Sciences, Jiangxi Normal University, NanChang, Jiangxi Province, PR China
| | - Dong Chen
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Jianchao Hu
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Shiyao Lin
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Ziqi Ling
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Huashui Ai
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Zhiyan Zhang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China.
| | - Lusheng Huang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China.
| |
Collapse
|
6
|
Assessment and Distribution of Runs of Homozygosity in Horse Breeds Representing Different Utility Types. Animals (Basel) 2022; 12:ani12233293. [PMID: 36496815 PMCID: PMC9736150 DOI: 10.3390/ani12233293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The present study reports runs of homozygosity (ROH) distribution in the genomes of six horse breeds (571 horses in total) representing three horse types (primitive, light, and draft horses) based on the 65k Equine BeadChip assay. Of major interest was the length, quantity, and frequency of ROH characteristics, as well as differences between horse breeds and types. Noticeable differences in the number, length and distribution of ROH between breeds were observed, as well as in genomic inbreeding coefficients. We also identified regions of the genome characterized by high ROH coverage, known as ROH islands, which may be signals of recent selection events. Eight to fourteen ROH islands were identified per breed, which spanned multiple genes. Many were involved in important horse breed characteristics, including WFIKNN2, CACNA1G, STXBP4, NOG, FAM184B, QDPR, LCORL, and the zinc finger protein family. Regions of the genome with zero ROH occurrences were also of major interest in specific populations. Depending on the breed, we detected between 2 to 57 no-ROH regions and identified 27 genes in these regions that were common for five breeds. These genes were involved in, e.g., muscle contractility (CACNA1A) and muscle development (miR-23, miR-24, miR-27). To sum up, the obtained results can be furthered analyzed in the topic of identification of markers unique for specific horse breed characteristics.
Collapse
|
7
|
Tijjani A, Salim B, da Silva MVB, Eltahir HA, Musa TH, Marshall K, Hanotte O, Musa HH. Genomic signatures for drylands adaptation at gene-rich regions in African zebu cattle. Genomics 2022; 114:110423. [PMID: 35803449 PMCID: PMC9388378 DOI: 10.1016/j.ygeno.2022.110423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
Background Indigenous Sudanese cattle are mainly indicine/zebu (humped) type. They thrive in the harshest dryland environments characterised by high temperatures, long seasonal dry periods, nutritional shortages, and vector disease challenges. Here, we sequenced 60 indigenous Sudanese cattle from six indigenous breeds and analysed the data using three genomic scan approaches to unravel cattle adaptation to the African dryland region. Results We identified a set of gene-rich selective sweep regions, detected mostly on chromosomes 5, 7 and 19, shared across African and Gir zebu. These include genes involved in immune response, body size and conformation, and heat stress response. We also identified selective sweep regions unique to Sudanese zebu. Of these, a 250 kb selective sweep on chromosome 16 spans seven genes, including PLCH2, PEX10, PRKCZ, and SKI, which are involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism. Conclusions Our results suggest that environmental adaptation may involve recent and ancient selection at gene-rich regions, which might be under a common regulatory genetic control, in zebu cattle. Sudanese cattle thrive in the harshest environments of the African drylands. Bos indicus shared selected genes are involved in immune response, conformation, and heat stress response. Sudanese zebu-specific sweep includes genes involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism. Environmental adaptation in zebu cattle may involve recent and ancient selection at gene-rich regions, which might be under a common regulatory genetic control.
Collapse
Affiliation(s)
- Abdulfatai Tijjani
- International Livestock Research Institute (ILRI), PO 5689, Addis Ababa, Ethiopia; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, PO Box 5689, Addis Ababa, Ethiopia; Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, United Kingdom.
| | - Bashir Salim
- Faculty of Veterinary Medicine, University of Khartoum, Sudan
| | | | | | - Taha H Musa
- Biomedical Research Institute, Darfur College, Sudan
| | - Karen Marshall
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi 00100, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), PO 5689, Addis Ababa, Ethiopia; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, PO Box 5689, Addis Ababa, Ethiopia; Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, United Kingdom.
| | - Hassan H Musa
- Institute of Molecular Biology, University of Nyala, Sudan; Faculty of Medical Laboratory Sciences, University of Khartoum, Sudan.
| |
Collapse
|
8
|
Jiao Y, Wilson PW, Reid AMA, Dunn IC. The expression of the gastrin/cholecystokinin (GAST/CCK) family and their receptors (CCKAR/CCKBR) in the chicken changes in response to quantitative restriction and reveals a functional role of CCK in the crop. Gen Comp Endocrinol 2022; 321-322:114024. [PMID: 35292263 DOI: 10.1016/j.ygcen.2022.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
Abstract
Gastrin and cholecystokinin peptides bind a common G-protein coupled receptor, cholecystokinin receptor B (CCKBR) whilst cholecystokinin receptor A (CCKAR) is preferentially bound by CCK. Gastrin and cholecystokinin mediate signalling from the gastrointestinal tract to regulate appetite and digestive function. In this study, expression of the cholecystokinin/gastrin family and distribution of their receptors expression was measured to understand the target organs for the peptides and how expression responds to changes in food intake. We confirmed the restricted expression of gastrin in the antrum and the abundant expression of cholecystokinin in the hypothalamus. The expression of gastrin in the antrum was significantly elevated in broiler breeders when released from feed restriction. CCKBR was most abundant in the hypothalamus and proventriculus. CCKAR was most abundant in the pancreas and crop, more than tenfold greater than the gastrointestinal tract. Cholecystokinin expression in the pancreas increased after removal of food restriction. CCKAR in the gastrointestinal tract peaks around the distal ileum, distal to the peak of cholecystokinin expression. There was virtually no cholecystokinin expression in the caecum but CCKAR expression was high. The CCKAR expression in the crop was unexpected, supporting a role of cholecystokinin in mediating crop emptying which was supported by the observation of in-vitro contraction after cholecystokinin administration. The response to changes in food intake and the expression pattern of the cholecystokinin/gastrin family and their receptors will stimulate and inform new hypotheses on their role in growth in poultry.
Collapse
Affiliation(s)
- Yuping Jiao
- The Roslin Institute, University of Edinburgh, EH25 9RG Scotland, UK.
| | - Peter W Wilson
- The Roslin Institute, University of Edinburgh, EH25 9RG Scotland, UK.
| | - Angus M A Reid
- The Roslin Institute, University of Edinburgh, EH25 9RG Scotland, UK.
| | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, EH25 9RG Scotland, UK.
| |
Collapse
|
9
|
Genome-wide association analyses of osteochondrosis in Belgian Warmbloods reveal candidate genes associated with chondrocyte development. J Equine Vet Sci 2022; 111:103870. [DOI: 10.1016/j.jevs.2022.103870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 01/22/2023]
|
10
|
Salek Ardestani S, Aminafshar M, Zandi Baghche Maryam MB, Banabazi MH, Sargolzaei M, Miar Y. A genome-wide signatures of selection study of Welsh ponies and draft horses revealed five genes associated with horse type variation. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Asadollahpour Nanaei H, Esmailizadeh A, Ayatollahi Mehrgardi A, Han J, Wu DD, Li Y, Zhang YP. Comparative population genomic analysis uncovers novel genomic footprints and genes associated with small body size in Chinese pony. BMC Genomics 2020; 21:496. [PMID: 32689947 PMCID: PMC7370493 DOI: 10.1186/s12864-020-06887-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Body size is considered as one of the most fundamental properties of an organism. Due to intensive breeding and artificial selection throughout the domestication history, horses exhibit striking variations for heights at withers and body sizes. Debao pony (DBP), a famous Chinese horse, is known for its small body size and lives in Guangxi mountains of southern China. In this study, we employed comparative population genomics to study the genetic basis underlying the small body size of DBP breed based on the whole genome sequencing data. To detect genomic signatures of positive selection, we applied three methods based on population comparison, fixation index (FST), cross population composite likelihood ratio (XP-CLR) and nucleotide diversity (θπ), and further analyzed the results to find genomic regions under selection for body size-related traits. Results A number of protein-coding genes in windows with the top 1% values of FST (367 genes), XP-CLR (681 genes), and log2 (θπ ratio) (332 genes) were identified. The most significant signal of positive selection was mapped to the NELL1 gene, probably underlies the body size and development traits, and may also have been selected for short stature in the DBP population. In addition, some other loci on different chromosomes were identified to be potentially involved in the development of body size. Conclusions Results of our study identified some positively selected genes across the horse genome, which are possibly involved in body size traits. These novel candidate genes may be useful targets for clarifying our understanding of the molecular basis of body size and as such they should be of great interest for future research into the genetic architecture of relevant traits in horse breeding program.
Collapse
Affiliation(s)
- Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran. .,State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan, China.
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan, China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
12
|
Salek Ardestani S, Aminafshar M, Zandi Baghche Maryam MB, Banabazi MH, Sargolzaei M, Miar Y. Signatures of selection analysis using whole-genome sequence data reveals novel candidate genes for pony and light horse types. Genome 2020; 63:387-396. [PMID: 32407640 DOI: 10.1139/gen-2020-0001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Natural selection and domestication have shaped modern horse populations, resulting in a vast range of phenotypically diverse breeds. Horse breeds are classified into three types (pony, light, and draft) generally based on their body type. Understanding the genetic basis of horse type variation and selective pressures related to the evolutionary trend can be particularly important for current selection strategies. Whole-genome sequences were generated for 14 pony and 32 light horses to investigate the genetic signatures of selection of the horse type in pony and light horses. In the overlapping extremes of the fixation index and nucleotide diversity results, we found novel genomic signatures of selective sweeps near key genes previously implicated in body measurements including C4ORF33, CRB1, CPN1, FAM13A, and FGF12 that may influence variation in pony and light horse types. This study contributes to a better understanding of the genetic background of differences between pony and light horse types.
Collapse
Affiliation(s)
- Siavash Salek Ardestani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Mehdi Aminafshar
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | | | - Mohammad Hossein Banabazi
- Department of Biotechnology, Animal Science Research Institute of Iran, Agricultural Research, Education & Extension Organization, Karaj 3146618361, Iran
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON NIG 2W1, Canada.,Select Sires Inc., Plain City, OH 43064, USA
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
13
|
Raudsepp T, Finno CJ, Bellone RR, Petersen JL. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era. Anim Genet 2019; 50:569-597. [PMID: 31568563 PMCID: PMC6825885 DOI: 10.1111/age.12857] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite‐free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high‐quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Research, Texas A&M University, College Station, TX, 77843, USA
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - R R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,School of Veterinary Medicine, Veterinary Genetics Laboratory, University of California-Davis, Davis, CA, 95616, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA
| |
Collapse
|
14
|
Ablondi M, Viklund Å, Lindgren G, Eriksson S, Mikko S. Signatures of selection in the genome of Swedish warmblood horses selected for sport performance. BMC Genomics 2019; 20:717. [PMID: 31533613 PMCID: PMC6751828 DOI: 10.1186/s12864-019-6079-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023] Open
Abstract
Background A growing demand for improved physical skills and mental attitude in modern sport horses has led to strong selection for performance in many warmblood studbooks. The aim of this study was to detect genomic regions with low diversity, and therefore potentially under selection, in Swedish Warmblood horses (SWB) by analysing high-density SNP data. To investigate if such signatures could be the result of selection for equestrian sport performance, we compared our SWB SNP data with those from Exmoor ponies, a horse breed not selected for sport performance traits. Results The genomic scan for homozygous regions identified long runs of homozygosity (ROH) shared by more than 85% of the genotyped SWB individuals. Such ROH were located on ECA4, ECA6, ECA7, ECA10 and ECA17. Long ROH were instead distributed evenly across the genome of Exmoor ponies in 77% of the chromosomes. Two population differentiation tests (FST and XP-EHH) revealed signatures of selection on ECA1, ECA4, and ECA6 in SWB horses. Conclusions Genes related to behaviour, physical abilities and fertility, appear to be targets of selection in the SWB breed. This study provides a genome-wide map of selection signatures in SWB horses, and ground for further functional studies to unravel the biological mechanisms behind complex traits in horses.
Collapse
Affiliation(s)
- Michela Ablondi
- Dept. of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-750 07, Uppsala, Sweden.,Department of Veterinary Science, Università degli Studi di Parma, 43126, Parma, Italy
| | - Åsa Viklund
- Dept. of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-750 07, Uppsala, Sweden
| | - Gabriella Lindgren
- Dept. of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-750 07, Uppsala, Sweden.,Livestock Genetics, Department of Biosystems, Leuven, KU, Belgium
| | - Susanne Eriksson
- Dept. of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-750 07, Uppsala, Sweden
| | - Sofia Mikko
- Dept. of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-750 07, Uppsala, Sweden.
| |
Collapse
|
15
|
Sánchez-Guerrero MJ, Negro-Rama S, Demyda-Peyras S, Solé-Berga M, Azor-Ortiz PJ, Valera-Córdoba M. Morphological and genetic diversity of Pura Raza Español horse with regard to the coat colour. Anim Sci J 2018; 90:14-22. [PMID: 30467923 DOI: 10.1111/asj.13102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 11/27/2022]
Abstract
Gene mutations influencing melanocytes also impact on physiological and behavioural functions. In this study, we investigated their association with four different coat colours in the Pura Raza Español (PRE) horse using morphological traits and molecular datasets. Four different subpopulations were identified according to individual coat colour: grey, bay, chestnut and black. Coat colour significantly associated with morphological measurements. Observed and expected heterozygosity values were low in grey compared with the other three subpopulations, suggesting the presence of unique ancestral alleles probably arisen by genetic drift and selection mechanism effects. Nei's distance demonstrated a clear division among subpopulations, the grey being the most divergent group. Gene flow estimates were similar, showing the lowest values in grey. Divergence times among subpopulations assessed with the average square distance suggested that grey was the original PRE population which diverged from bay, chestnut and black. Our results also demonstrated a clear morphological differentiation according to coat colour. The close genetic structure of bay and chestnut PRE subpopulations and the clear differences in most morphological traits of grey and chestnut PRE mares would suggest the pleiotropic effect of genomic regions determining coat colour in horses. However, further analysis including genomic information would be necessary to elucidate the mechanisms involved.
Collapse
Affiliation(s)
| | - Sara Negro-Rama
- Departamento de Ciencias Agroforestales, ETSIA, Universidad de Sevilla, Sevilla, España
| | - Sebastián Demyda-Peyras
- Facultad de Ciencias Veterinarias, IGEVET-Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Universidad Nacional de La Plata, La Plata, Argentina
| | - Marina Solé-Berga
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Pedro J Azor-Ortiz
- Departamento de Ciencias Agroforestales, ETSIA, Universidad de Sevilla, Sevilla, España
| | | |
Collapse
|
16
|
An B, Xia J, Chang T, Wang X, Miao J, Xu L, Zhang L, Gao X, Chen Y, Li J, Gao H. Genome-wide association study identifies loci and candidate genes for internal organ weights in Simmental beef cattle. Physiol Genomics 2018; 50:523-531. [DOI: 10.1152/physiolgenomics.00022.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cattle internal organs as accessible raw materials have a long history of being widely used in beef processing, feed and pharmaceutical industry. These traits not only are of economic interest to breeders, but they are intrinsically linked to many valuable traits, such as growth, health, and productivity. Using the Illumina Bovine HD 770K SNP array, we performed a genome-wide association study for heart weight, liver weight, spleen weight, lung weight, and kidney weight in 1,217 Simmental cattle. In our research, 38 significant single nucleotide polymorphisms (SNPs) ( P < 1.49 × 10−6) were identified for five internal organ weight traits. These SNPs are within or near 13 genes, and some of them have been reported previously, including NDUFAF4, LCORL, BT.94996, SLIT2, FAM184B, LAP3, BBS12, MECOM, CD300LF, HSD17B3, TLR4, MXI1, and MB21D2. In addition, we detected four haplotype blocks on BTA6 containing 18 significant SNPs associated with spleen weight. Our results offer worthy insights into understanding the genetic mechanisms of internal organs' development, with potential application in breeding programs of Simmental beef cattle.
Collapse
Affiliation(s)
- Bingxing An
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, People’s Republic of China
| | - Jiangwei Xia
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, People’s Republic of China
| | - Tianpeng Chang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, People’s Republic of China
| | - Xiaoqiao Wang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, People’s Republic of China
| | - Jian Miao
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, People’s Republic of China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, People’s Republic of China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, People’s Republic of China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, People’s Republic of China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, People’s Republic of China
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, People’s Republic of China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Interbreed Distribution of the Myostatin (MSTN) Gene 5′-Flanking Variants and Their Relationship With Horse Biometric Traits. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|