1
|
Weber H, Statz M, Markert F, Storch A, Fauser M. Circadian variations influence anxiety-related behaviour, olfaction, and hedonic response in male Sprague-Dawley rats. Behav Brain Res 2024; 471:115134. [PMID: 38964168 DOI: 10.1016/j.bbr.2024.115134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Despite the acknowledged impact of circadian rhythms on various aspects of life, behavioural tests with laboratory animals often overlook alignment with their natural activity patterns. This study aims to evaluate the influence of circadian variations on the results, validity, and reliability of different behavioural tests in rats. METHODS Three behavioural tests, the Light-Dark Box Test (LDB), assessing anxiety-related behaviour and locomotor activity; the Buried Pellet Test (BPT), revealing olfactory abilities and motivation issues; and the Sucrose Preference Test (SPT), studying the anhedonic response, were employed to encompass multiple daytime-dependent behavioural aspects in male Sprague-Dawley rats. RESULTS Our findings underscore distinct circadian effects on locomotor activity, exploratory behaviour, olfactory acuity, motivation, and hedonic response. Notably, anxious behaviour remained unaffected by daytime conditions. Furthermore, decreased data variance was found to be correlated with conducting behavioural tests during the subjects' active phase. DISCUSSION This study demonstrates extensive circadian influences on nearly all parameters investigated, coupled with a significant reduction in data variability during the active phase. Emphasising the importance of aligning experimental timing with rats' natural activity patterns, our results suggest that conducting tests during the active phase of the animals not only refines test sensitivity , reduces stress, and provides more representative data, but also contributes to ethical animal research (3 R) and improves test relevance. This, in turn, enhances the reliability and validity of experimental outcomes in behavioural research and promotes animal welfare.
Collapse
Affiliation(s)
- Hanna Weber
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, Rostock 18147, Germany.
| | - Meike Statz
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, Rostock 18147, Germany
| | - Franz Markert
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, Rostock 18147, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, Rostock 18147, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer Str. 20, Rostock 18147, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, Rostock 18147, Germany
| |
Collapse
|
2
|
Rava A, La Rosa P, Palladino G, Dragotto J, Totaro A, Tiberi J, Canterini S, Oddi S, Fiorenza MT. The appearance of phagocytic microglia in the postnatal brain of Niemann Pick type C mice is developmentally regulated and underscores shortfalls in fine odor discrimination. J Cell Physiol 2022; 237:4563-4579. [PMID: 36322609 PMCID: PMC7613956 DOI: 10.1002/jcp.30909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
The loss of NPC1 or NPC2 function results in cholesterol and sphingolipid dyshomeostasis that impairs developmental trajectories, predisposing the postnatal brain to the appearance of pathological signs, including progressive and stereotyped Purkinje cell loss and microgliosis. Despite increasing evidence reporting the activation of pro-inflammatory microglia as a cardinal event of NPC1 disease progression at symptomatic stages both in patients and preclinical models, how microglia cells respond to altered neurodevelopmental dynamics remains not completely understood. To gain an insight on this issue, we have characterized patterns of microglia activation in the early postnatal cerebellum and young adult olfactory bulb of the hypomorphic Npc1nmf164 mouse model. Previous evidence has shown that both these areas display a number of anomalies affecting neuron and glial cell proliferation and differentiation, which largely anticipate cellular changes and clinical signs, raising our interest on how microglia interplay to these changes. Even so, to separate the contribution of cues provided by the dysfunctional microenvironment we have also studied microglia isolated from mice of increasing ages and cultured in vitro for 1 week. Our findings show that microglia of both cerebellum and olfactory bulb of Npc1nmf164 mice adopt an activated phenotype, characterized by increased cell proliferation, enlarged soma size and de-ramified processes, as well as a robust phagocytic activity, in a time- and space-specific manner. Enhanced phagocytosis associates with a profound remodeling of gene expression signatures towards gene products involved in chemotaxis, cell recognition and engulfment, including Cd68 and Trem2. These early changes in microglia morphology and activities are induced by region-specific developmental anomalies that likely anticipate alterations in neuronal connectivity. As a proof of concept, we show that microglia activation within the granule cell layer and glomerular layer of the olfactory bulb of Npc1nmf164 mice is associated with shortfalls in fine odor discrimination.
Collapse
Affiliation(s)
- Alessandro Rava
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| | - Giampiero Palladino
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Jessica Dragotto
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Antonio Totaro
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| | - Jessica Tiberi
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
| | - Sergio Oddi
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
- Faculty of Veterinary Medicine University of Teramo Teramo Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| |
Collapse
|
3
|
Power Guerra N, Parveen A, Bühler D, Brauer DL, Müller L, Pilz K, Witt M, Glass Ä, Bajorat R, Janowitz D, Wolkenhauer O, Vollmar B, Kuhla A. Fibroblast Growth Factor 21 as a Potential Biomarker for Improved Locomotion and Olfaction Detection Ability after Weight Reduction in Obese Mice. Nutrients 2021; 13:nu13092916. [PMID: 34578793 PMCID: PMC8470262 DOI: 10.3390/nu13092916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is one of the most challenging diseases of the 21st century and is accompanied by behavioural disorders. Exercise, dietary adjustments, or time-restricted feeding are the only successful long-term treatments to date. Fibroblast growth factor 21 (FGF21) plays a key role in dietary regulation, but FGF21 resistance is prevalent in obesity. The aim of this study was to investigate in obese mice whether weight reduction leads to improved behaviour and whether these behavioural changes are associated with decreased plasma FGF21 levels. After establishing a model for diet-induced obesity, mice were subjected to three different interventions for weight reduction, namely dietary change, treadmill exercise, or time-restricted feeding. In this study, we demonstrated that only the combination of dietary change and treadmill exercise affected all parameters leading to a reduction in weight, fat, and FGF21, as well as less anxious behaviour, higher overall activity, and improved olfactory detection abilities. To investigate the interrelationship between FGF21 and behavioural parameters, feature selection algorithms were applied designating FGF21 and body weight as one of five highly weighted features. In conclusion, we concluded from the complementary methods that FGF21 can be considered as a potential biomarker for improved behaviour in obese mice after weight reduction.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Department of Anatomy, Rostock University Medical Centre, Gertrudenstraße 9, 18057 Rostock, Germany;
| | - Alisha Parveen
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
| | - Daniel Bühler
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
| | - David Leon Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany; (D.L.B.); (O.W.)
| | - Luisa Müller
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
| | - Kristin Pilz
- Department of Psychiatry, University of Greifswald, Ellernholzstraße 1-2, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Centre, Gertrudenstraße 9, 18057 Rostock, Germany;
| | - Änne Glass
- Institute for Biostatistics and Informatics, Rostock University Medical Centre, Ernst-Heydemann-Straße 8, 18057 Rostock, Germany;
| | - Rika Bajorat
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Centre, Schillingallee 35, 18057 Rostock, Germany;
| | - Deborah Janowitz
- Department of Psychiatry, University of Greifswald, Ellernholzstraße 1-2, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany; (D.L.B.); (O.W.)
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
| | - Angela Kuhla
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-381-494-2503
| |
Collapse
|