1
|
Güngör E, Bartels B, Bolchi G, Heeren RMA, Ellis SR, Schluepmann H. Biosynthesis and differential spatial distribution of the 3-deoxyanthocyanidins apigenidin and luteolinidin at the interface of a plant-cyanobacteria symbiosis exposed to cold. PLANT, CELL & ENVIRONMENT 2024; 47:4151-4170. [PMID: 38932650 DOI: 10.1111/pce.15010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Aquatic ferns of the genus Azolla (Azolla) form highly productive symbioses with filamentous cyanobacteria fixing N2 in their leaf cavities, Nostoc azollae. Stressed symbioses characteristically turn red due to 3-deoxyanthocyanidin (DA) accumulation, rare in angiosperms and of unknown function. To understand DA accumulation upon cold acclimation and recovery, we integrated laser-desorption-ionization mass-spectrometry-imaging (LDI-MSI), a new Azolla filiculoides genome-assembly and annotation, and dual RNA-sequencing into phenotypic analyses of the symbioses. Azolla sp. Anzali recovered even when cold-induced DA-accumulation was inhibited by abscisic acid. Cyanobacterial filaments generally disappeared upon cold acclimation and Nostoc azollae transcript profiles were unlike those of resting stages formed in cold-resistant sporocarps, yet filaments re-appeared in leaf cavities of newly formed green fronds upon cold-recovery. The high transcript accumulation upon cold acclimation of AfDFR1 encoding a flavanone 4-reductase active in vitro suggested that the enzyme of the first step in the DA-pathway may regulate accumulation of DAs in different tissues. However, LDI-MSI highlighted the necessity to describe metabolite accumulation beyond class assignments as individual DA and caffeoylquinic acid metabolites accumulated differentially. For example, luteolinidin accumulated in epithelial cells, including those lining the leaf cavity, supporting a role for the former in the symbiotic interaction during cold acclimation.
Collapse
Affiliation(s)
- Erbil Güngör
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Benjamin Bartels
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Giorgio Bolchi
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Ron M A Heeren
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Shane R Ellis
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | | |
Collapse
|
2
|
Trimpin S, Yenchick FS, Lee C, Hoang K, Pophristic M, Karki S, Marshall DD, Lu IC, Lutomski CA, El-Baba TJ, Wang B, Pagnotti VS, Meher AK, Chakrabarty S, Imperial LF, Madarshahian S, Richards AL, Lietz CB, Moreno-Pedraza A, Leach SM, Gibson SC, Elia EA, Thawoos SM, Woodall DW, Jarois DR, Davis ETJ, Liao G, Muthunayake NS, Redding MJ, Reynolds CA, Anthony TM, Vithanarachchi SM, DeMent P, Adewale AO, Yan L, Wager-Miller J, Ahn YH, Sanderson TH, Przyklenk K, Greenberg ML, Suits AG, Allen MJ, Narayan SB, Caruso JA, Stemmer PM, Nguyen HM, Weidner SM, Rackers KJ, Djuric A, Shulaev V, Hendrickson TL, Chow CS, Pflum MKH, Grayson SM, Lobodin VV, Guo Z, Ni CK, Walker JM, Mackie K, Inutan ED, McEwen CN. New Processes for Ionizing Nonvolatile Compounds in Mass Spectrometry: The Road of Discovery to Current State-of-the-Art. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39374043 DOI: 10.1021/jasms.3c00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This Perspective covers discovery and mechanistic aspects as well as initial applications of novel ionization processes for use in mass spectrometry that guided us in a series of subsequent discoveries, instrument developments, and commercialization. Vacuum matrix-assisted ionization on an intermediate pressure matrix-assisted laser desorption/ionization source without the use of a laser, high voltages, or any other added energy was simply unbelievable, at first. Individually and as a whole, the various discoveries and inventions started to paint, inter alia, an exciting new picture and outlook in mass spectrometry from which key developments grew that were at the time unimaginable, and continue to surprise us in its simplistic preeminence. We, and others, have demonstrated exceptional analytical utility. Our current research is focused on how best to understand, improve, and use these novel ionization processes through dedicated platforms and source developments. These ionization processes convert volatile and nonvolatile compounds from solid or liquid matrixes into gas-phase ions for analysis by mass spectrometry using, e.g., mass-selected fragmentation and ion mobility spectrometry to provide accurate, and sometimes improved, mass and drift time resolution. The combination of research and discoveries demonstrated multiple advantages of the new ionization processes and established the basis of the successes that lead to the Biemann Medal and this Perspective. How the new ionization processes relate to traditional ionization is also presented, as well as how these technologies can be utilized in tandem through instrument modification and implementation to increase coverage of complex materials through complementary strengths.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Frank S Yenchick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Chuping Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Khoa Hoang
- MSTM, LLC, Newark, Delaware 19711, United States
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Milan Pophristic
- MSTM, LLC, Newark, Delaware 19711, United States
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Darrell D Marshall
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - I-Chung Lu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan
| | - Corinne A Lutomski
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tarick J El-Baba
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Vincent S Pagnotti
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Shubhashis Chakrabarty
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Lorelei F Imperial
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sara Madarshahian
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Alicia L Richards
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher B Lietz
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Samantha M Leach
- Department of Forensic Sciences (DFS), Washington, D.C. 20024, United States
| | - Stephen C Gibson
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Efstathios A Elia
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Shameemah M Thawoos
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Daniel W Woodall
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Dean R Jarois
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Eric T J Davis
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Guochao Liao
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - McKenna J Redding
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Christian A Reynolds
- Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Thilani M Anthony
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Paul DeMent
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Adeleye O Adewale
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Lu Yan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - James Wager-Miller
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Thomas H Sanderson
- Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Karin Przyklenk
- Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Arthur G Suits
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Srinivas B Narayan
- Detroit Medical Center: Detroit Hospital (DMC), Detroit, Michigan 48201, United States
| | - Joseph A Caruso
- Institute of Environmental Health Sciences, Wayne State University, Detroit Michigan 48202, United States
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Steffen M Weidner
- Federal Institute for Materials Research and Testing (BAM), Berlin 12489, Germany
| | - Kevin J Rackers
- Automation Techniques, Inc, Greensboro, North Carolina 27407, United States
| | - Ana Djuric
- College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Vladimir Shulaev
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76210, United States
| | - Tamara L Hendrickson
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Scott M Grayson
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - Zhongwu Guo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - J Michael Walker
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Ken Mackie
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
- Mindanao State University Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Charles N McEwen
- MSTM, LLC, Newark, Delaware 19711, United States
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Limbach MN, Do TD. Solvent-Free Nuclear Magnetic Resonance Spectroscopy of Charged Molecules. J Phys Chem A 2023; 127:9149-9157. [PMID: 37861438 DOI: 10.1021/acs.jpca.3c05241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy of small molecules protonated in a solvent-free environment was successfully demonstrated. The method is referred to as solvent-free protonation NMR (SoF-NMR). Leveraging matrix-assisted ionization (MAI), we generated protonated species of aniline, 4-chloroaniline, 4-aminobiphenyl, and benzocaine for NMR analysis under mild pressure and temperature conditions. The SoF-NMR spectra were compared to traditional solution NMR spectra, and the shift changes in nuclear spin resonance frequencies verify that these small molecules are protonated by 3-nitrobenzonitrile (3-NBN). As the sample pressure decreased, new spectral features appeared, indicating the presence of differently charged species. Several advantages of SoF-NMR are highlighted, such as the elimination of H/D exchange in labile protons, resulting in the precise observation of protons that are otherwise transient in solution. Notably, the data on benzocaine show evidence of neutral, N-protonated, and O-protonated species all in the same spectrum. SoF-NMR eliminates the solvent effects and interactions that can hinder important spectral features. Optimizing SoF-NMR will result in more cost-effective and efficient NMR experimentation to monitor high-temperature, solvent-free reactions. SoF-NMR has a viable future application for studying exchangeable protons, intermediates, and products in gas-phase chemistry.
Collapse
Affiliation(s)
- Miranda N Limbach
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
Trimpin S, Inutan E, Coffinberger H, Hoang K, Yenchick F, Wager-Miller J, Pophristic M, Mackie K, McEwen CN. Instrumentation development, improvement, simplification, and miniaturization: The multifunctional plate source for use in mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:276-291. [PMID: 37999746 DOI: 10.1177/14690667231211486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In remembrance of Prof. Dr Przybylski, we are presenting a vision towards his beloved mass spectrometry (MS) and its far-reaching promises outside of the academic laboratory. Sub-atmospheric pressure (AP) ionization MS is well positioned to make a step-change in direct ionization, a concept that allows sublimation/evaporation ionization and mass analyses of volatile and nonvolatile molecules from clean or dirty samples, directly, accurately, sensitively, and in a straightforward manner that has the potential to expand the field of MS into unchartered application areas. Contrary to ambient ionization MS, ionization commences in the sub-AP region of the mass spectrometer, important for practical and safety reasons, and offers inter alia, simplicity, speed, sensitivity, and robustness directly from real-world samples without cleanup. The plate source concept, presented here, provides an easy to use, rapid, and direct sample introduction from AP into the sub-AP of a mass spectrometer. Utilizing sub-AP ionization MS based on the plate source concept, small to large molecules from various environments that would be deemed too dirty for some direct MS methods are demonstrated. The new source concept can be expanded to include multiple ionization methods using the same plate source "front end" without the need to vent the mass spectrometer between the different methods, thus allowing ionization of more compounds on the same mass spectrometer for which any one ionization method may be insufficient. Examples such as fentanyl, gamma-hydroxybutyric acid, clozapine, 1-propionyllysergic acid, hydrocodone angiotensin I and II, myoglobin, and carbonic anhydrase are included.
Collapse
Affiliation(s)
- Sarah Trimpin
- Wayne State University, Detroit, MI, USA
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
| | - Ellen Inutan
- Department of Chemistry, Mindanao State University-Illigan Institute of Technology, Illigan City, Philippines
| | - Hope Coffinberger
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, PA, USA
| | - Khoa Hoang
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, PA, USA
| | | | - James Wager-Miller
- Psychological and Brain Sciences Campus, Indiana University, Bloomington, IN, USA
| | - Milan Pophristic
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, PA, USA
| | - Ken Mackie
- Psychological and Brain Sciences Campus, Indiana University, Bloomington, IN, USA
| | - Charles N McEwen
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Trimpin S. A tutorial: Laserspray ionization and related laser-based ionization methods for use in mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2234-2267. [PMID: 37462443 DOI: 10.1002/mas.21762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 08/09/2023]
Abstract
This Tutorial is to provide a summary of parameters useful for successful outcomes of laserspray ionization (LSI) and related methods that employ a laser to ablate a matrix:analyte sample to produce highly charged ions. In these methods the purpose of the laser is to transfer matrix-analyte clusters into the gas phase. Ions are hypothesized to be produced by a thermal process where emitted matrix:analyte gas-phase particles/clusters are charged and loss of matrix from the charged particles leads to release of the analyte ions into the gas phase. The thermal energy responsible for the charge-separation process is relatively low and not necessarily supplied by the laser; a heated inlet tube linking atmospheric pressure with the first vacuum stage of a mass spectrometer is sufficient. The inlet becomes the "ion source", and inter alia, pressure, temperature, and the matrix, which can be a solid, liquid, or combinations, become critical parameters. Injecting matrix:analyte into a heated inlet tube using laser ablation, a shockwave, or simply tapping, all produce the similar mass spectra. Applications are provided that showcase new opportunities in the field of mass spectrometry.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| |
Collapse
|
6
|
Toward a molecular understanding of the surface composition of atmospherically relevant organic particles. Proc Natl Acad Sci U S A 2022; 119:e2209134119. [PMID: 35994653 PMCID: PMC9436373 DOI: 10.1073/pnas.2209134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many mass spectrometry methods using various ionization sources provide bulk composition of airborne particles, but little is known about the surface species that play a major role in determining their physicochemical properties that impact air quality, climate, and health. The present work shows that the composition of surface layers of atmospherically relevant submicron organic particles can be probed without the use of an external ionization source. Solid dicarboxylic acid particles are used as models, with glutaric acid being the most efficient at generating ions. Coating with small diacids or products from α-pinene ozonolysis demonstrates that ions are ejected from the surface, providing surface molecular characterization of organic particles on the fly. This unique approach provides a path forward for elucidating the role of the surface in determining chemical and physical properties of particles, including heterogeneous reactions, particle growth, water uptake, and interactions with biological systems.
Collapse
|
7
|
Huang DY, Tsai JJ, Chen YC. Direct Mass Spectrometric Analysis of Semivolatiles Derived from Real Samples at Atmospheric Pressure. ACS OMEGA 2022; 7:10255-10261. [PMID: 35382327 PMCID: PMC8973113 DOI: 10.1021/acsomega.1c06869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
This study demonstrated a facile ionization method with the use of real samples for the ionization of their main compositions at ambient conditions for mass spectrometric analysis. Analyte ions derived from the real samples were readily observed in the mass spectrum when placing the samples close (≤1 mm) to the inlet of the mass spectrometer applied with a high voltage. No additional accessories such as an ionization emitter, a plasma generator, or a high voltage power supply were required for this approach. Ionization of semivolatiles derived from the samples occurred between the samples and the inlet of the mass spectrometer presumably owing to the dielectric breakdown induced by the electric field provided by the mass spectrometer. Real samples including plants, medicine tablets, and gloves with contaminants were used as the model samples. The putative ionization mechanisms are also discussed in this study.
Collapse
Affiliation(s)
- De-Yi Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Chiao Tung
University, Hsinchu 300, Taiwan
| | - Jia-Jen Tsai
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Chiao Tung
University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Chiao Tung
University, Hsinchu 300, Taiwan
- International
College of Semiconductor Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
8
|
Yun K, Jalaludin I, Jung S, Jang KS, Kim J. Detection of multiply charged protein ions using matrix-assisted laser desorption/ionization mass spectrometry and a force-dried droplet method with a 2-nitrophloroglucinol matrix. Analyst 2022; 147:505-515. [DOI: 10.1039/d1an02114a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MALDI-MS of myoglobin using 2-NPG with HCl additive.
Collapse
Affiliation(s)
- Kangseok Yun
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Shinhee Jung
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
9
|
Taheri-Ledari R, Saeidirad M, Qazi FS, Fazeli A, Maleki A, Shalan AE. Highly porous copper-supported magnetic nanocatalysts: made of volcanic pumice textured by cellulose and applied for the reduction of nitrobenzene derivatives. RSC Adv 2021; 11:25284-25295. [PMID: 35478908 PMCID: PMC9036973 DOI: 10.1039/d1ra03538j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023] Open
Abstract
Herein, a novel designed heterogeneous catalytic system constructed of volcanic pumice magnetic particles (VPMPs), cellulose (CLS) as a natural polymeric matrix, and copper nanoparticles (Cu NPs) is presented. Also, to enhance the inherent magnetic property of VPMP, iron oxide (Fe3O4) nanoparticles have been prepared and incorporated in the structure via an in situ process. As its first and foremost excellent property, the designed composite is in great accordance with green chemistry principles because it contains natural ingredients. Another brilliant point in the architecture of the designed composite is the noticeable porosity of VPMP as the core of the composite structure (surface area: 84.473 m2 g-1). This great porosity leads to the use of a small amount (0.05 g) of the particles for catalytic purposes. However, the main characterization methods, such as Fourier-transform infrared and energy-dispersive X-ray spectroscopy, thermogravimetric analysis, and electron microscopy, revealed that the spherical metallic particles (Fe and Cu oxides) were successfully distributed onto the surface of the VPMP and CLS matrices. Further, vibrating-sample magnetometer analysis confirmed the enhancement of the magnetic property (1.5 emu g-1) of the composite through the addition of Fe3O4 nanoparticles. Further, the prepared (Fe3O4@VPMP/CLS-Cu) nanocomposite has been applied to facilitate the reduction reaction of hazardous nitrobenzene derivatives (NBDs) to their aniline analogs, with 98% conversion efficiency in eight minutes under mild conditions. Moreover, the good reusability of the catalytic system has been verified after recycling it ten times without any significant decrease in the performance.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Atefeh Fazeli
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Ahmed Esmail Shalan
- BC Materials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n Leioa 48940 Spain
- Central Metallurgical Research and Development Institute (CMRDI) P. O. Box 87, Helwan Cairo 11421 Egypt
| |
Collapse
|
10
|
McEwen CN, Inutan ED, Moreno-Pedraza A, Lu IC, Hoang K, Pophristic M, Trimpin S. Sublimation Driven Ionization for Use in Mass Spectrometry: Mechanistic Implications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:114-123. [PMID: 33280376 DOI: 10.1021/jasms.0c00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sublimation has been known at least since the middle ages. This process is frequently taught in schools through the use of phase diagrams. Astonishingly, such a well-known process appears to still harbor secrets. Under conditions in which compound sublimation occurs, gas-phase ions are frequently detected using mass spectrometry. This was exploited in matrix-assisted ionization in vacuum (vMAI) by adding analyte to subliming compounds used as matrices. Good vMAI matrices were those that ionize the added analyte with high sensitivity, but even matrices that fail this test often produce ions of likely matrix impurities suggesting that they may be good matrices for some compound types. We also show that binary matrices may be manipulated to provide desired properties such as fast analyses and improved sensitivity. These results imply that sublimation in some cases is more complicated than just molecules leaving a surface and that understanding the physical force responsible, and how the nonvolatile compound becomes charged, could lead to improved ionization efficiency for mass spectrometry. Here we provide insights into this process and an explanation of why this unexpected phenomenon has not previously been reported.
Collapse
Affiliation(s)
- Charles N McEwen
- University of the Sciences, Philadelphia, Pennsylvania 19104, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Ellen D Inutan
- MSTM, LLC, Newark, Delaware 19711, United States
- Mindanao State University Iligan Institute of Technology, Iligan City 9200, Philippines
| | | | - I-Chung Lu
- National Chung Hsing University, Taichung City, Taiwan 402
| | - Khoa Hoang
- MSTM, LLC, Newark, Delaware 19711, United States
| | | | - Sarah Trimpin
- MSTM, LLC, Newark, Delaware 19711, United States
- Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
11
|
Hoang K, Trimpin S, McEwen CN, Pophristic M. A Combination MAI and MALDI Vacuum Source Operational from Atmospheric Pressure for Fast, Robust, and Sensitive Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:124-132. [PMID: 33270447 DOI: 10.1021/jasms.0c00298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Previously, vacuum matrix-assisted ionization (vMAI) was employed with matrix/analyte sample introduction into the vacuum of a mass spectrometer on a probe sample introduction device. Low attomole detection was achieved, while no carryover was observed even for concentrated samples. Here, we report a new vacuum ionization source designed to duplicate the sensitivity and robustness of probe device while providing fast multisample introduction to vacuum and rapid sequential ionization. Exposure of a sample to the vacuum of the mass spectrometer provides spontaneous ionization of volatile as well as nonvolatile analytes without the need for external energy input. However, the novel source design described herein, in addition to vMAI, can employ a laser to obtain vacuum matrix-assisted laser desorption/ionization (vMALDI). In particular, ionization by vMAI or vMALDI is achieved by using the appropriate matrix. Switching between ionization modes is accomplished in a few seconds. We present results demonstrating the utility of the two ionization methods in combination to improve the molecular analyses of sample composition. In both ionization modes, multiple samples can be sequentially and rapidly acquired to increase throughput in MS. With the prototype source, samples were acquired in as little as 1 s per sample. Exchanging multisample plates can be accomplished in as little as 2 s, suggesting low-cost high-throughput automation when properly developed.
Collapse
Affiliation(s)
- Khoa Hoang
- MS, LLC, Hockessin, Delaware 19707, United States
| | - Sarah Trimpin
- MS, LLC, Hockessin, Delaware 19707, United States
- Wayne State University, Detroit, Michigan 48202, United States
| | - Charles N McEwen
- MS, LLC, Hockessin, Delaware 19707, United States
- University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
12
|
Mannion DR, Mannion JM, Kuhne WW, Wellons MS. Matrix-Assisted Ionization of Molecular Uranium Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:8-13. [PMID: 33253565 DOI: 10.1021/jasms.0c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Matrix-assisted ionization (MAI) demonstrates high sensitivity for a variety of organic compounds; however, few studies have reported the application of MAI for the detection and characterization of inorganic analytes. Trace-level uranium analysis is important in the realms of nuclear forensics, nuclear safeguards, and environmental monitoring. Traditional mass spectrometry methods employed in these fields require combinations of extensive laboratory chemistry sample preparation and destructive ionization methods. There has been recent interest in exploring ambient mass spectrometry methods that enable timely sample analysis and higher sensitivity than what is attainable by field-portable radiation detectors. Rapid characterization of uranium at nanogram levels is demonstrated in this study using MAI techniques. Mass spectra were collected on an atmospheric pressure mass spectrometer for solutions of uranyl nitrate, uranyl chloride, uranyl acetate, and uranyl oxalate utilizing 3-nibrobenzonitrile as the ionization matrix. The uranyl complexes investigated were detectable, and the chemical speciation was preserved. Sample analysis was accomplished in a matter of seconds, and limits of detection of 5 ng of uranyl nitrate, 10 ng of uranyl oxalate, 100 ng of uranyl chloride, and 200 ng of uranyl acetate were achieved. The observed gas-phase speciation was similar to negative-ion electrospray ionization of uranyl compounds with notable differences. Six matrix-derived ions were detected in all negative-ion mass spectra, and some of these ions formed adducts with the uranyl analyte. Subsequent analysis of the matrix suggests that these molecules are not matrix contaminants and are instead created during the ionization process.
Collapse
Affiliation(s)
- Danielle R Mannion
- Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| | - Joseph M Mannion
- Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| | - Wendy W Kuhne
- Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| | - Matthew S Wellons
- Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| |
Collapse
|
13
|
Trimpin S, Marshall DD, Karki S, Madarshahian S, Hoang K, Meher AK, Pophristic M, Richards AL, Lietz CB, Fischer JL, Elia EA, Wang B, Pagnotti VS, Lutomski CA, El-Baba TJ, Lu IC, Wager-Miller J, Mackie K, McEwen CN, Inutan ED. An overview of biological applications and fundamentals of new inlet and vacuum ionization technologies. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 1:e8829. [PMID: 32402102 DOI: 10.1002/rcm.8829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The developments of new ionization technologies based on processes previously unknown to mass spectrometry (MS) have gained significant momentum. Herein we address the importance of understanding these unique ionization processes, demonstrate the new capabilities currently unmet by other methods, and outline their considerable analytical potential. METHODS The inlet and vacuum ionization methods of solvent-assisted ionization (SAI), matrix-assisted ionization (MAI), and laserspray ionization can be used with commercial and dedicated ion sources producing ions from atmospheric or vacuum conditions for analyses of a variety of materials including drugs, lipids, and proteins introduced from well plates, pipet tips and plate surfaces with and without a laser using solid or solvent matrices. Mass spectrometers from various vendors are employed. RESULTS Results are presented highlighting strengths relative to ionization methods of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization. We demonstrate the utility of multi-ionization platforms encompassing MAI, SAI, and ESI and enabling detection of what otherwise is missed, especially when directly analyzing mixtures. Unmatched robustness is achieved with dedicated vacuum MAI sources with mechanical introduction of the sample to the sub-atmospheric pressure (vacuum MAI). Simplicity and use of a wide array of matrices are attained using a conduit (inlet ionization), preferably heated, with sample introduction from atmospheric pressure. Tissue, whole blood, urine (including mouse, chicken, and human origin), bacteria strains and chemical on-probe reactions are analyzed directly and, especially in the case of vacuum ionization, without concern of carryover or instrument contamination. CONCLUSIONS Examples are provided highlighting the exceptional analytical capabilities associated with the novel ionization processes in MS that reduce operational complexity while increasing speed and robustness, achieving mass spectra with low background for improved sensitivity, suggesting the potential of this simple ionization technology to drive MS into areas currently underserved, such as clinical and medical applications.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
| | - Darrell D Marshall
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
| | | | - Khoa Hoang
- MS™, LLC, Newark, DE, 19711, USA
- University of the Sciences, Philadelphia, PA, 19104, USA
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
| | - Milan Pophristic
- MS™, LLC, Newark, DE, 19711, USA
- University of the Sciences, Philadelphia, PA, 19104, USA
| | - Alicia L Richards
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | | | - Joshua L Fischer
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Efstathios A Elia
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | | | - Corinne A Lutomski
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Tarick J El-Baba
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - I-Chung Lu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - James Wager-Miller
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Charles N McEwen
- MS™, LLC, Newark, DE, 19711, USA
- University of the Sciences, Philadelphia, PA, 19104, USA
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
- Mindanao State University Iligan Institute of Technology, Iligan City, 9200, Philippines
| |
Collapse
|
14
|
Inutan ED, Jarois DR, Lietz CB, El-Baba TJ, Elia EA, Karki S, Sampat AAS, Foley CD, Clemmer DE, Trimpin S. Comparison of gaseous ubiquitin ion structures obtained from a solid and solution matrix using ion mobility spectrometry/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 1:e8793. [PMID: 32220130 DOI: 10.1002/rcm.8793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Examining surface protein conformations, and especially achieving this with spatial resolution, is an important goal. The recently discovered ionization processes offer spatial-resolution measurements similar to matrix-assisted laser desorption/ionization (MALDI) and produce charge states similar to electrospray ionization (ESI) extending higher-mass protein applications directly from surfaces on high-performance mass spectrometers. Studying a well-interrogated protein by ion mobility spectrometry-mass spectrometry (IMS-MS) to access effects on structures using a solid vs. solvent matrix may provide insights. METHODS Ubiquitin was studied by IMS-MS using new ionization processes with commercial and homebuilt ion sources and instruments (Waters SYNAPT G2(S)) and homebuilt 2 m drift-tube instrument; MS™ sources). Mass-to-charge and drift-time (td )-measurements are compared for ubiquitin ions obtained by inlet and vacuum ionization using laserspray ionization (LSI), matrix- (MAI) and solvent-assisted ionization (SAI), respectively, and compared with those from ESI under conditions that are most comparable. RESULTS Using the same solution conditions with SYNAPT G2(S) instruments, td -distributions of various ubiquitin charge states from MAI, LSI, and SAI are similar to those from ESI using a variety of solvents, matrices, extraction voltages, a laser, and temperature only, showing subtle differences in more compact features within the elongated distribution of structures. However, on a homebuilt drift-tube instrument, within the elongated distribution of structures, both similar and different td -distributions are observed for ubiquitin ions obtained by MAI and ESI. MAI-generated ions are frequently narrower in their td -distributions. CONCLUSIONS Direct comparisons between ESI and the new ionization methods operational directly from surfaces suggest that the protein in its solution structure prior to exposure to the ionization event is either captured (frozen out) at the time of crystallization, or that the protein in the solid matrix is associated with sufficient solvent to maintain the solution structure, or, alternatively, that the observed structures are those related to what occurs in the gas phase with ESI- or MAI-generated ions and not with the solution structures.
Collapse
Affiliation(s)
- Ellen D Inutan
- MSTM, LLC, Newark, DE, USA
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Dean R Jarois
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Casey D Foley
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Sarah Trimpin
- MSTM, LLC, Newark, DE, USA
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| |
Collapse
|
15
|
Lee C, Inutan ED, Chen JL, Mukeku MM, Weidner SM, Trimpin S, Ni CK. Toward understanding the ionization mechanism of matrix-assisted ionization using mass spectrometry experiment and theory. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 1:e8382. [PMID: 30623523 DOI: 10.1002/rcm.8382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Matrix-assisted ionization (MAI) mass spectrometry does not require voltages, a laser beam, or added heat to initiate ionization, but it is strongly dependent on the choice of matrix and the vacuum conditions. High charge state distributions of nonvolatile analyte ions produced by MAI suggest that the ionization mechanism may be similar to that of electrospray ionization (ESI), but different from matrix-assisted laser desorption/ionization (MALDI). While significant information is available for MAI using mass spectrometers operating at atmospheric and intermediate pressure, little is known about the mechanism at high vacuum. METHODS Eleven MAI matrices were studied on a high-vacuum time-of-flight (TOF) mass spectrometer using a 266 nm pulsed laser beam under otherwise typical MALDI conditions. Detailed comparisons with the commonly used MALDI matrices and theoretical prediction were made for 3-nitrobenzonitrile (3-NBN), which is the only MAI matrix that works well in high vacuum when irradiated with a laser. RESULTS Screening of MAI matrices with good absorption at 266 nm but with various degrees of volatility and laser energies suggests that volatility and absorption at the laser wavelength may be necessary, but not sufficient, criteria to explain the formation of multiply charged analyte ions. 3-NBN produces intact, highly charged ions of nonvolatile analytes in high-vacuum TOF with the use of a laser, demonstrating that ESI-like ions can be produced in high vacuum. Theoretical calculations and mass spectra suggest that thermally induced proton transfer, which is the major ionization mechanism in MALDI, is not important with the 3-NBN matrix at 266 nm laser wavelength. 3-NBN:analyte crystal morphology is, however, important in ion generation in high vacuum. CONCLUSIONS The 3-NBN MAI matrix produces intact, highly charged ions of nonvolatile compounds in high-vacuum TOF mass spectrometers with the aid of ablation and/or heating by laser irradiation, and shows a different ionization mechanism from that of typical MALDI matrices.
Collapse
Affiliation(s)
- Chuping Lee
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Ellen D Inutan
- Department of Chemistry, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Jien Lian Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Mutanu M Mukeku
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Steffen M Weidner
- Bundesanstalt für Materialforschung und-prüfung, Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Taheri-Ledari R, Mirmohammadi SS, Valadi K, Maleki A, Shalan AE. Convenient conversion of hazardous nitrobenzene derivatives to aniline analogues by Ag nanoparticles, stabilized on a naturally magnetic pumice/chitosan substrate. RSC Adv 2020; 10:43670-43681. [PMID: 35519713 PMCID: PMC9058380 DOI: 10.1039/d0ra08376c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022] Open
Abstract
Herein, silver nanoparticles (Ag NPs), as an effective catalyst for the reduction process of nitrobenzene derivatives to non-hazardous and useful aniline derivatives, are conveniently synthesized on an inherently magnetic substrate. For this purpose, an efficient combination of volcanic pumice (VP), which is an extremely porous igneous rock, and a chitosan (CTS) polymeric network is prepared and suitably used for the stabilization of the Ag NPs. High magnetic properties of the fabricated Ag@VP/CTS composite, which have been confirmed via vibrating-sample magnetometer (VSM) analysis, are the first and foremost advantage of the introduced catalytic system since it gives us the opportunity to easily separate the particles and perform purification processes. Briefly, higher yields were obtained in the reduction reactions of nitrobenzenes (NBs) under very mild conditions in a short reaction time. Also, along with the natural biocompatible ingredients (VP and CTS) in the structure, excellent recyclability has been observed for the fabricated Ag@VP/CTS catalytic system, which convinces us to do scaling-up and suggests the presented system can be used for industrial applications.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98-21-73021584 +98-21-77240640-50
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98-21-73021584 +98-21-77240640-50
| | - Kobra Valadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98-21-73021584 +98-21-77240640-50
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98-21-73021584 +98-21-77240640-50
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI) P.O. Box 87, Helwan Cairo 11421 Egypt
- BCMaterials, Basque Center for Materials, Applications and Nanostructures Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n Leioa 48940 Spain
| |
Collapse
|
17
|
Rahimi J, Taheri-Ledari R, Niksefat M, Maleki A. Enhanced reduction of nitrobenzene derivatives: Effective strategy executed by Fe3O4/PVA-10%Ag as a versatile hybrid nanocatalyst. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105850] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
18
|
Taheri-Ledari R, Rahimi J, Maleki A, Shalan AE. Ultrasound-assisted diversion of nitrobenzene derivatives to their aniline equivalents through a heterogeneous magnetic Ag/Fe3O4-IT nanocomposite catalyst. NEW J CHEM 2020. [DOI: 10.1039/d0nj05147k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterogeneous magnetic catalytic system is fabricated and suitably applied for the fast and direct conversion of nitrobenzene (NB) derivatives to their aniline forms.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology (IUST)
- Tehran 16846-13114
- Iran
| | - Jamal Rahimi
- Catalysts and Organic Synthesis Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology (IUST)
- Tehran 16846-13114
- Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology (IUST)
- Tehran 16846-13114
- Iran
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI)
- Helwan
- Egypt
- BCMaterials, Basque Center for Materials
- Applications and Nanostructures
| |
Collapse
|
19
|
Potential of Recent Ambient Ionization Techniques for Future Food Contaminant Analysis Using (Trans)Portable Mass Spectrometry. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01666-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractIn food analysis, a trend towards on-site testing of quality and safety parameters is emerging. So far, on-site testing has been mainly explored by miniaturized optical spectroscopy and ligand-binding assay approaches such as lateral flow immunoassays and biosensors. However, for the analysis of multiple parameters at regulatory levels, mass spectrometry (MS) is the method of choice in food testing laboratories. Thanks to recent developments in ambient ionization and upcoming miniaturization of mass analyzers, (trans)portable mass spectrometry may be added to the toolkit for on-site testing and eventually compete with multiplex immunoassays in mixture analysis. In this study, we preliminary evaluated a selection of recent ambient ionization techniques for their potential in simplified testing of selected food contaminants such as pesticides, veterinary drugs, and natural toxins, aiming for a minimum in sample preparation while maintaining acceptable sensitivity and robustness. Matrix-assisted inlet ionization (MAI), handheld desorption atmospheric pressure chemical ionization (DAPCI), transmission-mode direct analysis in real time (TM-DART), and coated blade spray (CBS) were coupled to both benchtop Orbitrap and compact quadrupole single-stage mass analyzers, while CBS was also briefly studied on a benchtop triple-quadrupole MS. From the results, it can be concluded that for solid and liquid sample transmission configurations provide the highest sensitivity while upon addition of a stationary phase, such as in CBS, even low μg/L levels in urine samples can be achieved provided the additional selectivity of tandem mass spectrometry is exploited.
Collapse
|
20
|
Trimpin S. Novel ionization processes for use in mass spectrometry: 'Squeezing' nonvolatile analyte ions from crystals and droplets. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 3:96-120. [PMID: 30138957 DOI: 10.1002/rcm.8269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/29/2018] [Accepted: 08/15/2018] [Indexed: 05/25/2023]
Abstract
Together with my group and collaborators, I have been fortunate to have had a key role in the discovery of new ionization processes that we developed into new flexible, sensitive, rapid, reliable, and robust ionization technologies and methods for use in mass spectrometry (MS). Our current research is focused on how best to understand, improve, and use these novel ionization processes which convert volatile and nonvolatile compounds from solids or liquids into gas-phase ions for analysis by MS using e.g. mass-selected fragmentation and ion mobility spectrometry to provide reproducible, accurate, and improved mass and drift time resolution. In my view, the apex was the discovery of vacuum matrix-assisted ionization (vMAI) in 2012 on an intermediate pressure matrix-assisted laser desorption/ionization (MALDI) source without the use of a laser, high voltages, or any other added energy. Only exposure of the matrix:analyte to the sub-atmospheric pressure of the mass spectrometer was necessary to initiate ionization. These findings were initially rejected by three different scientific journals, with comments related to 'how can this work?', 'where do the charges come from?', and 'it is not analytically useful'. Meanwhile, we and others have demonstrated analytical utility without a complete understanding of the mechanism. In reality, MALDI and electrospray ionization are widely used in science and their mechanisms are still controversially discussed despite use and optimization of now 30 years. This Perspective covers the applications and mechanistic aspects of the novel ionization processes for use in MS that guided us in instrument developments, and provides our perspective on how they relate to traditional ionization processes.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- MSTM, LLC, Newark, DE, 19711, USA
| |
Collapse
|
21
|
Choi H, Lee D, Kim Y, Nguyen HQ, Han S, Kim J. Effects of Matrices and Additives on Multiple Charge Formation of Proteins in MALDI-MS Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1174-1178. [PMID: 31044356 DOI: 10.1007/s13361-019-02213-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The sinapinic acid (SA) matrix has frequently been used for protein analysis in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). However, the SA matrix does not result in the formation of distinctive multiple protein charge states, whereas the 2-nitrophloroglucinol (2-NPG) matrix is capable of this. The formation of multiple charge states in the MALDI-MS analysis of proteins is advantageous in that it results in higher accuracy. In this study, the mass spectra of several common standard proteins, namely cytochrome c, myoglobin, bovine serum albumin (BSA), and immunoglobulin G (IgG), were compared using various matrices (2,5-dihydroxybenzoic acid, α-cyano-hydroxycinnamic acid, SA, and 2-NPG). Furthermore, the mass spectra of two large standard proteins (BSA and IgG) using various acid additives (H3PO4, HNO3, H2SO4, HCl, and trifluoroacetic acid) with the 2-NPG matrix were also compared. Among the different matrices, 2-NPG provided the broadest range of multiple protein charge states, while, among the different additives, the 2-NPG matrix in combination with HCl generated the broadest multiple charge states as well as the most intense protein peaks.
Collapse
Affiliation(s)
- Hyemin Choi
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Dabin Lee
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Yeoseon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Sol Han
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
22
|
Trimpin S, Inutan ED, Karki S, Elia EA, Zhang WJ, Weidner SM, Marshall DD, Hoang K, Lee C, Davis ETJ, Smith V, Meher AK, Cornejo MA, Auner GW, McEwen CN. Fundamental Studies of New Ionization Technologies and Insights from IMS-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1133-1147. [PMID: 31062287 DOI: 10.1007/s13361-019-02194-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Exceptional ion mobility spectrometry mass spectrometry (IMS-MS) developments by von Helden, Jarrold, and Clemmer provided technology that gives a view of chemical/biological compositions previously not achievable. The ionization method of choice used with IMS-MS has been electrospray ionization (ESI). In this special issue contribution, we focus on fundamentals of heretofore unprecedented means for transferring volatile and nonvolatile compounds into gas-phase ions singly and multiply charged. These newer ionization processes frequently lead to different selectivity relative to ESI and, together with IMS-MS, may provide a more comprehensive view of chemical compositions directly from their original environment such as surfaces, e.g., tissue. Similarities of results using solvent- and matrix-assisted ionization are highlighted, as are differences between ESI and the inlet ionization methods, especially with mixtures such as bacterial extracts. Selectivity using different matrices is discussed, as are results which add to our fundamental knowledge of inlet ionization as well as pose additional avenues for inquiry. IMS-MS provides an opportunity for comparison studies relative to ESI and will prove valuable using the new ionization technologies for direct analyses. Our hypothesis is that some ESI-IMS-MS applications will be replaced by the new ionization processes and by understanding mechanistic aspects to aid enhanced source and method developments this will be hastened.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
- Cardiovascular Research Institute, School of Medicine, Wayne State University, Detroit, MI, USA.
- MSTM, LLC, Newark, DE, USA.
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MSTM, LLC, Newark, DE, USA
- Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MSTM, LLC, Newark, DE, USA
| | | | - Wen-Jing Zhang
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Steffen M Weidner
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Darrell D Marshall
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MSTM, LLC, Newark, DE, USA
| | - Khoa Hoang
- University of the Sciences, Philadelphia, PA, USA
| | - Chuping Lee
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MSTM, LLC, Newark, DE, USA
| | - Eric T J Davis
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Mario A Cornejo
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Gregory W Auner
- Department of Surgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Charles N McEwen
- MSTM, LLC, Newark, DE, USA
- University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
23
|
Trimpin S, Lee C, Weidner SM, El‐Baba TJ, Lutomski CA, Inutan ED, Foley CD, Ni C, McEwen CN. Unprecedented Ionization Processes in Mass Spectrometry Provide Missing Link between ESI and MALDI. Chemphyschem 2018; 19:581-589. [DOI: 10.1002/cphc.201701246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/01/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Chuping Lee
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| | - Steffen M. Weidner
- Federal Institute for Materials Research and Testing (BAM) Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Tarick J. El‐Baba
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Corinne A. Lutomski
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Ellen D. Inutan
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Casey D. Foley
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Chi‐Kung Ni
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| | - Charles N. McEwen
- Department of Chemistry & Biochemistry University of the Sciences Philadelphia PA 19104 USA
| |
Collapse
|
24
|
Trimpin S, Lu IC, Rauschenbach S, Hoang K, Wang B, Chubatyi ND, Zhang WJ, Inutan ED, Pophristic M, Sidorenko A, McEwen CN. Spontaneous Charge Separation and Sublimation Processes are Ubiquitous in Nature and in Ionization Processes in Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:304-315. [PMID: 29080207 DOI: 10.1007/s13361-017-1788-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Ionization processes have been discovered by which small and large as well as volatile and nonvolatile compounds are converted to gas-phase ions when associated with a matrix and exposed to sub-atmospheric pressure. Here, we discuss experiments further defining these simple and unexpected processes. Charge separation is found to be a common process for small molecule chemicals, solids and liquids, passed through an inlet tube from a higher to a lower pressure region, with and without heat applied. This charge separation process produces positively- and negatively-charged particles with widely different efficiencies depending on the compound and its physical state. Circumstantial evidence is presented suggesting that in the new ionization process, charged particles carry analyte into the gas phase, and desolvation of these particles produce the bare ions similar to electrospray ionization, except that solid particles appear likely to be involved. This mechanistic proposition is in agreement with previous theoretical work related to ion emission from ice. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
- MSTM, LLC, Newark, DE, 19711, USA.
| | - I-Chung Lu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Stephan Rauschenbach
- Electrospray Ion Beam Deposition Laboratory, Nanoscale Science Department, Max-Planck-Institute for Solid State Research, DE-70569, Stuttgart, Germany
| | - Khoa Hoang
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Nicholas D Chubatyi
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Wen-Jing Zhang
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MSTM, LLC, Newark, DE, 19711, USA
| | - Milan Pophristic
- MSTM, LLC, Newark, DE, 19711, USA
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Alexander Sidorenko
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Charles N McEwen
- MSTM, LLC, Newark, DE, 19711, USA
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| |
Collapse
|
25
|
Chen B, OuYang C, Tian Z, Xu M, Li L. A high resolution atmospheric pressure matrix-assisted laser desorption/ionization-quadrupole-orbitrap MS platform enables in situ analysis of biomolecules by multi-mode ionization and acquisition. Anal Chim Acta 2018; 1007:16-25. [PMID: 29405984 DOI: 10.1016/j.aca.2017.12.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/25/2017] [Accepted: 12/29/2017] [Indexed: 11/28/2022]
Abstract
Introduced in 2000, atmospheric pressure (AP)/matrix-assisted laser desorption/ionization (MALDI) has attracted substantial attention in the mass spectrometry community due to its ease of sample introduction and handling, interchangeability with ESI source and capability of analyzing volatile species. In this study, an AP/MALDI source with ultra-high spatial resolution was coupled to a Q Exactive HF orbitrap mass spectrometer for high resolution in situ analysis by MALDI, laserspray ionization (LSI) and matrix assisted ionization (MAI) without instrument modification. LSI and MAI generated multiply charged ions, which expanded the mass detection range and improved fragmentation efficiency. Full MS, targeted MS/MS, data dependent acquisition (DDA) and parallel reaction monitoring (PRM) acquisitions were performed on peptide and protein standards, tissue extracts and tissue sections for in depth characterization of various biomolecules. High resolution full MS and MS/MS images were obtained from crustacean and rat tissues with pixel size less than 30 μm. Overall, AP/MALDI-Q-Orbitrap is a fast scanning instrument that is capable of performing multiple types of ionization and multiple acquisition modes without instrument modification. This instrument platform provides an attractive alternative to other high resolution MALDI instruments.
Collapse
Affiliation(s)
- Bingming Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Chuanzi OuYang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Zichuan Tian
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Meng Xu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States; Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, United States.
| |
Collapse
|
26
|
Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Quanico J, Franck J, Wisztorski M, Salzet M, Fournier I. Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery. Methods Mol Biol 2017; 1598:21-43. [PMID: 28508356 DOI: 10.1007/978-1-4939-6952-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mapping provides a direct means to assess the impact of protein biomarkers and puts into context their relevance in the type of cancer being examined. To this end, mass spectrometry imaging (MSI) was developed to provide the needed spatial information which is missing in traditional liquid-based mass spectrometric proteomics approaches. Aptly described as a "molecular histology" technique, MSI gives an additional dimension in characterizing tumor biopsies, allowing for mapping of hundreds of molecules in a single analysis. A decade of developments focused on improving and standardizing MSI so that the technique can be translated into the clinical setting. This review describes the progress made in addressing the technological development that allows to bridge local protein detection by MSI to its identification and to illustrate its potential in studying various aspects of cancer biomarker discovery.
Collapse
Affiliation(s)
- Jusal Quanico
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Julien Franck
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Maxence Wisztorski
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Michel Salzet
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Isabelle Fournier
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France.
| |
Collapse
|
28
|
Marshall DD, Inutan ED, Wang B, Liu CW, Thawoos S, Wager-Miller J, Mackie K, Trimpin S. A broad-based study on hyphenating new ionization technologies with MS/MS for PTMs and tissue characterization. Proteomics 2016; 16:1695-706. [DOI: 10.1002/pmic.201500530] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/27/2016] [Accepted: 04/11/2016] [Indexed: 01/06/2023]
Affiliation(s)
| | - Ellen D. Inutan
- Department of Chemistry; Wayne State University; Detroit MI USA
| | - Beixi Wang
- Department of Chemistry; Wayne State University; Detroit MI USA
| | - Chih-Wei Liu
- Department of Chemistry; Wayne State University; Detroit MI USA
| | | | - James Wager-Miller
- Department of Psychological & Brain Sciences; Indiana University; Bloomington IN USA
| | - Ken Mackie
- Department of Psychological & Brain Sciences; Indiana University; Bloomington IN USA
| | - Sarah Trimpin
- Department of Chemistry; Wayne State University; Detroit MI USA
- Cardiovascular Research Institute; Wayne State University School of Medicine; Detroit MI USA
| |
Collapse
|
29
|
Trimpin S. "Magic" Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:4-21. [PMID: 26486514 PMCID: PMC4686549 DOI: 10.1007/s13361-015-1253-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 05/11/2023]
Abstract
The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.
Collapse
Affiliation(s)
- Sarah Trimpin
- />Department of Chemistry, Wayne State University, Detroit, MI 48202 USA
- />Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201 USA
- />MSTM, LLC, Newark, DE 19711 USA
| |
Collapse
|
30
|
Buchberger A, Yu Q, Li L. Advances in Mass Spectrometric Tools for Probing Neuropeptides. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:485-509. [PMID: 26070718 PMCID: PMC6314846 DOI: 10.1146/annurev-anchem-071114-040210] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Neuropeptides are important mediators in the functionality of the brain and other neurological organs. Because neuropeptides exist in a wide range of concentrations, appropriate characterization methods are needed to provide dynamic, chemical, and spatial information. Mass spectrometry and compatible tools have been a popular choice in analyzing neuropeptides. There have been several advances and challenges, both of which are the focus of this review. Discussions range from sample collection to bioinformatic tools, although avenues such as quantitation and imaging are included. Further development of the presented methods for neuropeptidomic mass spectrometric analysis is inevitable, which will lead to a further understanding of the complex interplay of neuropeptides and other signaling molecules in the nervous system.
Collapse
Affiliation(s)
- Amanda Buchberger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| |
Collapse
|
31
|
Woodall DW, Wang B, Inutan ED, Narayan SB, Trimpin S. High-Throughput Characterization of Small and Large Molecules Using Only a Matrix and the Vacuum of a Mass Spectrometer. Anal Chem 2015; 87:4667-74. [DOI: 10.1021/ac504475x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel W. Woodall
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Beixi Wang
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Ellen D. Inutan
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Srinivas B. Narayan
- Detroit Medical Center: Detroit Hospital (DMC), Detroit, Michigan 48201, United States
| | - Sarah Trimpin
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Cardiovascular
Research Institute, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| |
Collapse
|
32
|
McLaughlin G, Morris N, Kavanagh PV, Power JD, O'Brien J, Talbot B, Elliott SP, Wallach J, Hoang K, Morris H, Brandt SD. Test purchase, synthesis, and characterization of 2-methoxydiphenidine (MXP) and differentiation from its meta- and para-substituted isomers. Drug Test Anal 2015; 8:98-109. [PMID: 25873326 DOI: 10.1002/dta.1800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 11/09/2022]
Abstract
The structurally diverse nature of the 1,2-diphenylethylamine template provides access to a range of substances for drug discovery work but some have attracted attention as 'research chemicals'. The most recent examples include diphenidine, i.e. 1-(1,2-diphenylethyl)piperidine and 2-methoxydiphenidine, i.e. 1-[1-(2-methoxyphenyl)-2-phenylethyl]piperidine (MXP, methoxyphenidine, 2-MXP) that have been associated with uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist activity. Analytical challenges encountered during chemical analysis include the presence of positional isomers. Three powdered samples suspected to contain 2-MXP were obtained from three Internet retailers in the United Kingdom and subjected to analytical characterization by gas chromatography (GC) and high performance liquid chromatography (HPLC) coupled to various forms of mass spectrometry (MS). Nuclear magnetic resonance spectroscopy, infrared spectroscopy and thin layer chromatography were also employed. This was supported by the synthesis of all three isomers (2-, 3- and 4-MXP) by two different synthetic routes. The analytical data obtained for the three purchased samples were consistent with the synthesized 2-MXP standard and the differentiation between the isomers was possible. Distinct stability differences were observed for all three isomers during in-source collision-induced dissociation of the protonated molecule when employing detection under HPLC selected-ion monitoring detection, which added to the ability to differentiate between them. Furthermore, the analysis of a 2-MXP tablet by matrix assisted inlet ionization Orbitrap mass spectrometry confirmed that it was possible to detect the protonated molecule of 2-MXP directly from the tablet surface following addition of 3-nitrobenzonitrile as the matrix.
Collapse
Affiliation(s)
- Gavin McLaughlin
- Department of Life and Physical Sciences, School of Science, Athlone Institute of Technology, Dublin Road, Westmeath, Ireland.,Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin, 8, Ireland
| | - Noreen Morris
- Department of Life and Physical Sciences, School of Science, Athlone Institute of Technology, Dublin Road, Westmeath, Ireland
| | - Pierce V Kavanagh
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin, 8, Ireland
| | - John D Power
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin, 8, Ireland
| | - John O'Brien
- School of Chemistry, Trinity College, Dublin, 2, Ireland
| | - Brian Talbot
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, 2, Ireland
| | - Simon P Elliott
- ROAR Forensics, Malvern Hills Science Park, Geraldine Road, WR14 3SZ, UK
| | - Jason Wallach
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Khoa Hoang
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Hamilton Morris
- The New School for Social Research, Department of Anthropology, 66 West 12th Street, NY, 10011, New York, USA
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
33
|
Trimpin S, Wang B. Inlet and Vacuum Ionization from Ambient Conditions. AMBIENT IONIZATION MASS SPECTROMETRY 2014. [DOI: 10.1039/9781782628026-00423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The discovery that laser ablation of a common MALDI matrix at atmospheric pressure without use of a voltage produced ions with nearly identical charge states to ESI led to a series of new ionization methods that we have given the general term inlet and vacuum ionization. The initial thought that the laser was necessary for matrix-assisted ionization gave way to ionization requiring a heated inlet with a pressure-drop region and then to a matrix that could be a solvent or no matrix. This in turn led to laser ablation in vacuum producing multiply charged ions without an inlet, and finally to the present where we have found matrices that lift molecules into the gas phase as ions without any external energy source. Our mechanistic view of this new ionization process developed into ionization methods for use in mass spectrometry will be discussed. These methods are simple to use, safe, robust, and sensitive. Several approaches for high-throughput analyses of compounds irrespective of their molecular weight will be presented using low- and high-performance mass spectrometers.
Collapse
Affiliation(s)
- Sarah Trimpin
- Wayne State University, Department of Chemistry Detroit, MI USA
| | - Beixi Wang
- Wayne State University, Department of Chemistry Detroit, MI USA
| |
Collapse
|
34
|
Ogorzalek Loo RR, Lakshmanan R, Loo JA. What protein charging (and supercharging) reveal about the mechanism of electrospray ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1675-93. [PMID: 25135609 PMCID: PMC4163133 DOI: 10.1007/s13361-014-0965-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 06/13/2014] [Accepted: 07/08/2014] [Indexed: 05/11/2023]
Abstract
Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range, and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate with those observed by ESI-MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase, the extent of charging. This region incorporates properties (e.g., basicities) intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging ("supercharging") such as m-NBA, sulfolane, and 3-nitrobenzonitrile increase analyte charge from "denaturing" and "native" solvent systems. It is suggested that additives' Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carrying fewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte).
Collapse
Affiliation(s)
- Rachel R Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|
35
|
Sugiyama K, Harako H, Ukita Y, Shimoda T, Takamura Y. Pulse-Heating Ionization for Protein On-Chip Mass Spectrometry. Anal Chem 2014; 86:7593-7. [DOI: 10.1021/ac501407c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kiyotaka Sugiyama
- School
of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Hiroki Harako
- School
of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yoshiaki Ukita
- School
of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tatsuya Shimoda
- School
of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yuzuru Takamura
- School
of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
36
|
Pagnotti VS, Chakrabarty S, Wang B, Trimpin S, McEwen CN. Gas-Phase Ions Produced by Freezing Water or Methanol for Analysis Using Mass Spectrometry. Anal Chem 2014; 86:7343-50. [DOI: 10.1021/ac500132j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vincent S. Pagnotti
- Department
of Chemistry and Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Shubhashis Chakrabarty
- Department
of Chemistry and Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Beixi Wang
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Charles N. McEwen
- Department
of Chemistry and Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
37
|
Lutomski C, El-Baba TJ, Inutan ED, Manly CD, Wager-Miller J, Mackie K, Trimpin S. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet. Anal Chem 2014; 86:6208-13. [PMID: 24896880 PMCID: PMC4082395 DOI: 10.1021/ac501788p] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.
Collapse
Affiliation(s)
- Corinne
A. Lutomski
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tarick J. El-Baba
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ellen D. Inutan
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Cory D. Manly
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - James Wager-Miller
- Gill
Center for Biomolecular Science, Indiana
University, Bloomington, Indiana 47405, United
States
| | - Ken Mackie
- Gill
Center for Biomolecular Science, Indiana
University, Bloomington, Indiana 47405, United
States
| | - Sarah Trimpin
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
38
|
Wang B, Tisdale E, Trimpin S, Wilkins CL. Matrix-Assisted Ionization Vacuum for High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometers. Anal Chem 2014; 86:6792-6. [DOI: 10.1021/ac500511g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Beixi Wang
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Evgenia Tisdale
- Department
of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Sarah Trimpin
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Charles L. Wilkins
- Department
of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
39
|
El-Baba TJ, Lutomski CA, Wang B, Trimpin S. Characterizing synthetic polymers and additives using new ionization methods for mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1175-1184. [PMID: 24760557 DOI: 10.1002/rcm.6881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE New inlet and vacuum ionization methods provide advantages of specificity, simplicity and speed for the analysis of synthetic polymers and polymer additives directly from surfaces such as fibers using mass spectrometry (MS) on different commercial mass spectrometers (Waters SYNAPT G2, Thermo LTQ Velos). METHODS We compare inlet ionization methods with the recently discovered vacuum ionization method. This method, termed matrix assisted ionization vacuum (MAIV), utilizes the matrix 3-nitrobenzonitrile (3-NBN) for the analysis of synthetic polymers and additives without additional energy input by simply exposing the matrix:analyte:salt to the vacuum of the mass spectrometer. Matrix:analyte:salt samples can be introduced while dry (surfaces, e.g. glass slides, pipet tips) or slightly wet (e.g. filter paper, pipet tips). RESULTS Compounds ionized by these methods can be analyzed in both positive and negative detection modes through cationization or deprotonation, respectively. The dynamic range of the experiment can be enhanced, as well as structural analysis performed, by coupling the vacuum ionization method with ion mobility spectrometry mass spectrometry (IMS-MS) and tandem mass spectrometric (MS/MS) fragmentation. CONCLUSIONS The specificity of 3-NBN matrix to ionize small and large nonvolatile analyte molecules by MAIV makes this matrix a good choice for observing low-abundance additives in the presence of large amounts of synthetic polymer using MS.
Collapse
Affiliation(s)
- Tarick J El-Baba
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | | | | | | |
Collapse
|
40
|
El-Baba TJ, Lutomski CA, Wang B, Inutan ED, Trimpin S. Toward high spatial resolution sampling and characterization of biological tissue surfaces using mass spectrometry. Anal Bioanal Chem 2014; 406:4053-61. [DOI: 10.1007/s00216-014-7778-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/05/2014] [Accepted: 03/20/2014] [Indexed: 11/29/2022]
|
41
|
Gessel MM, Norris JL, Caprioli RM. MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery. J Proteomics 2014; 107:71-82. [PMID: 24686089 DOI: 10.1016/j.jprot.2014.03.021] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) combines the sensitivity and selectivity of mass spectrometry with spatial analysis to provide a new dimension for histological analyses to provide unbiased visualization of the arrangement of biomolecules in tissue. As such, MALDI IMS has the capability to become a powerful new molecular technology for the biological and clinical sciences. In this review, we briefly describe several applications of MALDI IMS covering a range of molecular weights, from drugs to proteins. Current limitations and challenges are discussed along with recent developments to address these issues. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.
Collapse
Affiliation(s)
- Megan M Gessel
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States; Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States
| | - Jeremy L Norris
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States; Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States
| | - Richard M Caprioli
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States; Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States.
| |
Collapse
|
42
|
Venter AR, Douglass KA, Shelley JT, Hasman G, Honarvar E. Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal Chem 2014; 86:233-249. [PMID: 24308499 DOI: 10.1039/c7ay00948h] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A review of ambient ionization mass spectrometry highlighting the central role of sample preparation immediate to and during sample analysis.
Collapse
Affiliation(s)
- Andre R Venter
- Department of Chemistry, Western Michigan University , Kalamazoo, Michigan 49008-5413, United States
| | | | | | | | | |
Collapse
|
43
|
Venter AR, Douglass KA, Shelley JT, Hasman G, Honarvar E. Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal Chem 2013; 86:233-49. [PMID: 24308499 DOI: 10.1021/ac4038569] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Andre R Venter
- Department of Chemistry, Western Michigan University , Kalamazoo, Michigan 49008-5413, United States
| | | | | | | | | |
Collapse
|
44
|
Musapelo T, Murray KK. Particle production in reflection and transmission mode laser ablation: implications for laserspray ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1108-15. [PMID: 23633017 DOI: 10.1007/s13361-013-0631-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/23/2013] [Accepted: 03/26/2013] [Indexed: 05/25/2023]
Abstract
Particles were ablated from laser desorption and inlet ionization matrix thin films with a UV laser in reflection and transmission geometries. Particle size distributions were measured with a combined scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) system that measured particles in the size range from 10 nm to 20 μm. The matrixes investigated were 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), sinapic acid (SA), 2,5-dihydroxy-acetophenone (DHAP), and 2-nitrophloroglucinol (NPG). Nanoparticles with average diameters between 20 and 120 nm were observed in both transmission and reflection geometry. The particle mass distribution was significantly different in reflection and transmission geometry. In reflection geometry, approximately equal mass was distributed between particles in the 20 to 450 nm range of diameters and particles in the 450 nm to 1.5 μm diameter range. In transmission mode, the particle mass distribution was dominated by large particles in the 2 to 20 μm diameter range. Ablation of inlet ionization matrices DHAP and NPG produced particles that were 3 to 4 times smaller compared with the other matrices. The results are consistent with ion formation by nanoparticle melting and breakup or melting and breakup of the large particles through contact with heated inlet surfaces. ᅟ
Collapse
Affiliation(s)
- Thabiso Musapelo
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | | |
Collapse
|
45
|
Musapelo T, Murray KK. Size distributions of ambient shock-generated particles: implications for inlet ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1283-6. [PMID: 23650042 DOI: 10.1002/rcm.6568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 05/25/2023]
|
46
|
Trimpin S, Inutan ED. Matrix assisted ionization in vacuum, a sensitive and widely applicable ionization method for mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:722-32. [PMID: 23526166 DOI: 10.1007/s13361-012-0571-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/07/2012] [Accepted: 12/14/2012] [Indexed: 05/25/2023]
Abstract
An astonishingly simple new method to produce gas-phase ions of small molecules as well as proteins from the solid state under cold vacuum conditions is described. This matrix assisted ionization vacuum (MAIV) mass spectrometry (MS) method produces multiply charged ions similar to those that typify electrospray ionization (ESI) and uses sample preparation methods that are nearly identical to matrix-assisted laser desorption/ionization (MALDI). Unlike these established methods, MAIV does not require a laser or voltage for ionization, and unlike the recently introduced matrix assisted ionization inlet method, does not require added heat. MAIV-MS requires only introduction of a crystalline mixture of the analyte incorporated with a suitable small molecule matrix compound such as 3-nitrobenzonitrile directly to the vacuum of the mass spectrometer. Vacuum intermediate pressure MALDI sources and modified ESI sources successfully produce ions for analysis by MS with this method. As in ESI-MS, ion formation is continuous and, without a laser, little chemical background is observed. MAIV, operating from a surface offers the possibility of significantly improved sensitivity relative to atmospheric pressure ionization because ions are produced in the vacuum region of the mass spectrometer eliminating losses associated with ion transfer from atmospheric pressure to vacuum. Mechanistic aspects and potential applications for this new ionization method are discussed.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
47
|
The potential for clinical applications using a new ionization method combined with ion mobility spectrometry-mass spectrometry. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s12127-013-0131-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Nyadong L, Inutan ED, Wang X, Hendrickson CL, Trimpin S, Marshall AG. Laserspray and matrix-assisted ionization inlet coupled to high-field FT-ICR mass spectrometry for peptide and protein analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:320-8. [PMID: 23381687 DOI: 10.1007/s13361-012-0545-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 11/17/2012] [Accepted: 11/19/2012] [Indexed: 05/25/2023]
Abstract
We present the first coupling of laser spray ionization inlet (LSII) and matrix assisted ionization inlet (MAII) to high-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for generation of electrospray-like ions to take advantage of increased sensitivity, mass range, and mass resolving power afforded by multiple charging. We apply the technique to top-down protein analysis and characterization of metalloproteins. We also present a novel method for generation of multiply-charged copper-peptide complexes with varying degrees of copper adduction by LSII. We show an application of the generated copper-peptide complexes for protein charge state and molecular weight determination, particularly useful for an instrument such as a linear ion trap mass analyzer.
Collapse
Affiliation(s)
- Leonard Nyadong
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | | | | | | | | | | |
Collapse
|
49
|
Trimpin S, Inutan ED. New Ionization Method for Analysis on Atmospheric Pressure Ionization Mass Spectrometers Requiring Only Vacuum and Matrix Assistance. Anal Chem 2013; 85:2005-9. [DOI: 10.1021/ac303717j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| | - Ellen D. Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| |
Collapse
|
50
|
Inutan ED, Wager-Miller J, Mackie K, Trimpin S. Laserspray ionization imaging of multiply charged ions using a commercial vacuum MALDI ion source. Anal Chem 2012; 84:9079-84. [PMID: 23009673 PMCID: PMC3703845 DOI: 10.1021/ac301665h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This is the first report of imaging mass spectrometry (MS) from multiply charged ions at vacuum. Laserspray ionization (LSI) was recently extended to applications at vacuum producing electrospray ionization-like multiply charged ions directly from surfaces using a commercial intermediate pressure matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) MS instrument. Here, we developed a strategy to image multiply charged peptide ions. This is achieved by the use of 2-nitrophloroglucinol as matrix for spray deposition onto the tissue section and implementation of "soft" acquisition conditions including lower laser power and ion accelerating voltages similar to electrospray ionization-like conditions. Sufficient ion abundance is generated by the vacuum LSI method to employ IMS separation in imaging multiply charged ions obtained on a commercial mass spectrometer ion source without physical instrument modifications using the laser in the commercially available reflection geometry alignment. IMS gas-phase separation reduces the complexity of the ion signal from the tissue, especially for multiply charged relative to abundant singly charged ions from tissue lipids. We show examples of LSI tissue imaging from charge state +2 of three endogenous peptides consisting of between 1 and 16 amino acid residues from the acetylated N-terminal end of myelin basic protein: mass-to-charge (m/z) 795.81 (+2) molecular weight (MW) 1589.6, m/z 831.35 (+2) MW 1660.7, and m/z 917.40 (+2) MW 1832.8.
Collapse
Affiliation(s)
- Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | | | | |
Collapse
|