1
|
Castel J, Delaux S, Hernandez-Alba O, Cianférani S. Recent advances in structural mass spectrometry methods in the context of biosimilarity assessment: from sequence heterogeneities to higher order structures. J Pharm Biomed Anal 2023; 236:115696. [PMID: 37713983 DOI: 10.1016/j.jpba.2023.115696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Biotherapeutics and their biosimilar versions have been flourishing in the biopharmaceutical market for several years. Structural and functional characterization is needed to achieve analytical biosimilarity through the assessment of critical quality attributes as required by regulatory authorities. The role of analytical strategies, particularly mass spectrometry-based methods, is pivotal to gathering valuable information for the in-depth characterization of biotherapeutics and biosimilarity assessment. Structural mass spectrometry methods (native MS, HDX-MS, top-down MS, etc.) provide information ranging from primary sequence assessment to higher order structure evaluation. This review focuses on recent developments and applications in structural mass spectrometry for biotherapeutic and biosimilar characterization.
Collapse
Affiliation(s)
- Jérôme Castel
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Delaux
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France.
| |
Collapse
|
2
|
Deslignière E, Ollivier S, Beck A, Ropartz D, Rogniaux H, Cianférani S. Benefits and Limitations of High-Resolution Cyclic IM-MS for Conformational Characterization of Native Therapeutic Monoclonal Antibodies. Anal Chem 2023; 95:4162-4171. [PMID: 36780376 DOI: 10.1021/acs.analchem.2c05265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Monoclonal antibodies (mAbs) currently represent the main class of therapeutic proteins. mAbs approved by regulatory agencies are selected from IgG1, IgG2, and IgG4 subclasses, which possess different interchain disulfide connectivities. Ion mobility coupled to native mass spectrometry (IM-MS) has emerged as a valuable approach to tackle the challenging characterization of mAbs' higher order structures. However, due to the limited resolution of first-generation IM-MS instruments, subtle conformational differences on large proteins have long been hard to capture. Recent technological developments have aimed at increasing available IM resolving powers and acquisition mode capabilities, namely, through the release of high-resolution IM-MS (HR-IM-MS) instruments, like cyclic IM-MS (cIM-MS). Here, we outline the advantages and drawbacks of cIM-MS for better conformational characterization of intact mAbs (∼150 kDa) in native conditions compared to first-generation instruments. We first assessed the extent to which multipass cIM-MS experiments could improve the separation of mAbs' conformers. These initial results evidenced some limitations of HR-IM-MS for large native biomolecules which possess rich conformational landscapes that remain challenging to decipher even with higher IM resolving powers. Conversely, for collision-induced unfolding (CIU) approaches, higher resolution proved to be particularly useful (i) to reveal new unfolding states and (ii) to enhance the separation of coexisting activated states, thus allowing one to apprehend gas-phase CIU behaviors of mAbs directly at the intact level. Altogether, this study offers a first panoramic overview of the capabilities of cIM-MS for therapeutic mAbs, paving the way for more widespread HR-IM-MS/CIU characterization of mAb-derived formats.
Collapse
Affiliation(s)
- Evolène Deslignière
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67000, France.,Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67087, France
| | - Simon Ollivier
- UR BIA, INRAE, Nantes F-44316, France.,PROBE Research Infrastructure, BIBS Facility, INRAE, Nantes F-44316, France
| | - Alain Beck
- IRPF Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois 74160, France
| | - David Ropartz
- UR BIA, INRAE, Nantes F-44316, France.,PROBE Research Infrastructure, BIBS Facility, INRAE, Nantes F-44316, France
| | - Hélène Rogniaux
- UR BIA, INRAE, Nantes F-44316, France.,PROBE Research Infrastructure, BIBS Facility, INRAE, Nantes F-44316, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67000, France.,Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67087, France
| |
Collapse
|
3
|
Madren S, Yi L. Microchip electrophoresis separation coupled to mass spectrometry (MCE-MS) for the rapid monitoring of multiple quality attributes of monoclonal antibodies. Electrophoresis 2022; 43:2453-2465. [PMID: 36027045 DOI: 10.1002/elps.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) are highly heterogeneous as a result of posttranslational modifications (PTMs) during bioprocessing and storage. The modifications that impact mAb product quality are regarded as critical quality attributes and require monitoring. The conventional LC-mass spectrometer (MS) method used for product quality monitoring may require protein A purification prior to analysis. In this paper, we present a high-throughput microchip electrophoresis (<4 min) in-line with MS (MCE-MS) that enables baseline separation and characterization of Fc, Fd', and light chain (LC) domains of IdeS-treated mAb sample directly from bioreactor. The NISTmAb was used to optimize the MCE separation and to assess its capability of multiple attribute monitoring. The MCE-MS can uniquely separate and characterize deamidated species at domain level compared to LC-MS method. Two case studies were followed to demonstrate the method capability of monitoring product quality of mAb samples from stability studies or directly from bioreactors.
Collapse
Affiliation(s)
- Seth Madren
- Analytical Development Department, Biogen, Research Triangle Park, Durham, North Carolina, USA
| | - Linda Yi
- Analytical Development Department, Biogen, Research Triangle Park, Durham, North Carolina, USA
| |
Collapse
|
4
|
Rizzo D, Cerofolini L, Pérez-Ràfols A, Giuntini S, Baroni F, Ravera E, Luchinat C, Fragai M. Evaluation of the Higher Order Structure of Biotherapeutics Embedded in Hydrogels for Bioprinting and Drug Release. Anal Chem 2021; 93:11208-11214. [PMID: 34339178 PMCID: PMC8382223 DOI: 10.1021/acs.analchem.1c01850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
Biocompatible hydrogels for tissue regeneration/replacement and drug release with specific architectures can be obtained by three-dimensional bioprinting techniques. The preservation of the higher order structure of the proteins embedded in the hydrogels as drugs or modulators is critical for their biological activity. Solution nuclear magnetic resonance (NMR) experiments are currently used to investigate the higher order structure of biotherapeutics in comparability, similarity, and stability studies. However, the size of pores in the gel, protein-matrix interactions, and the size of the embedded proteins often prevent the use of this methodology. The recent advancements of solid-state NMR allow for the comparison of the higher order structure of the matrix-embedded and free isotopically enriched proteins, allowing for the evaluation of the functionality of the material in several steps of hydrogel development. Moreover, the structural information at atomic detail on the matrix-protein interactions paves the way for a structure-based design of these biomaterials.
Collapse
Affiliation(s)
- Domenico Rizzo
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Linda Cerofolini
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Anna Pérez-Ràfols
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
- Giotto
Biotech, S.R.L, Via Madonna
del piano 6, Sesto Fiorentino, Florence 50019, Italy
| | - Stefano Giuntini
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Fabio Baroni
- Analytical
Development Biotech Department, Merck Serono
S.p.a, Merck KGaA, Guidonia, Rome 00012, Italy
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Marco Fragai
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| |
Collapse
|
5
|
Wagner ND, Huang Y, Liu T, Gross ML. Post-HDX Deglycosylation of Fc Gamma Receptor IIIa Glycoprotein Enables HDX Characterization of Its Binding Interface with IgG. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1638-1643. [PMID: 33625217 PMCID: PMC8906513 DOI: 10.1021/jasms.1c00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein glycosylation is a common and highly heterogeneous post-translational modification that challenges biophysical characterization technologies. The heterogeneity of glycoproteins makes their structural analysis difficult; in particular, hydrogen-deuterium exchange mass spectrometry (HDX-MS) often suffers from poor sequence coverage near the glycosylation site. A pertinent example is the Fc gamma receptor RIIIa (FcγRIIIa, CD16a), a glycoprotein expressed on the surface of natural killer cells (NK) that binds the Fc domain of IgG antibodies as a trigger for antibody-dependent cell-mediated cytotoxicity (ADCC). Here, we describe an adaptation of a previously reported method using PNGase A for post-HDX deglycosylation to characterize the binding between the highly glycosylated CD16a and IgG1. Upon optimization of the method to improve sequence coverage while minimizing back-exchange, we achieved coverage of four of the five glycosylation sites of CD16a. Despite some back-exchange, trends in HDX are consistent with previously reported CD16a/IgG-Fc complex structures; furthermore, binding of peptides covering the glycosylated asparagine-164 can be interrogated when using this protocol, previously not seen using standard HDX-MS.
Collapse
Affiliation(s)
- Nicole D. Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 United States
| | - Yining Huang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285 United States
- Corresponding Authors: ,
| | - Tun Liu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285 United States
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 United States
- Corresponding Authors: ,
| |
Collapse
|
6
|
McKenzie-Coe A, Shortt R, Jones LM. THE MAKING OF A FOOTPRINT IN PROTEIN FOOTPRINTING: A REVIEW IN HONOR OF MICHAEL L. GROSS. MASS SPECTROMETRY REVIEWS 2021; 40:177-200. [PMID: 32400038 PMCID: PMC7849054 DOI: 10.1002/mas.21632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Within the past decade protein footprinting in conjunction with mass spectrometry has become a powerful and versatile means to unravel the higher order structure of proteins. Footprinting-based approaches has demonstrated the capacity to inform on interaction sites and dynamic regions that participate in conformational changes. These findings when set in a biological perspective inform on protein folding/unfolding, protein-protein interactions, and protein-ligand interactions. In this review, we will look at the contribution of Dr. Michael L. Gross to protein footprinting approaches such as hydrogen deuterium exchange mass spectrometry and hydroxyl radical protein footprinting. This review details the development of novel footprinting methods as well as their applications to study higher order protein structure. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland, 21201
| | - Raquel Shortt
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland, 21201
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland, 21201
| |
Collapse
|
7
|
Yin Z, Huang J, Miao H, Hu O, Li H. High-Pressure Electrospray Ionization Yields Supercharged Protein Complexes from Native Solutions While Preserving Noncovalent Interactions. Anal Chem 2020; 92:12312-12321. [DOI: 10.1021/acs.analchem.0c01965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhibin Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui Miao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ou Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
8
|
Deolankar SC, Modi PK, Subbannayya Y, Pervaje R, Prasad TSK. Molecular Targets from Traditional Medicines for Neuroprotection in Human Neurodegenerative Diseases. ACTA ACUST UNITED AC 2020; 24:394-403. [DOI: 10.1089/omi.2020.0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | | |
Collapse
|
9
|
Garcia NK, Sreedhara A, Deperalta G, Wecksler AT. Optimizing Hydroxyl Radical Footprinting Analysis of Biotherapeutics Using Internal Standard Dosimetry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1563-1571. [PMID: 32407079 DOI: 10.1021/jasms.0c00146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydroxyl radical footprinting-mass spectrometry (HRF-MS) is a powerful technique for measuring protein structure by quantitating the solvent accessibility of amino acid side-chains; and when used in comparative analysis, HRF-MS data can provide detailed information on changes in protein structure. However, consistently controlling the amount of hydroxyl radical labeling of a protein requires the precise understanding of both the amount of radicals generated and half-life of the radicals in solution. The latter is particularly important for applications such as protein-protein and protein-ligand interactions, which may have different characteristics such as intrinsic reactivity and buffer components, and can cause differences in radical scavenging (herein termed "scavenging potential") between samples. To address this inherent challenge with HRF-MS analysis, we describe the comprehensive implementation of an internal standard (IS) dosimeter peptide leucine enkephalin (LeuEnk) for measuring the scavenging potential of pharmaceutically relevant proteins and formulation components. This further enabled evaluation of the critical method parameters affecting the scavenging potential of samples subjected to HRF-MS using fast photochemical oxidation of proteins. We demonstrate a direct correlation between the oxidation of the IS peptide and biotherapeutic target proteins, and show the oxidation of the IS can be used as a guide for ensuring equivalent scavenging potentials when comparing multiple samples. Establishing this strategy enables optimization of sample parameters, a system suitability approach, normalization of data, and comparison/harmonization of HRF-MS analysis across different laboratories.
Collapse
Affiliation(s)
- Natalie K Garcia
- Protein Analytical Chemistry, Genentech Inc., South San Francisco, 1 DNA Way, South San Francisco, California 94080, United States
| | - Alavattam Sreedhara
- Late Stage Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Galahad Deperalta
- Protein Analytical Chemistry, Genentech Inc., South San Francisco, 1 DNA Way, South San Francisco, California 94080, United States
| | - Aaron T Wecksler
- Protein Analytical Chemistry, Genentech Inc., South San Francisco, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
10
|
Kaltashov IA, Bobst CE, Pawlowski J, Wang G. Mass spectrometry-based methods in characterization of the higher order structure of protein therapeutics. J Pharm Biomed Anal 2020; 184:113169. [PMID: 32092629 DOI: 10.1016/j.jpba.2020.113169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Higher order structure of protein therapeutics is an important quality attribute, which dictates both potency and safety. While modern experimental biophysics offers an impressive arsenal of state-of-the-art tools that can be used for the characterization of higher order structure, many of them are poorly suited for the characterization of biopharmaceutical products. As a result, these analyses were traditionally carried out using classical techniques that provide relatively low information content. Over the past decade, mass spectrometry made a dramatic debut in this field, enabling the characterization of higher order structure of biopharmaceuticals as complex as monoclonal antibodies at a level of detail that was previously unattainable. At present, mass spectrometry is an integral part of the analytical toolbox across the industry, which is critical not only for quality control efforts, but also for discovery and development.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| | - Cedric E Bobst
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Jake Pawlowski
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Guanbo Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
11
|
Xia D, Liu B, Xu X, Ding Y, Zheng Q. Drug target discovery by magnetic nanoparticles coupled mass spectrometry. J Pharm Anal 2020; 11:122-127. [PMID: 33717618 PMCID: PMC7930636 DOI: 10.1016/j.jpha.2020.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/24/2019] [Accepted: 02/04/2020] [Indexed: 11/25/2022] Open
Abstract
Drug target discovery is the basis of drug screening. It elucidates the cause of disease and the mechanism of drug action, which is the essential of drug innovation. Target discovery performed in biological systems is complicated as proteins are in low abundance and endogenous compounds may interfere with drug binding. Therefore, methods to track drug-target interactions in biological matrices are urgently required. In this work, a Fe3O4 nanoparticle-based approach was developed for drug-target screening in biofluids. A known ligand-protein complex was selected as a principle-to-proof example to validate the feasibility. After incubation in cell lysates, ligand-modified Fe3O4 nanoparticles bound to the target protein and formed complexes that were separated from the lysates by a magnet for further analysis. The large surface-to-volume ratio of the nanoparticles provides more active sites for the modification of chemical drugs. It enhances the opportunity for ligand-protein interactions, which is beneficial for capturing target proteins, especially for those with low abundance. Additionally, a one-step magnetic separation simplifies the pre-processing of ligand-protein complexes, so it effectively reduces the endogenous interference. Therefore, the present nanoparticle-based approach has the potential to be used for drug target screening in biological systems. Fe3O4 NPs were made hydrophilic to adequately disperse in the cell lysate and fully contact with target proteins. The magnetic property of the NPs allowed one-step isolation while maintaining ligand-protein non-covalent bindings. It enabled the capture of low abundant targets in biological matrices while eliminated the endogenous interference.
Collapse
Affiliation(s)
- Dandan Xia
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Baoling Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ya Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuling Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
12
|
Chea EE, Deredge DJ, Jones LM. Insights on the Conformational Ensemble of Cyt C Reveal a Compact State during Peroxidase Activity. Biophys J 2019; 118:128-137. [PMID: 31810655 DOI: 10.1016/j.bpj.2019.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
Cytochrome c (cyt c) is known for its role in the electron transport chain but transitions to a peroxidase-active state upon exposure to oxidative species. The peroxidase activity ultimately results in the release of cyt c into the cytosol for the engagement of apoptosis. The accumulation of oxidative modifications that accompany the onset of the peroxidase function are well-characterized. However, the concurrent structural and conformational transitions of cyt c remain undercharacterized. Fast photochemical oxidation of proteins (FPOP) coupled with mass spectrometry is a protein footprinting technique used to structurally characterize proteins. FPOP coupled with native ion mobility separation shows that exposure to H2O2 results in the accumulation of a compact state of cyt c. Subsequent top-down fragmentation to localize FPOP modifications reveals changes in heme coordination between conformers. A time-resolved functional assay suggests that this compact conformer is peroxidase active. Altogether, combining FPOP, ion mobility separation, and top-down and bottom-up mass spectrometry allows us to discern individual conformations in solution and obtain a better understanding of the conformational ensemble and structural transitions of cyt c as it transitions from a respiratory role to a proapoptotic role.
Collapse
Affiliation(s)
- Emily E Chea
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland.
| |
Collapse
|
13
|
Upton R, Migas LG, Pacholarz KJ, Beniston RG, Estdale S, Firth D, Barran PE. Hybrid mass spectrometry methods reveal lot-to-lot differences and delineate the effects of glycosylation on the tertiary structure of Herceptin®. Chem Sci 2019; 10:2811-2820. [PMID: 30997002 PMCID: PMC6425993 DOI: 10.1039/c8sc05029e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/12/2019] [Indexed: 12/23/2022] Open
Abstract
To quantify the measurable variations in the structure of a biopharmaceutical product we systematically evaluate three lots of Herceptin®, two mAb standards and an intact Fc-hinge fragment. Each mAb is examined in three states; glycan intact, truncated (following endoS2 treatment) and fully deglycosylated. Despite equivalence at the intact protein level, each lot of Herceptin® gives a distinctive signature in three different mass spectrometry approaches. Ion mobility mass spectrometry (IM-MS) shows that in the API, the attached N-glycans reduce the conformational spread of each mAb by 10.5-25%. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) data support this, with lower global deuterium uptake in solution when comparing intact to the fully deglycosylated protein. HDX-MS and activated IM-MS map the influence of glycans on the mAb and reveal allosteric effects which extend far beyond the Fc domains into the Fab region. Taken together, these findings and the supplied interactive data sets establish acceptance criteria with application for MS based characterisation of biosimilars and novel therapeutic mAbs.
Collapse
Affiliation(s)
- Rosie Upton
- Manchester Institute of Biotechnology , Michael Barber Centre for Collaborative Mass Spectrometry , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | - Lukasz G Migas
- Manchester Institute of Biotechnology , Michael Barber Centre for Collaborative Mass Spectrometry , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | - Kamila J Pacholarz
- Manchester Institute of Biotechnology , Michael Barber Centre for Collaborative Mass Spectrometry , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | | | - Sian Estdale
- Covance Laboratories Ltd. , Otley Road , Harrogate , HG3 1PY , UK
| | - David Firth
- Covance Laboratories Ltd. , Otley Road , Harrogate , HG3 1PY , UK
| | - Perdita E Barran
- Manchester Institute of Biotechnology , Michael Barber Centre for Collaborative Mass Spectrometry , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| |
Collapse
|
14
|
Garcia NK, Deperalta G, Wecksler AT. Current Trends in Biotherapeutic Higher Order Structure Characterization by Irreversible Covalent Footprinting Mass Spectrometry. Protein Pept Lett 2019; 26:35-43. [PMID: 30484396 DOI: 10.2174/0929866526666181128141953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Biotherapeutics, particularly monoclonal antibodies (mAbs), are a maturing class of drugs capable of treating a wide range of diseases. Therapeutic function and solutionstability are linked to the proper three-dimensional organization of the primary sequence into Higher Order Structure (HOS) as well as the timescales of protein motions (dynamics). Methods that directly monitor protein HOS and dynamics are important for mapping therapeutically relevant protein-protein interactions and assessing properly folded structures. Irreversible covalent protein footprinting Mass Spectrometry (MS) tools, such as site-specific amino acid labeling and hydroxyl radical footprinting are analytical techniques capable of monitoring the side chain solvent accessibility influenced by tertiary and quaternary structure. Here we discuss the methodology, examples of biotherapeutic applications, and the future directions of irreversible covalent protein footprinting MS in biotherapeutic research and development. CONCLUSION Bottom-up mass spectrometry using irreversible labeling techniques provide valuable information for characterizing solution-phase protein structure. Examples range from epitope mapping and protein-ligand interactions, to probing challenging structures of membrane proteins. By paring these techniques with hydrogen-deuterium exchange, spectroscopic analysis, or static-phase structural data such as crystallography or electron microscopy, a comprehensive understanding of protein structure can be obtained.
Collapse
Affiliation(s)
- Natalie K Garcia
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| | - Galahad Deperalta
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| | - Aaron T Wecksler
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| |
Collapse
|
15
|
Shi L, Gross ML. Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry. Protein Pept Lett 2019; 26:27-34. [PMID: 30484399 DOI: 10.2174/0929866526666181128124554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Determination of the composition and some structural features of macromolecules can be achieved by using structural proteomics approaches coupled with mass spectrometry (MS). One approach is hydroxyl radical protein footprinting whereby amino-acid side chains are modified with reactive reagents to modify irreversibly a protein side chain. The outcomes, when deciphered with mass-spectrometry-based proteomics, can increase our knowledge of structure, assembly, and conformational dynamics of macromolecules in solution. Generating the hydroxyl radicals by laser irradiation, Hambly and Gross developed the approach of Fast Photochemical Oxidation of Proteins (FPOP), which labels proteins on the sub millisecond time scale and provides, with MS analysis, deeper understanding of protein structure and protein-ligand and protein- protein interactions. This review highlights the fundamentals of FPOP and provides descriptions of hydroxyl-radical and other radical and carbene generation, of the hydroxyl labeling of proteins, and of determination of protein modification sites. We also summarize some recent applications of FPOP coupled with MS in protein footprinting. CONCLUSION We survey results that show the capability of FPOP for qualitatively measuring protein solvent accessibility on the residue level. To make these approaches more valuable, we describe recent method developments that increase FPOP's quantitative capacity and increase the spatial protein sequence coverage. To improve FPOP further, several new labeling reagents including carbenes and other radicals have been developed. These growing improvements will allow oxidative- footprinting methods coupled with MS to play an increasingly significant role in determining the structure and dynamics of macromolecules and their assemblies.
Collapse
Affiliation(s)
- Liuqing Shi
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
| |
Collapse
|
16
|
The use of fast photochemical oxidation of proteins coupled with mass spectrometry in protein therapeutics discovery and development. Drug Discov Today 2019; 24:829-834. [DOI: 10.1016/j.drudis.2018.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023]
|
17
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
18
|
Bonner J, Talbert LE, Akkawi N, Julian RR. Simplified identification of disulfide, trisulfide, and thioether pairs with 213 nm UVPD. Analyst 2018; 143:5176-5184. [PMID: 30264084 PMCID: PMC6197924 DOI: 10.1039/c8an01582a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Disulfide heterogeneity and other non-native crosslinks introduced during therapeutic antibody production and storage could have considerable negative effects on clinical efficacy, but tracking these modifications remains challenging. Analysis must also be carried out cautiously to avoid introduction of disulfide scrambling or reduction, necessitating the use of low pH digestion with less specific proteases. Herein we demonstrate that 213 nm ultraviolet photodissociation streamlines disulfide elucidation through bond-selective dissociation of sulfur-sulfur and carbon-sulfur bonds in combination with less specific backbone dissociation. Importantly, both types of fragmentation can be initiated in a single MS/MS activation stage. In addition to disulfide mapping, it is also shown that thioethers and trisulfides can be identified by characteristic fragmentation patterns. The photochemistry resulting from 213 nm excitation facilitates a simplified, two-tiered data processing approach that allows observation of all native disulfide bonds, scrambled disulfide bonds, and non-native sulfur-based linkages in a pepsin digest of Rituximab. Native disulfides represented the majority of bonds according to ion count, but the highly solvent-exposed heavy/light interchain disulfides were found to be most prone to modification. Production and storage methods that facilitate non-native links are discussed. Due to the importance of heavy and light chain connectivity for antibody structure and function, this region likely requires particular attention in terms of its influence on maintaining structural fidelity.
Collapse
Affiliation(s)
- James Bonner
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | | | | | |
Collapse
|
19
|
Kim H, An Z, Jang CH. Label-free optical detection of thrombin using a liquid crystal-based aptasensor. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Abolhasani Khaje N, Mobley CK, Misra SK, Miller L, Li Z, Nudler E, Sharp JS. Variation in FPOP Measurements Is Primarily Caused by Poor Peptide Signal Intensity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1901-1907. [PMID: 29943081 PMCID: PMC6087495 DOI: 10.1007/s13361-018-1994-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 05/27/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) may be used to characterize changes in protein structure by measuring differences in the apparent rate of peptide oxidation by hydroxyl radicals. The variability between replicates is high for some peptides and limits the statistical power of the technique, even using modern methods controlling variability in radical dose and quenching. Currently, the root cause of this variability has not been systematically explored, and it is unknown if the major source(s) of variability are structural heterogeneity in samples, remaining irreproducibility in FPOP oxidation, or errors in LC-MS quantification of oxidation. In this work, we demonstrate that coefficient of variation of FPOP measurements varies widely at low peptide signal intensity, but stabilizes to ≈ 0.13 at higher peptide signal intensity. We dramatically reduced FPOP variability by increasing the total sample loaded onto the LC column, indicating that the major source of variability in FPOP measurements is the difficulties in quantifying oxidation at low peptide signal intensities. This simple method greatly increases the sensitivity of FPOP structural comparisons, an important step in applying the technique to study subtle conformational changes and protein-ligand interactions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Niloofar Abolhasani Khaje
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA
| | - Charles K Mobley
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA
| | - Sandeep K Misra
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA
| | - Lindsey Miller
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA
| | - Zixuan Li
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA.
| |
Collapse
|
21
|
MS-based conformation analysis of recombinant proteins in design, optimization and development of biopharmaceuticals. Methods 2018; 144:134-151. [PMID: 29678586 DOI: 10.1016/j.ymeth.2018.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/18/2023] Open
Abstract
Mass spectrometry (MS)-based methods for analyzing protein higher order structures have gained increasing application in the field of biopharmaceutical development. The predominant methods used in this area include native MS, hydrogen deuterium exchange-MS, covalent labeling, cross-linking and limited proteolysis. These MS-based methods will be briefly described in this article, followed by a discussion on how these methods contribute at different stages of discovery and development of protein therapeutics.
Collapse
|
22
|
Chea EE, Jones LM. Modifications generated by fast photochemical oxidation of proteins reflect the native conformations of proteins. Protein Sci 2018; 27:1047-1056. [PMID: 29575296 DOI: 10.1002/pro.3408] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/08/2023]
Abstract
Hydroxyl radical footprinting (HRF) is a nonspecific protein footprinting method that has been increasingly used in recent years to analyze protein structure. The method oxidatively modifies solvent accessible sites in proteins, which changes upon alterations in the protein, such as ligand binding or a change in conformation. For HRF to provide accurate structural information, the method must probe the native structure of proteins. This requires careful experimental controls since an abundance of oxidative modifications can induce protein unfolding. Fast photochemical oxidation of proteins (FPOP) is a HRF method that generates hydroxyl radicals via photo-dissociation of hydrogen peroxide using an excimer laser. The addition of a radical scavenger to the FPOP reaction reduces the lifetime of the radical, limiting the levels of protein oxidation. A direct assay is needed to ensure FPOP is probing the native conformation of the protein. Here, we report using enzymatic activity as a direct assay to validate that FPOP is probing the native structure of proteins. By measuring the catalytic activity of lysozyme and invertase after FPOP modification, we demonstrate that FPOP does not induce protein unfolding.
Collapse
Affiliation(s)
- Emily E Chea
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, 21201
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, 21201
| |
Collapse
|
23
|
Chea EE, Jones LM. Analyzing the structure of macromolecules in their native cellular environment using hydroxyl radical footprinting. Analyst 2018; 143:798-807. [DOI: 10.1039/c7an01323j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hydroxyl radical footprinting (HRF) has been successfully used to study the structure of both nucleic acids and proteins in live cells.
Collapse
Affiliation(s)
- Emily E. Chea
- Department of Pharmaceutical Sciences
- University of Maryland
- Baltimore
- USA
| | - Lisa M. Jones
- Department of Pharmaceutical Sciences
- University of Maryland
- Baltimore
- USA
| |
Collapse
|
24
|
Tian Y, Ruotolo BT. The growing role of structural mass spectrometry in the discovery and development of therapeutic antibodies. Analyst 2018; 143:2459-2468. [DOI: 10.1039/c8an00295a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The comprehensive structural characterization of therapeutic antibodies is of critical importance for the successful discovery and development of such biopharmaceuticals, yet poses many challenges to modern measurement science. Here, we review the current state-of-the-art mass spectrometry technologies focusing on the characterization of antibody-based therapeutics.
Collapse
Affiliation(s)
- Yuwei Tian
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | | |
Collapse
|
25
|
Campuzano IDG, Netirojjanakul C, Nshanian M, Lippens JL, Kilgour DPA, Van Orden S, Loo JA. Native-MS Analysis of Monoclonal Antibody Conjugates by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 2017; 90:745-751. [DOI: 10.1021/acs.analchem.7b03021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Michael Nshanian
- Department
of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California−Los Angeles, Los Angeles, California 90095, United States
| | | | - David P. A. Kilgour
- Department
of Chemistry and Forensics, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Steve Van Orden
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Joseph A. Loo
- Department
of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California−Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
26
|
D'Atri V, Causon T, Hernandez-Alba O, Mutabazi A, Veuthey JL, Cianferani S, Guillarme D. Adding a new separation dimension to MS and LC-MS: What is the utility of ion mobility spectrometry? J Sep Sci 2017; 41:20-67. [PMID: 29024509 DOI: 10.1002/jssc.201700919] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Ion mobility spectrometry is an analytical technique known for more than 100 years, which entails separating ions in the gas phase based on their size, shape, and charge. While ion mobility spectrometry alone can be useful for some applications (mostly security analysis for detecting certain classes of narcotics and explosives), it becomes even more powerful in combination with mass spectrometry and high-performance liquid chromatography. Indeed, the limited resolving power of ion mobility spectrometry alone can be tackled when combining this analytical strategy with mass spectrometry or liquid chromatography with mass spectrometry. Over the last few years, the hyphenation of ion mobility spectrometry to mass spectrometry or liquid chromatography with mass spectrometry has attracted more and more interest, with significant progresses in both technical advances and pioneering applications. This review describes the theoretical background, available technologies, and future capabilities of these techniques. It also highlights a wide range of applications, from small molecules (natural products, metabolites, glycans, lipids) to large biomolecules (proteins, protein complexes, biopharmaceuticals, oligonucleotides).
Collapse
Affiliation(s)
- Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Tim Causon
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU Vienna), Vienna, Austria
| | - Oscar Hernandez-Alba
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Aline Mutabazi
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Sarah Cianferani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
27
|
Furuki K, Toyo'oka T, Yamaguchi H. A novel rapid analysis using mass spectrometry to evaluate downstream refolding of recombinant human insulin-like growth factor-1 (mecasermin). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1267-1278. [PMID: 28523846 DOI: 10.1002/rcm.7906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/28/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Mecasermin is used to treat elevated blood sugar as well as growth-hormone-resistant Laron-type dwarfism. Mecasermin isolated from inclusion bodies in extracts of E. coli must be refolded to acquire sufficient activity. However, there is no rapid analytical method for monitoring refolding during the purification process. METHODS We prepared mecasermin drug product, in-process samples during the oxidation of mecasermin, forced-reduced mecasermin, and aerially oxidized mecasermin after forced reduction. Desalted mecasermin samples were analyzed using MALDI-ISD. The peak intensity ratio of product to precursor ion was determined. The charge-state distribution (CSD) of mecasermin ions was evaluated using ESI-MS coupled with SEC-mode HPLC. The drift time and collision cross-sectional area (CCS) of mecasermin ions were evaluated using ESI-IMS-MS coupled with SEC-mode HPLC. RESULTS MALDI-ISD data, CSD values determined using ESI-MS, and the CCS acquired using ESI-IMS-MS revealed the relationship between the folded and unfolded proteoforms of forced-reduced mecasermin and aerially oxidized mecasermin with the free-SH:protein ratio of mecasermin drug product. The CCS area, which is determined using ESI-IMS-MS, provided proteoform information through rapid monitoring (<2 min) of in-process samples during the manufacture of mecasermin. CONCLUSIONS ESI-IMS-MS coupled with SEC-mode HPLC is a rapid and robust method for analyzing the free-SH:protein ratio of mecasermin that allows proteoform changes to be evaluated and monitored during the oxidation of mecasermin. ESI-IMS-MS is applicable as a process analytical technology tool for identifying the "critical quality attributes" and implementing "quality by design" for manufacturing mecasermin.
Collapse
Affiliation(s)
- Kenichiro Furuki
- Process Science Lab II, Biotechnology Labs, Astellas Pharma Inc., Ibaraki, Japan
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Toshimasa Toyo'oka
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Hideto Yamaguchi
- Process Science Lab II, Biotechnology Labs, Astellas Pharma Inc., Ibaraki, Japan
- Astellas Institute for Regenerative Medicine (AIRM), Astellas Pharma Inc., Marlborough, MA, USA
| |
Collapse
|
28
|
Yefremova Y, Opuni KFM, Danquah BD, Thiesen HJ, Glocker MO. Intact Transition Epitope Mapping (ITEM). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1612-1622. [PMID: 28616748 DOI: 10.1007/s13361-017-1654-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Intact transition epitope mapping (ITEM) enables rapid and accurate determination of protein antigen-derived epitopes by either epitope extraction or epitope excision. Upon formation of the antigen peptide-containing immune complex in solution, the entire mixture is electrosprayed to translate all constituents as protonated ions into the gas phase. There, ions from antibody-peptide complexes are separated from unbound peptide ions according to their masses, charges, and shapes either by ion mobility drift or by quadrupole ion filtering. Subsequently, immune complexes are dissociated by collision induced fragmentation and the ion signals of the "complex-released peptides," which in effect are the epitope peptides, are recorded in the time-of-flight analyzer of the mass spectrometer. Mixing of an antibody solution with a solution in which antigens or antigen-derived peptides are dissolved is, together with antigen proteolysis, the only required in-solution handling step. Simplicity of sample handling and speed of analysis together with very low sample consumption makes ITEM faster and easier to perform than other experimental epitope mapping methods. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yelena Yefremova
- Proteome Center Rostock, University Medicine Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - Kwabena F M Opuni
- Proteome Center Rostock, University Medicine Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - Bright D Danquah
- Proteome Center Rostock, University Medicine Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - Hans-Juergen Thiesen
- Institute of Immunology, University Medicine Rostock, Schillingallee 70, 18057, Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock, Schillingallee 69, 18057, Rostock, Germany.
| |
Collapse
|
29
|
Nirudodhi SN, Sperry JB, Rouse JC, Carroll JA. Application of Dual Protease Column for HDX-MS Analysis of Monoclonal Antibodies. J Pharm Sci 2016; 106:530-536. [PMID: 27916388 DOI: 10.1016/j.xphs.2016.10.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/05/2016] [Accepted: 10/20/2016] [Indexed: 11/30/2022]
Abstract
A co-immobilized, dual protease column was developed and implemented to more efficiently digest IgG molecules for hydrogen/deuterium exchange mass spectrometry (HDX-MS). The low-pH proteolytic enzymes pepsin and type XIII protease from Aspergillus were packed into a single column to most effectively combine the complementary specificities. The method was optimized using an IgG2 monoclonal antibody as a substrate because they are known to be more difficult to efficiently digest. The general applicability of the method was then demonstrated using IgG1 and IgG4 mAbs. The dual protease column and optimized method yielded improved digestion efficiency, as measured by the increased number of smaller, overlapping peptides in comparison with pepsin or type XIII alone, making HDX-MS more suitable for measuring deuterium uptake with higher resolution. The enhanced digestion efficiency and increased sequence coverage enables the routine application of HDX-MS to all therapeutic IgG molecules for investigations of higher order structure, especially when posttranslational and storage-induced modifications are detected, providing further product understanding for structure-function relationships and ultimately ensuring clinical safety and efficacy.
Collapse
Affiliation(s)
| | - Justin B Sperry
- Pfizer, Inc., BTx Pharmaceutical Sciences, St. Louis, Missouri 63017
| | - Jason C Rouse
- Pfizer, Inc., BTx Pharmaceutical Sciences, Andover, Massachusetts 01810
| | - James A Carroll
- Pfizer, Inc., BTx Pharmaceutical Sciences, St. Louis, Missouri 63017.
| |
Collapse
|
30
|
Terral G, Beck A, Cianférani S. Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:79-90. [DOI: 10.1016/j.jchromb.2016.03.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
|
31
|
Zhang Y, Cui W, Wecksler AT, Zhang H, Molina P, Deperalta G, Gross ML. Native MS and ECD Characterization of a Fab-Antigen Complex May Facilitate Crystallization for X-ray Diffraction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1139-42. [PMID: 27103115 PMCID: PMC4899112 DOI: 10.1007/s13361-016-1398-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 05/11/2023]
Abstract
Native mass spectrometry (MS) and top-down electron-capture dissociation (ECD) combine as a powerful approach for characterizing large proteins and protein assemblies. Here, we report their use to study an antibody Fab (Fab-1)-VEGF complex in its near-native state. Native ESI with analysis by FTICR mass spectrometry confirms that VEGF is a dimer in solution and that its complex with Fab-1 has a binding stoichiometry of 2:2. Applying combinations of collisionally activated dissociation (CAD), ECD, and infrared multiphoton dissociation (IRMPD) allows identification of flexible regions of the complex, potentially serving as a guide for crystallization and X-ray diffraction analysis. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130, USA
- Analytical Research and Development, Pfizer Inc., Chesterfield, MO, 63017, USA
| | - Weidong Cui
- Department of Chemistry, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130, USA
| | - Aaron T Wecksler
- Protein Analytical Chemistry, Genentech, a Member of the Roche Group, South San Francisco, CA, 94080, USA
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130, USA
| | - Patricia Molina
- Protein Analytical Chemistry, Genentech, a Member of the Roche Group, South San Francisco, CA, 94080, USA
| | - Galahad Deperalta
- Protein Analytical Chemistry, Genentech, a Member of the Roche Group, South San Francisco, CA, 94080, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130, USA.
| |
Collapse
|
32
|
Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016; 13:157-83. [PMID: 26653789 DOI: 10.1586/14789450.2016.1132167] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris) and trastuzumab emtansine (Kadcyla), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.
Collapse
Affiliation(s)
- Alain Beck
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Guillaume Terral
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - François Debaene
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Julien Marcoux
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | | | - Olivier Colas
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Van Dorsselaer
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Sarah Cianférani
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| |
Collapse
|
33
|
Yefremova Y, Al-Majdoub M, Opuni KF, Koy C, Yan Y, Gross M, Glocker MO. A Dynamic Model of pH-Induced Protein G'e Higher Order Structure Changes derived from Mass Spectrometric Analyses. Anal Chem 2016; 88:890-7. [PMID: 26606592 PMCID: PMC5201196 DOI: 10.1021/acs.analchem.5b03536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To obtain insight into pH change-driven molecular dynamics, we studied the higher order structure changes of protein G'e at the molecular and amino acid residue levels in solution by using nanoESI- and IM-mass spectrometry, CD spectroscopy, and protein chemical modification reactions (protein footprinting). We found a dramatic change of the overall tertiary structure of protein G'e when the pH was changed from neutral to acidic, whereas its secondary structure features remained nearly invariable. Limited proteolysis and surface-topology mapping of protein G'e by fast photochemical oxidation of proteins (FPOP) under neutral and acidic conditions reveal areas where higher order conformational changes occur on the amino-acid residue level. Under neutral solution conditions, lower oxidation occurs for residues of the first linker region, whereas greater oxidative modifications occur for amino-acid residues of the IgG-binding domains I and II. We propose a dynamic model of pH-induced structural changes in which protein G'e at neutral pH adopts an overall tight conformation with all four domains packed in a firm assembly, whereas at acidic pH, the three IgG-binding domains form an elongated alignment, and the N-terminal, His-tag-carrying domain unfolds. At the same time the individual IgG-binding domains themselves seem to adopt a more compacted fold. As the secondary structure features are nearly unchanged at either pH, interchange between both conformations is highly reversible, explaining the high reconditioning power of protein G'e-based affinity chromatography columns.
Collapse
Affiliation(s)
- Yelena Yefremova
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | | | | | - Cornelia Koy
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Yuetian Yan
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 USA
| | - Michael Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 USA
| | | |
Collapse
|
34
|
Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal Chem 2015; 88:480-507. [DOI: 10.1021/acs.analchem.5b04561] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Szabolcs Fekete
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| |
Collapse
|
35
|
Campuzano IDG, Larriba C, Bagal D, Schnier PD. Ion Mobility and Mass Spectrometry Measurements of the Humanized IgGk NIST Monoclonal Antibody. ACTA ACUST UNITED AC 2015. [DOI: 10.1021/bk-2015-1202.ch004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Iain D. G. Campuzano
- Molecular Structure and Characterization, Amgen Inc., Thousand Oaks, California 91320, United States
- Mechanical Engineering Department, Yale University, New Haven, Connecticut 06520, United States
- Molecular Structure and Characterization, Amgen Inc., South San Francisco, California 94080, United States
| | - Carlos Larriba
- Molecular Structure and Characterization, Amgen Inc., Thousand Oaks, California 91320, United States
- Mechanical Engineering Department, Yale University, New Haven, Connecticut 06520, United States
- Molecular Structure and Characterization, Amgen Inc., South San Francisco, California 94080, United States
| | - Dhanashri Bagal
- Molecular Structure and Characterization, Amgen Inc., Thousand Oaks, California 91320, United States
- Mechanical Engineering Department, Yale University, New Haven, Connecticut 06520, United States
- Molecular Structure and Characterization, Amgen Inc., South San Francisco, California 94080, United States
| | - Paul D. Schnier
- Molecular Structure and Characterization, Amgen Inc., Thousand Oaks, California 91320, United States
- Mechanical Engineering Department, Yale University, New Haven, Connecticut 06520, United States
- Molecular Structure and Characterization, Amgen Inc., South San Francisco, California 94080, United States
| |
Collapse
|
36
|
|
37
|
Huang RYC, Deyanova EG, Passmore D, Rangan V, Deshpande S, Tymiak AA, Chen G. Utility of Ion Mobility Mass Spectrometry for Drug-to-Antibody Ratio Measurements in Antibody-Drug Conjugates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1791-4. [PMID: 26122520 DOI: 10.1007/s13361-015-1203-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 05/21/2023]
Abstract
Antibody-drug conjugates (ADCs) are emerging modalities in the pharmaceutical industry. Characterization of ADC's drug-to-antibody ratio (DAR) becomes a key assessment because of its importance in ADC efficacy and safety. DAR characterization by conventional intact protein MS analysis, however, is challenging because of high heterogeneity of ADC samples. The analysis often requires protein deglycosylation, disulfide-bond reduction, or partial fragmentation. In this study, we illustrate the practical utility of ion mobility mass spectrometry (IM-MS) in a routine LC/MS workflow for DAR measurements. This strategy allows analyte "cleanup" in the gas phase, providing significant improvement of signal-to-noise ratios of ADC intact mass spectra for accurate DAR measurements. In addition, protein drift time analysis offers a new dimension in monitoring the changes of DAR in lot-to-lot analysis.
Collapse
Affiliation(s)
- Richard Y-C Huang
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA.
| | - Ekaterina G Deyanova
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - David Passmore
- Biologics Discovery California, Research and Development, Bristol-Myers Squibb Company, Redwood City, CA, USA
| | - Vangipuram Rangan
- Biologics Discovery California, Research and Development, Bristol-Myers Squibb Company, Redwood City, CA, USA
| | - Shrikant Deshpande
- Biologics Discovery California, Research and Development, Bristol-Myers Squibb Company, Redwood City, CA, USA
| | - Adrienne A Tymiak
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA.
| |
Collapse
|
38
|
Zhang Y, Rempel DL, Zhang H, Gross ML. An improved fast photochemical oxidation of proteins (FPOP) platform for protein therapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:526-9. [PMID: 25519854 PMCID: PMC5993200 DOI: 10.1007/s13361-014-1055-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 05/16/2023]
Abstract
Unlike small-molecule drugs, the size and dynamics of protein therapeutics challenge existing methods for assessing their high order structures (HOS). To extend fast photochemical oxidation of proteins (FPOP) to protein therapeutics, we modified its platform by introducing a mixing step prior to laser irradiation to minimize unwanted H(2)O(2)-induced oxidation. This improvement plus standardizing each step yield better reproducibility as determined by a fitting process whereby we used a non-FPOP spectrum as a template to report the unmodified level. We also tested different buffer systems for this modified FPOP platform with cytochrome c. The outcome is a standard oxidation profile that can be compared between different laboratories and regulatory agencies that wish to adopt FPOP for quality control purposes.
Collapse
|
39
|
Wiesner J, Resemann A, Evans C, Suckau D, Jabs W. Advanced mass spectrometry workflows for analyzing disulfide bonds in biologics. Expert Rev Proteomics 2015; 12:115-23. [DOI: 10.1586/14789450.2015.1018896] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Redman EA, Batz NG, Mellors JS, Ramsey JM. Integrated Microfluidic Capillary Electrophoresis-Electrospray Ionization Devices with Online MS Detection for the Separation and Characterization of Intact Monoclonal Antibody Variants. Anal Chem 2015; 87:2264-72. [DOI: 10.1021/ac503964j] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Erin A. Redman
- Department of Chemistry, ‡Department of Applied
Physical Sciences, §Department of Biomedical
Engineering, ∥Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Nicholas G. Batz
- Department of Chemistry, ‡Department of Applied
Physical Sciences, §Department of Biomedical
Engineering, ∥Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - J. Scott Mellors
- Department of Chemistry, ‡Department of Applied
Physical Sciences, §Department of Biomedical
Engineering, ∥Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - J. Michael Ramsey
- Department of Chemistry, ‡Department of Applied
Physical Sciences, §Department of Biomedical
Engineering, ∥Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
41
|
Clarke DJ, Campopiano DJ. Desalting large protein complexes during native electrospray mass spectrometry by addition of amino acids to the working solution. Analyst 2015; 140:2679-86. [DOI: 10.1039/c4an02334j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A simple method for mitigating the adverse effects of salt adduction during native protein mass spectrometry by addition of amino-acids.
Collapse
Affiliation(s)
- David J. Clarke
- School of Chemistry
- University of Edinburgh
- Joseph Black Building
- Edinburgh
- UK
| | | |
Collapse
|
42
|
Pacholarz KJ, Porrini M, Garlish RA, Burnley RJ, Taylor RJ, Henry AJ, Barran PE. Dynamics of Intact Immunoglobulin G Explored by Drift-Tube Ion-Mobility Mass Spectrometry and Molecular Modeling. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402863] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Pacholarz KJ, Porrini M, Garlish RA, Burnley RJ, Taylor RJ, Henry AJ, Barran PE. Dynamics of Intact Immunoglobulin G Explored by Drift-Tube Ion-Mobility Mass Spectrometry and Molecular Modeling. Angew Chem Int Ed Engl 2014; 53:7765-9. [DOI: 10.1002/anie.201402863] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/07/2014] [Indexed: 01/30/2023]
|
44
|
Probing the paramyxovirus fusion (F) protein-refolding event from pre- to postfusion by oxidative footprinting. Proc Natl Acad Sci U S A 2014; 111:E2596-605. [PMID: 24927585 DOI: 10.1073/pnas.1408983111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To infect a cell, the Paramyxoviridae family of enveloped viruses relies on the coordinated action of a receptor-binding protein (variably HN, H, or G) and a more conserved metastable fusion protein (F) to effect membrane fusion and allow genomic transfer. Upon receptor binding, HN (H or G) triggers F to undergo an extensive refolding event to form a stable postfusion state. Little is known about the intermediate states of the F refolding process. Here, a soluble form of parainfluenza virus 5 F was triggered to refold using temperature and was footprinted along the refolding pathway using fast photochemical oxidation of proteins (FPOP). Localization of the oxidative label to solvent-exposed side chains was determined by high-resolution MS/MS. Globally, metastable prefusion F is oxidized more extensively than postfusion F, indicating that the prefusion state is more exposed to solvent and is more flexible. Among the first peptides to be oxidatively labeled after temperature-induced triggering is the hydrophobic fusion peptide. A comparison of peptide oxidation levels with the values of solvent-accessible surface area calculated from molecular dynamics simulations of available structural data reveals regions of the F protein that lie at the heart of its prefusion metastability. The strong correlation between the regions of F that experience greater-than-expected oxidative labeling and epitopes for neutralizing antibodies suggests that FPOP has a role in guiding the development of targeted therapeutics. Analysis of the residue levels of labeled F intermediates provides detailed insights into the mechanics of this critical refolding event.
Collapse
|
45
|
Nicolardi S, Deelder AM, Palmblad M, van der Burgt YEM. Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2014; 86:5376-82. [PMID: 24780057 DOI: 10.1021/ac500383c] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Structural confirmation and quality control of recombinant monoclonal antibodies (mAbs) by top-down mass spectrometry is still challenging due to the size of the proteins, disulfide content, and post-translational modifications such as glycosylation. In this study we have applied electrochemistry (EC) to overcome disulfide bridge complexity in top-down analysis of mAbs. To this end, an electrochemical cell was coupled directly to an electrospray ionization (ESI) source and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS) equipped with a 15 T magnet. By performing online EC-assisted reduction of interchain disulfide bonds in an intact mAb, the released light chains could be selected for tandem mass spectrometry (MS/MS) analysis without interference from heavy-chain fragments. Moreover, the acquisition of full MS scans under denaturing conditions allowed profiling of all abundant mAb glycoforms. Ultrahigh-resolution FTICR-MS measurements provided fully resolved isotopic distributions of intact mAb and enabled the identification of the most abundant adducts and other interfering species. Furthermore, it was found that reduction of interchain disulfide bonds occurs in the ESI source dependent on capillary voltage and solvent composition. This phenomenon was systematically evaluated and compared with the results obtained from reduction in the electrochemical cell.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
46
|
Lermyte F, Konijnenberg A, Williams JP, Brown JM, Valkenborg D, Sobott F. ETD allows for native surface mapping of a 150 kDa noncovalent complex on a commercial Q-TWIMS-TOF instrument. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:343-50. [PMID: 24408179 DOI: 10.1007/s13361-013-0798-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 05/11/2023]
Abstract
Top-down approaches for the characterization of intact proteins and macromolecular complexes are becoming increasingly popular, since they potentially simplify and speed up the assignment process. Here we demonstrate how, on a commercially available Q-TWIMS-TOF instrument, we performed top-down ETD of the native form of tetrameric alcohol dehydrogenase. We achieved good sequence coverage throughout the first 81 N-terminal amino acids of ADH, with the exception of a loop located on the inside of the protein. This is in agreement with the exposed parts of the natively folded protein according to the crystal structure. Choosing the right precursor charge state and applying supplemental activation were found to be key to obtaining a high ETD fragmentation efficiency. Finally, we briefly discuss opportunities to further increase the performance of ETD based on our results.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | | | | | | | | | | |
Collapse
|
47
|
Konermann L, Vahidi S, Sowole MA. Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules. Anal Chem 2013; 86:213-32. [DOI: 10.1021/ac4039306] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Modupeola A. Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
48
|
Zhang H, Cui W, Gross ML. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett 2013; 588:308-17. [PMID: 24291257 DOI: 10.1016/j.febslet.2013.11.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Monoclonal antibodies (mAbs) are powerful therapeutics, and their characterization has drawn considerable attention and urgency. Unlike small-molecule drugs (150-600 Da) that have rigid structures, mAbs (∼150 kDa) are engineered proteins that undergo complicated folding and can exist in a number of low-energy structures, posing a challenge for traditional methods in structural biology. Mass spectrometry (MS)-based biophysical characterization approaches can provide structural information, bringing high sensitivity, fast turnaround, and small sample consumption. This review outlines various MS-based strategies for protein biophysical characterization and then reviews how these strategies provide structural information of mAbs at the protein level (intact or top-down approaches), peptide, and residue level (bottom-up approaches), affording information on higher order structure, aggregation, and the nature of antibody complexes.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Weidong Cui
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
49
|
|