1
|
Todorov J, Calhoun SE, McCarty GS, Sombers LA. Electrochemical Quantification of Enkephalin Peptides Using Fast-Scan Cyclic Voltammetry. Anal Chem 2024. [PMID: 39138126 DOI: 10.1021/acs.analchem.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Endogenous opioid neuropeptides serve as important chemical signaling molecules in both the central and peripheral nervous systems, but there are few analytical tools for directly monitoring these molecules in situ. The opioid peptides share the amino acid motif, Tyr-Gly-Gly-Phe-, at the N-terminus. Met-enkephalin is a small opioid peptide comprised of only five amino acids with methionine (Met) incorporated at the C-terminus. Tyrosine (Tyr) and Met are electroactive, and their distinct electrochemical signatures can be utilized for quantitative molecular monitoring. This work encompasses a thorough voltammetric characterization of Tyr and Met redox chemistry as individual amino acids and when incorporated into small peptide fragments containing the shared Tyr-Gly-Gly-Phe- motif. NMR spectroscopy was used to determine the structure and conformation at near-physiological conditions. Voltammetric data demonstrate how the peak oxidation potential and the rate of electron transfer are dependent on the local chemical environment. Both the proximity of the electroactive residue to the C- or N-terminus and the hydrophobicity of the additional nonelectroactive amino acids profoundly affect sensitivity. Finally, the work uses the electrochemical signal for individual amino acids in a "training set", with a combination of principal component analysis and least-squares regression to accurately predict the voltammetric signal for short peptides comprising different combinations of those amino acids. Overall, this study demonstrates how fast-scan cyclic voltammetry can be utilized to discriminate between peptides with small differences in the chemical structure, thus establishing a framework for reliable quantification of small peptides in a complex signal, broadly speaking.
Collapse
|
2
|
Villarini NA, Robins N, Ou Y. Fabrication and Optimization of a Molecularly Imprinted Carbon Fiber Microelectrode for Selective Detection of Met-enkephalin Using Fast-Scan Cyclic Voltammetry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29728-29736. [PMID: 38804619 DOI: 10.1021/acsami.4c03093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Methionine-enkephalin (Met-Enk) is an endogenous opioid peptide that is involved in various physiological processes including memory. A technological gap in the understanding of Met-Enk's role in memory is the lack of rapid measurement tools to selectively quantify Met-Enk concentrations in situ. Here, we integrate molecularly imprinted polymers (MIPs) with carbon fiber microelectrodes (CFMs) to selectively detect Met-Enk by using fast-scan cyclic voltammetry (FSCV). We report two MIP conditions that yield 2-fold and 5-fold higher selectivity toward Met-Enk than the tyrosine-containing hexapeptide fragment angiotensin II (3-8). We demonstrate that MIP technology can be combined with FSCV at CFMs to create rapid and selective sensors for Met-Enk. This technology is a promising platform for creating selective sensors for other peptides and biomarkers.
Collapse
Affiliation(s)
- Nicole A Villarini
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Nathan Robins
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Yangguang Ou
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| |
Collapse
|
3
|
Nestor L, De Bundel D, Vander Heyden Y, Smolders I, Van Eeckhaut A. Unravelling the brain metabolome: A review of liquid chromatography - mass spectrometry strategies for extracellular brain metabolomics. J Chromatogr A 2023; 1712:464479. [PMID: 37952387 DOI: 10.1016/j.chroma.2023.464479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
The analysis of the brain extracellular metabolome is of interest for numerous subdomains within neuroscience. Not only does it provide information about normal physiological functions, it is even more of interest for biomarker discovery and target discovery in disease. The extracellular analysis of the brain is particularly interesting as it provides information about the release of mediators in the brain extracellular fluid to look at cellular signaling and metabolic pathways through the release, diffusion and re-uptake of neurochemicals. In vivo samples are obtained through microdialysis, cerebral open-flow microperfusion or solid-phase microextraction. The analytes of potential interest are typically low in concentration and can have a wide range of physicochemical properties. Liquid chromatography coupled to mass spectrometry has proven its usefulness in brain metabolomics. It allows sensitive and specific analysis of low sample volumes, obtained through different approaches. Several strategies for the analysis of the extracellular fluid have been proposed. The most widely used approaches apply sample derivatization, specific stationary phases and/or hydrophilic interaction liquid chromatography. Miniaturization of these methods allows an even higher sensitivity. The development of chiral metabolomics is indispensable, as it allows to compare the enantiomeric ratio of compounds and provides even more challenges. Some limitations continue to exist for the previously developed methods and the development of new, more sensitive methods remains needed. This review provides an overview of the methods developed for sampling and liquid chromatography-mass spectrometry analysis of the extracellular metabolome.
Collapse
Affiliation(s)
- Liam Nestor
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dimitri De Bundel
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ilse Smolders
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann Van Eeckhaut
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
4
|
González-Vergara A, Benavides B, Julio-Pieper M. Mapping and quantifying neuropeptides in the enteric nervous system. J Neurosci Methods 2023; 393:109882. [PMID: 37172914 DOI: 10.1016/j.jneumeth.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Neuropeptides are a highly diverse group of signaling molecules found in the central nervous system (CNS) and peripheral organs, including the enteric nervous system (ENS). Increasing efforts have been focused on dissecting the role of neuropeptides in both neural- and non-neural-related diseases, as well as their potential therapeutic value. In parallel, accurate knowledge on their source of production and pleiotropic functions is still needed to fully understand their implications in biological processes. This review will focus on the analytical challenges involved in studying neuropeptides, particularly in the ENS, a tissue where their abundance is low, together with opportunities for further technical development.
Collapse
Affiliation(s)
- Alex González-Vergara
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Benjamín Benavides
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcela Julio-Pieper
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
5
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
6
|
Estave PM, Sun H, Peck EG, Holleran KM, Chen R, Jones SR. Cocaine self-administration augments kappa opioid receptor system-mediated inhibition of dopamine activity in the mesolimbic dopamine system. IBRO Neurosci Rep 2023; 14:129-137. [PMID: 36748012 PMCID: PMC9898071 DOI: 10.1016/j.ibneur.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Prior studies examining the effects of cocaine on the dynorphin/kappa opioid receptor (Dyn/KOR) system primarily focus on non-contingent cocaine exposure, but the effects of self-administration, which more closely reflects human drug-taking behaviors, are not well studied. In this study we characterized the effects of escalated intravenous cocaine self-administration on the functional state of the Dyn/KOR system and its interaction with mesolimbic dopamine signaling. Rats self-administered cocaine in an extended access, limited intake cocaine procedure, in which animals obtained 40 infusions per day (1.5 mg/kg/inf) for 5 consecutive days to ensure comparable consumption levels. Following single day tests of cue reactivity and progressive ratio responding, quantitative real-time polymerase chain reaction was used to measure levels of Oprk and Pdyn transcripts in the ventral tegmental area and nucleus accumbens. Additionally, after self-administration, ex vivo fast-scan cyclic voltammetry in the NAc was used to examine the ability of the KOR agonist U50,488 to inhibit dopamine release. We found that KOR-induced inhibition of dopamine release was enhanced in animals that self-administered cocaine compared to controls, suggesting upregulated Dyn/KOR activity after cocaine self-administration. Furthermore, expression levels of Pdyn in the nucleus accumbens and ventral tegmental area, and Oprk in the nucleus accumbens, were elevated in cocaine animals compared to controls. Additionally, Pdyn expression in the nucleus accumbens was negatively correlated with progressive ratio breakpoints, a measure of motivation to self-administer cocaine. Overall, these data suggest that cocaine self-administration elevates KOR/Dyn system activity in the mesolimbic dopamine pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara R. Jones
- Correspondence to: Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
7
|
Custers ML, Nestor L, De Bundel D, Van Eeckhaut A, Smolders I. Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid. Pharmaceutics 2022; 14:pharmaceutics14051051. [PMID: 35631637 PMCID: PMC9146401 DOI: 10.3390/pharmaceutics14051051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Gaining insights into the pharmacokinetic and pharmacodynamic properties of lead compounds is crucial during drug development processes. When it comes to the treatment of brain diseases, collecting information at the site of action is challenging. There are only a few techniques available that allow for the direct sampling from the cerebral interstitial space. This review concerns the applicability of microdialysis and other approaches, such as cerebral open flow microperfusion and electrochemical biosensors, to monitor macromolecules (neuropeptides, proteins, …) in the brain. Microdialysis and cerebral open flow microperfusion can also be used to locally apply molecules at the same time at the site of sampling. Innovations in the field are discussed, together with the pitfalls. Moreover, the ‘nuts and bolts’ of the techniques and the current research gaps are addressed. The implementation of these techniques could help to improve drug development of brain-targeted drugs.
Collapse
|
8
|
Su Y, Bian S, Sawan M. Real-time in vivo detection techniques for neurotransmitters: a review. Analyst 2020; 145:6193-6210. [DOI: 10.1039/d0an01175d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional synapses in the central nervous system depend on a chemical signal exchange process that involves neurotransmitter delivery between neurons and receptor cells in the neuro system.
Collapse
Affiliation(s)
- Yi Su
- Zhejiang university
- Hangzhou, 310058
- China
- CENBRAIN Lab
- School of Engineering
| | - Sumin Bian
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| | - Mohamad Sawan
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| |
Collapse
|
9
|
Calhoun SE, Meunier CJ, Lee CA, McCarty GS, Sombers LA. Characterization of a Multiple-Scan-Rate Voltammetric Waveform for Real-Time Detection of Met-Enkephalin. ACS Chem Neurosci 2019; 10:2022-2032. [PMID: 30571911 PMCID: PMC6473485 DOI: 10.1021/acschemneuro.8b00351] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Opioid peptides are critically involved in a variety of physiological functions necessary for adaptation and survival, and as such, understanding the precise actions of endogenous opioid peptides will aid in identification of potential therapeutic strategies to treat a variety of disorders. However, few analytical tools are currently available that offer both the sensitivity and spatial resolution required to monitor peptidergic concentration fluctuations in situ on a time scale commensurate with that of neuronal communication. Our group has developed a multiple-scan-rate waveform to enable real-time voltammetric detection of tyrosine containing neuropeptides. Herein, we have evaluated the waveform parameters to increase sensitivity to methionine-enkephalin (M-ENK), an endogenous opioid neuropeptide implicated in pain, stress, and reward circuits. M-ENK dynamics were monitored in adrenal gland tissue, as well as in the dorsal striatum of anesthetized and freely behaving animals. The data reveal cofluctuations of catecholamine and M-ENK in both locations and provide measurements of M-ENK dynamics in the brain with subsecond temporal resolution. Importantly, this work also demonstrates how voltammetric waveforms can be customized to enhance detection of specific target analytes, broadly speaking.
Collapse
Affiliation(s)
- S. E. Calhoun
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - C. J. Meunier
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - C. A. Lee
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - G. S. McCarty
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - L. A. Sombers
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
Luna-Munguia H, Zestos AG, Gliske SV, Kennedy RT, Stacey WC. Chemical biomarkers of epileptogenesis and ictogenesis in experimental epilepsy. Neurobiol Dis 2018; 121:177-186. [PMID: 30304705 DOI: 10.1016/j.nbd.2018.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
Epilepsy produces chronic chemical changes induced by altered cellular structures, and acute ones produced by conditions leading into individual seizures. Here, we aim to quantify 24 molecules simultaneously at baseline and during periods of lowered seizure threshold in rats. Using serial hippocampal microdialysis collections starting two weeks after the pilocarpine-induced status epilepticus, we evaluated how this chronic epilepsy model affects molecule levels and their interactions. Then, we quantified the changes occurring when the brain moves into a pro-seizure state using a novel model of physiological ictogenesis. Compared with controls, pilocarpine animals had significantly decreased baseline levels of adenosine, homovanillic acid, and serotonin, but significantly increased levels of choline, glutamate, phenylalanine, and tyrosine. Step-wise linear regression identified that choline, homovanillic acid, adenosine, and serotonin are the most important features to characterize the difference in the extracellular milieu between pilocarpine and control animals. When increasing the hippocampal seizure risk, the concentrations of normetanephrine, serine, aspartate, and 5-hydroxyindoleacetic acid were the most prominent; however, there were no specific, consistent changes prior to individual seizures.
Collapse
Affiliation(s)
- Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro, Mexico
| | - Alexander G Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington D.C. 20016, USA
| | - Stephen V Gliske
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William C Stacey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Wilson RE, Jaquins-Gerstl A, Weber SG. On-Column Dimethylation with Capillary Liquid Chromatography-Tandem Mass Spectrometry for Online Determination of Neuropeptides in Rat Brain Microdialysate. Anal Chem 2018; 90:4561-4568. [PMID: 29504751 PMCID: PMC6236683 DOI: 10.1021/acs.analchem.7b04965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have developed a method for online collection and quantitation of neuropeptides in rat brain microdialysates using on-column dimethylation with capillary liquid chromatography-tandem mass spectrometry (cLC-MS2). This method addresses a number of the challenges of quantifying neuropeptides with cLC-MS. It is also a completely automated and robust method for the preparation of stable isotope labeled-peptide internal standards to correct for matrix effects and thus ensure accurate quantitation. Originally developed for tissue-derived proteomics samples ( Raijmakers et al. Mol. Cell. Proteomics 2008 , 7 , 1755 - 1762 ), the efficacy of on-column dimethylation for native peptides in microdialysate has not been demonstrated until now. We have modified the process to make it more amenable to the time scale of microdialysis sampling and to reduce the accumulation of nonvolatile contaminants on the column and, thus, loss of sensitivity. By decreasing labeling time, we have a temporal resolution of 1 h from sample loading to elution and our peptide detection limits are in the low pM range for 5 μL injections of microdialysate. We have demonstrated the effectiveness of this method by quantifying basal and potassium stimulated concentrations of the neuropeptides leu-enkephalin and met-enkephalin in the rat hippocampus. To our knowledge, this is the first report of quantitation of these peptides in the hippocampus using MS.
Collapse
Affiliation(s)
- Rachael E Wilson
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Stephen G Weber
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
12
|
Karkhanis A, Holleran KM, Jones SR. Dynorphin/Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:53-88. [PMID: 29056156 DOI: 10.1016/bs.irn.2017.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dynorphin/kappa opioid receptor (KOR) system is implicated in the "dark side" of addiction, in which stress exacerbates maladaptive responses to drug and alcohol exposure. For example, acute stress and acute ethanol exposure result in an elevation in dynorphin, the KOR endogenous ligand. Activation of KORs results in modulation of several neurotransmitters; however, this chapter will focus on its regulatory effects on dopamine in mesolimbic areas. Specifically, KOR activation has an inhibitory effect on dopamine release, thereby influencing reward processing. Repeated stimulation of KORs, for example, via chronic drug and/or stress exposure, results in increased function of the dynorphin/KOR system. This augmentation in KOR function shifts the homeostatic balance in favor of an overall reduction in dopamine signaling via either by reducing dopamine release or by increasing dopamine transporter function. This chapter examines the effects of chronic ethanol exposure on KOR function and the downstream effects on dopamine transmission. Additionally, the impact of chronic cocaine exposure and its effects on KOR function will be explored. Further, KORs may also be involved in driving excessive consumption of food, contributing to the risk of developing obesity. While some studies have shown that KOR agonists reduce drug intake, other studies have shown that antagonists reduce addiction-like behaviors, demonstrating therapeutic potential. For example, KOR inhibition reduces ethanol intake in dependent animals, motivation to self-administer cocaine in chronic stress-exposed animals, and food consumption in obese animals. This chapter will delve into the mechanisms by which modulation of the dynorphin/KOR system may be therapeutic.
Collapse
Affiliation(s)
| | | | - Sara R Jones
- Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
13
|
Zestos AG, Kennedy RT. Microdialysis Coupled with LC-MS/MS for In Vivo Neurochemical Monitoring. AAPS JOURNAL 2017; 19:1284-1293. [PMID: 28660399 DOI: 10.1208/s12248-017-0114-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
Abstract
Microdialysis is a powerful sampling technique used to monitor small molecules in vivo. Despite the many applications of microdialysis sampling, it is limited by the method of analyzing the resulting samples. An emerging technique for analysis of microdialysis samples is liquid chromatography-tandem mass spectrometry (LC-MS/MS). This technique is highly versatile, allowing multiplexed analysis of neurotransmitters, metabolites, and neuropeptides. Using LC-MS/MS for polar neurotransmitters is hampered by weak retention reverse phase LC columns. Several derivatization reagents have been utilized to enhance separation and resolution of neurochemicals in dialysate samples including benzoyl chloride (BzCl), dansyl chloride, formaldehyde, ethylchloroformate, and propionic anhydride. BzCl reacts with amine and phenol groups so that many neurotransmitters can be labeled. Besides improving separation on reverse phase columns, this reagent also increases sensitivity. It is available in a heavy form so that it can be used to make stable-isotope labeled internal standard for improved quantification. Using BzCl with LC-MS/MS has allowed for measuring as many as 70 neurochemicals in a single assay. With slightly different conditions, LC-MS/MS has also been used for monitoring endocannabinoids. LC-MS/MS is also useful for neuropeptide assay because it allows for highly sensitive, sequence specific measurement of most peptides. These advances have allowed for multiplexed neurotransmitter measurements in behavioral, circuit analysis, and drug effect studies.
Collapse
Affiliation(s)
- Alexander G Zestos
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan, 48109-1055, USA.,Department of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, Michigan, 48109-1055, USA.,Department of Chemistry, American University, 4400 Massachusetts Avenue, NW, Washington, District of Columbia, 20016, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan, 48109-1055, USA. .,Department of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, Michigan, 48109-1055, USA.
| |
Collapse
|
14
|
Groskreutz SR, Weber SG. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment. J Chromatogr A 2016; 1474:95-108. [PMID: 27836226 PMCID: PMC5115952 DOI: 10.1016/j.chroma.2016.10.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022]
Abstract
In this work we characterize the development of a method to enhance temperature-assisted on-column solute focusing (TASF) called two-stage TASF. A new instrument was built to implement two-stage TASF consisting of a linear array of three independent, electronically controlled Peltier devices (thermoelectric coolers, TECs). Samples are loaded onto the chromatographic column with the first two TECs, TEC A and TEC B, cold. In the two-stage TASF approach TECs A and B are cooled during injection. TEC A is heated following sample loading. At some time following TEC A's temperature rise, TEC B's temperature is increased from the focusing temperature to a temperature matching that of TEC A. Injection bands are focused twice on-column, first on the initial TEC, e.g. single-stage TASF, then refocused on the second, cold TEC. Our goal is to understand the two-stage TASF approach in detail. We have developed a simple yet powerful digital simulation procedure to model the effect of changing temperature in the two focusing zones on retention, band shape and band spreading. The simulation can predict experimental chromatograms resulting from spatial and temporal temperature programs in combination with isocratic and solvent gradient elution. To assess the two-stage TASF method and the accuracy of the simulation well characterized solutes are needed. Thus, retention factors were measured at six temperatures (25-75°C) at each of twelve mobile phases compositions (0.05-0.60 acetonitrile/water) for homologs of n-alkyl hydroxylbenzoate esters and n-alkyl p-hydroxyphenones. Simulations accurately reflect experimental results in showing that the two-stage approach improves separation quality. For example, two-stage TASF increased sensitivity for a low retention solute by a factor of 2.2 relative to single-stage TASF and 8.8 relative to isothermal conditions using isocratic elution. Gradient elution results for two-stage TASF were more encouraging. Application of two-stage TASF increased peak height for the least retained solute in the test mixture by a factor of 3.2 relative to single-stage TASF and 22.3 compared to isothermal conditions for an injection four-times the column volume. TASF improved resolution and increased peak capacity; for a 12-min separation peak capacity increased from 75 under isothermal conditions to 146 using single-stage TASF, and 185 for two-stage TASF.
Collapse
Affiliation(s)
- Stephen R Groskreutz
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States
| | - Stephen G Weber
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States.
| |
Collapse
|
15
|
Challenges for the in vivo quantification of brain neuropeptides using microdialysis sampling and LC-MS. Bioanalysis 2016; 8:1965-85. [PMID: 27554986 DOI: 10.4155/bio-2016-0119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In recent years, neuropeptides and their receptors have received an increased interest in neuropharmacological research. Although these molecules are considered relatively small compared with proteins, their in vivo quantification using microdialysis is more challenging than for small molecules. Low microdialysis recoveries, aspecific adsorption and the presence of various multiply charged precursor ions during ESI-MS/MS detection hampers the in vivo quantification of these low abundant biomolecules. Every step in the workflow, from sampling until analysis, has to be optimized to enable the sensitive analysis of these compounds in microdialysates.
Collapse
|
16
|
Wilson RE, Groskreutz SR, Weber SG. Improving the Sensitivity, Resolution, and Peak Capacity of Gradient Elution in Capillary Liquid Chromatography with Large-Volume Injections by Using Temperature-Assisted On-Column Solute Focusing. Anal Chem 2016; 88:5112-21. [PMID: 27033165 PMCID: PMC4940048 DOI: 10.1021/acs.analchem.5b04793] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Capillary HPLC (cLC) with gradient elution is the separation method of choice for the fields of proteomics and metabolomics. This is due to the complementary nature of cLC flow rates and electrospray or nanospray ionization mass spectrometry (ESI-MS). The small column diameters result in good mass sensitivity. Good concentration sensitivity is also possible by injection of relatively large volumes of solution and relying on solvent-based solute focusing. However, if the injection volume is too large or solutes are poorly retained during injection, volume overload occurs which leads to altered peak shapes, decreased sensitivity, and lower peak capacity. Solutes that elute early even with the use of a solvent gradient are especially vulnerable to this problem. In this paper, we describe a simple, automated instrumental method, temperature-assisted on-column solute focusing (TASF), that is capable of focusing large volume injections of small molecules and peptides under gradient conditions. By injecting a large sample volume while cooling a short segment of the column inlet at subambient temperatures, solutes are concentrated into narrow bands at the head of the column. Rapidly raising the temperature of this segment of the column leads to separations with less peak broadening in comparison to solvent focusing alone. For large volume injections of both mixtures of small molecules and a bovine serum albumin tryptic digest, TASF improved the peak shape and resolution in chromatograms. TASF showed the most dramatic improvements with shallow gradients, which is particularly useful for biological applications. Results demonstrate the ability of TASF with gradient elution to improve the sensitivity, resolution, and peak capacity of volume overloaded samples beyond gradient compression alone. Additionally, we have developed and validated a double extrapolation method for predicting retention factors at extremes of temperature and mobile phase composition. Using this method, the effects of TASF can be predicted, allowing determination of the usefulness of this technique for a particular application.
Collapse
Affiliation(s)
- Rachael E. Wilson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R. Groskreutz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
17
|
Sun S, Buer BC, Marsh ENG, Kennedy RT. A Label-free Sirtuin 1 Assay based on Droplet-Electrospray Ionization Mass Spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 8:3458-3465. [PMID: 27482292 PMCID: PMC4962873 DOI: 10.1039/c6ay00698a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sirtuin 1(SIRT1) is a NAD+-dependent deacetylase which has been implicated in age-related diseases such as cancer, Alzheimer's disease, type 2 diabetes, and vascular diseases. SIRT1 modulators are of interest for their potential therapeutic use and potential as chemical probes to study the role of SIRT1. Fluorescence-based assays used to identify SIRT1 activators have been shown to have artifacts related to the fluorophore substrates used in the assays. Such problems highlight the potential utility of a label-free high throughput screening (HTS) strategy. In this work, we describe a label-free SIRT1 assay suitable for HTS based on segmented flow-electrospray ionization-mass spectrometry (ESI-MS). In the assay, 0.5 μM SIRT1 was incubated with 20 μM acetylated 21-amino acid peptide, which acts as substrate for the protein. A stable-isotope labeled product peptide was added to the assay mixture as an internal standard after reaction quenching. The resulting samples are formatted into 100 nL droplets segmented by perfluorodecalin and then infused at 0.8 samples/s into an ESI-MS. To enable direct ESI-MS analysis, 11 μM SIRT1 was dialyzed into a 200 μM ammonium formate (pH 8.0) buffer prior to use in the assay. This buffer was demonstrated to minimally affect enzyme kinetics and yet be compatible with ESI-MS. The assay conditions were optimized through enzyme kinetic study, and tested by screening an 80-compound library. The assay Z-factor was 0.7. Four inhibitors and no activators were detected from the library.
Collapse
Affiliation(s)
- Shuwen Sun
- University of Michigan, Department of Chemistry, Ann Arbor, Michigan, 48109, United States
| | - Benjamin C. Buer
- University of Michigan, Department of Chemistry, Ann Arbor, Michigan, 48109, United States
| | - E. Neil G. Marsh
- University of Michigan, Department of Chemistry, Ann Arbor, Michigan, 48109, United States
- University of Michigan, Department of Biological Chemistry, Ann Arbor, Michigan, 48109, United States
| | - Robert T. Kennedy
- University of Michigan, Department of Chemistry, Ann Arbor, Michigan, 48109, United States
- University of Michigan, Department of Pharmacology, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
18
|
Jiang S, Liang Z, Hao L, Li L. Investigation of signaling molecules and metabolites found in crustacean hemolymph via in vivo microdialysis using a multifaceted mass spectrometric platform. Electrophoresis 2016; 37:1031-8. [PMID: 26691021 DOI: 10.1002/elps.201500497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022]
Abstract
Neurotransmitters (NTs) are endogenous signaling molecules that play an important role in regulating various physiological processes in animals. Detection of these chemical messengers is often challenging due to their low concentration levels and fast degradation rate in vitro. In order to address these challenges, herein we employed in vivo microdialysis (MD) sampling to study NTs in the crustacean model Cancer borealis. Multifaceted separation tools, such as CE and ion mobility mass spectrometry (MS) were utilized in this work. Small molecules were separated by different mechanisms and detected by MALDI mass spectrometric imaging (MALDI-MSI). Performance of this separation-based MSI platform was also compared to LC-ESI-MS. By utilizing both MALDI and ESI-MS, a total of 208 small molecule NTs and metabolites were identified, of which 39 were identified as signaling molecules secreted in vivo. In addition, the inherent property of sub microscale sample consumption using CE enables shorter time of MD sample collection. Temporal resolution of MD was improved by approximately tenfold compared to LC-ESI-MS, indicating the significant advantage of applying separation-assisted MALDI-MS imaging platform.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Zhidan Liang
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Ling Hao
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI, USA.,Department of Chemistry, University of Wisconsin, Madison, WI, USA.,School of Life Sciences, Tianjin University, Nankai District, Tianjin, P. R. China
| |
Collapse
|
19
|
Weinshenker D, Holmes PV. Regulation of neurological and neuropsychiatric phenotypes by locus coeruleus-derived galanin. Brain Res 2015; 1641:320-37. [PMID: 26607256 DOI: 10.1016/j.brainres.2015.11.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/28/2022]
Abstract
Decades of research confirm that noradrenergic locus coeruleus (LC) neurons are essential for arousal, attention, motivation, and stress responses. While most studies on LC transmission focused unsurprisingly on norepinephrine (NE), adrenergic signaling cannot account for all the consequences of LC activation. Galanin coexists with NE in the vast majority of LC neurons, yet the precise function of this neuropeptide has proved to be surprisingly elusive given our solid understanding of the LC system. To elucidate the contribution of galanin to LC physiology, here we briefly summarize the nature of stimuli that drive LC activity from a neuroanatomical perspective. We go on to describe the LC pathways in which galanin most likely exerts its effects on behavior, with a focus on addiction, depression, epilepsy, stress, and Alzheimer׳s disease. We propose a model in which LC-derived galanin has two distinct functions: as a neuromodulator, primarily acting via the galanin 1 receptor (GAL1), and as a trophic factor, primarily acting via galanin receptor 2 (GAL2). Finally, we discuss how the recent advances in neuropeptide detection, optogenetics and chemical genetics, and galanin receptor pharmacology can be harnessed to identify the roles of LC-derived galanin definitively. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA 30322, USA.
| | - Philip V Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute and Psychology Department, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
20
|
Li H, Li D. Preparation of a pipette tip-based molecularly imprinted solid-phase microextraction monolith by epitope approach and its application for determination of enkephalins in human cerebrospinal fluid. J Pharm Biomed Anal 2015; 115:330-8. [DOI: 10.1016/j.jpba.2015.07.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/25/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022]
|
21
|
Zhou Y, Wong JM, Mabrouk OS, Kennedy RT. Reducing adsorption to improve recovery and in vivo detection of neuropeptides by microdialysis with LC-MS. Anal Chem 2015; 87:9802-9. [PMID: 26351736 PMCID: PMC5118035 DOI: 10.1021/acs.analchem.5b02086] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropeptides are an important class of neurochemicals; however, measuring their concentration in vivo by using microdialysis sampling is challenging due to their low concentration and the small samples generated. Capillary liquid chromatography with mass spectrometry (cLC-MS) can yield attomole limits of detection (LOD); however, low recovery and loss of sample to adsorptive surfaces can still hinder detection of neuropeptides. We have evaluated recovery during sampling and transfer to the cLC column for a selection of 10 neuropeptides. Adding acetonitrile to sample eliminated carryover and improved LOD by 1.4- to 60-fold. The amount of acetonitrile required was found to have an optimal value that correlated with peptide molecular weight and retention time on a reversed phase LC column. Treating AN69 dialysis membrane, which bears negative charge due to incorporated sulfonate groups, with polyethylenimine (PEI) improved recovery by 1.2- to 80-fold. The effect appeared to be due to reducing electrostatic interaction between peptides and the microdialysis probe because modification increased recovery only for peptides that carried net positive charge. The combined effects improved LOD of the entire method by 1.3- to 800-fold for the different peptides. We conclude that peptides with both charged and hydrophobic regions require combined strategies to prevent adsorption and yield the best possible detection. The method was demonstrated by determining orexin A, orexin B, and a novel isoform of rat β-endorphin in the arcuate nucleus. Dialysate concentrations were below 10 pM for these peptides. A standard addition study on dialysates revealed that while some peptides can be accurately quantified, some are affected by the matrix.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Jenny-Marie Wong
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Omar S. Mabrouk
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| |
Collapse
|
22
|
Buchberger A, Yu Q, Li L. Advances in Mass Spectrometric Tools for Probing Neuropeptides. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:485-509. [PMID: 26070718 PMCID: PMC6314846 DOI: 10.1146/annurev-anchem-071114-040210] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Neuropeptides are important mediators in the functionality of the brain and other neurological organs. Because neuropeptides exist in a wide range of concentrations, appropriate characterization methods are needed to provide dynamic, chemical, and spatial information. Mass spectrometry and compatible tools have been a popular choice in analyzing neuropeptides. There have been several advances and challenges, both of which are the focus of this review. Discussions range from sample collection to bioinformatic tools, although avenues such as quantitation and imaging are included. Further development of the presented methods for neuropeptidomic mass spectrometric analysis is inevitable, which will lead to a further understanding of the complex interplay of neuropeptides and other signaling molecules in the nervous system.
Collapse
Affiliation(s)
- Amanda Buchberger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| |
Collapse
|
23
|
Ortiz-Villanueva E, Benavente F, Giménez E, Yilmaz F, Sanz-Nebot V. Preparation and evaluation of open tubular C18-silica monolithic microcartridges for preconcentration of peptides by on-line solid phase extraction capillary electrophoresis. Anal Chim Acta 2014; 846:51-9. [DOI: 10.1016/j.aca.2014.06.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/28/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
|
24
|
Schmidt AC, Dunaway LE, Roberts JG, McCarty GS, Sombers LA. Multiple Scan Rate Voltammetry for Selective Quantification of Real-Time Enkephalin Dynamics. Anal Chem 2014; 86:7806-12. [DOI: 10.1021/ac501725u] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andreas C. Schmidt
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lars E. Dunaway
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - James G. Roberts
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Gregory S. McCarty
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|