1
|
Tange Olsen M, Löytynoja A, Valtonen M, Knudsen SW, Bang S, Gunnersen C, Rosing‐Asvid A, Ferguson SH, Dietz R, Kovacs KM, Lydersen C, Jernvall J, Auvinen P, Galatius A. Complex Origins and History of the Relict Fennoscandian Ringed Seals. Ecol Evol 2025; 15:e71067. [PMID: 40040937 PMCID: PMC11879273 DOI: 10.1002/ece3.71067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
Spatiotemporal environmental heterogeneity is a major evolutionary driver, which can cause profound phylogeographic complexity, particularly at the periphery of species ranges. Ringed seals display a highly disjoint distribution, occurring in high abundance throughout the circumpolar Arctic, as well as in the Baltic Sea, Lake Saimaa and Lake Ladoga. These relict Fennoscandian ringed seals were traditionally regarded as originating from a single colonisation event after the Last Glacial Maximum (LGM), but recent studies have challenged this perception. Here, we analyse 246 mitogenomes and 180 skulls to unravel the diversity and spatiotemporal pattern of diversification in Fennoscandian ringed seals. Contrary to previous assumptions, our results reveal a complex evolutionary history characterised by pre-LGM diversification from Arctic ringed seals and possibly several Fennoscandian colonisation events. We hypothesise that Saimaa seals originate from Arctic ringed seals, from which they diverged prior to their arrival in Lake Saimaa. Ladoga seals appear to also originate from the Arctic, with secondary colonisation events from paleo-Skagerrak-Kattegat-Baltic, while the Baltic ringed seals have mixed evolutionary origins. Lake Saimaa and, to some extent, Lake Ladoga ringed seals have experienced a loss of diversity and evolved divergent skull morphologies, likely as a result of colonisation bottlenecks, isolation and dietary specialisation, while Baltic Sea ringed seals have retained remarkably high levels of genetic and morphological diversity. Our study supports the classification of Saimaa, Ladoga and Baltic ringed seals as distinct taxa and highlights the need for management and conservation efforts to mitigate cumulative impacts of human activities and climate change on Fennoscandian ringed seals.
Collapse
Affiliation(s)
- Morten Tange Olsen
- Section for Molecular Ecology and Evolution, Globe InstituteUniversity of CopenhagenCopenhagen KDenmark
- Section for Marine Mammal Research, Department of EcoscienceAarhus UniversityRoskildeDenmark
| | - Ari Löytynoja
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Mia Valtonen
- Wildlife Ecology GroupNatural Resources Institute FinlandHelsinkiFinland
| | | | - Sofie Bang
- Section for Molecular Ecology and Evolution, Globe InstituteUniversity of CopenhagenCopenhagen KDenmark
| | - Casper Gunnersen
- Section for Molecular Ecology and Evolution, Globe InstituteUniversity of CopenhagenCopenhagen KDenmark
| | - Aqqalu Rosing‐Asvid
- Department of Birds and MammalsGreenland Institute of Natural ResourcesNuukGreenland
| | | | - Rune Dietz
- Section for Marine Mammal Research, Department of EcoscienceAarhus UniversityRoskildeDenmark
| | | | | | - Jukka Jernvall
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
| | - Petri Auvinen
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Anders Galatius
- Section for Marine Mammal Research, Department of EcoscienceAarhus UniversityRoskildeDenmark
| |
Collapse
|
2
|
Lehtonen TK, Gilljam D, Veneranta L, Keskinen T, Bergenius Nord M. The ecology and fishery of the vendace (Coregonus albula) in the Baltic Sea. JOURNAL OF FISH BIOLOGY 2023; 103:1463-1475. [PMID: 37642401 DOI: 10.1111/jfb.15542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 08/31/2023]
Abstract
Brackish water ecosystems often have high primary production, intermediate salinities, and fluctuating physical conditions and therefore provide challenging environments for many of their inhabitants. This is especially true of the Baltic Sea, which is a large body of brackish water under strong anthropogenic influence. One freshwater species that is able to cope under these conditions in the northern Baltic Sea is the vendace (Coregonus albula), a small salmonid fish. Here, we review the current knowledge of its ecology and fishery in this brackish water environment. The literature shows that, by competing for resources with other planktivores and being an important prey for a range of larger species, C. albula plays a notable role in the northern Baltic Sea ecosystem. It also sustains significant fisheries in the coastal waters of Sweden and Finland. We identify the need to better understand these C. albula populations in terms of the predator-prey interactions, distributions of anadromous and sea spawning populations and other putative (eco)morphs, extent of gene exchange between the populations, and effects of climate change on their future. In this regard, we recommend strengthening C. albula-related research and management efforts by improved collaboration and coordination between research institutions, other governmental agencies, and fishers, as well as by harmonization of fishery policies across national borders.
Collapse
Affiliation(s)
| | - David Gilljam
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Coastal Research, Öregrund, Sweden
| | | | | | - Mikaela Bergenius Nord
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, Lysekil, Sweden
| |
Collapse
|
3
|
Siebert U, Grilo ML, Kesselring T, Lehnert K, Ronnenberg K, Pawliczka I, Galatius A, Kyhn LA, Dähne M, Gilles A. Variation of blubber thickness for three marine mammal species in the southern Baltic Sea. Front Physiol 2022; 13:880465. [PMID: 36505079 PMCID: PMC9726720 DOI: 10.3389/fphys.2022.880465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Evaluating populational trends of health condition has become an important topic for marine mammal populations under the Marine Strategy Framework Directive (MSFD). In the Baltic Sea, under the recommendation of Helsinki Commission (HELCOM), efforts have been undertaken to use blubber thickness as an indicator of energy reserves in marine mammals. Current values lack geographical representation from the entire Baltic Sea area and a large dataset is only available for grey seals (Halichoerus grypus) from Sweden and Finland. Knowledge on variation of blubber thickness related to geography throughout the Baltic Sea is important for its usage as an indicator. Such evaluation can provide important information about the energy reserves, and hence, food availability. It is expected that methodological standardization under HELCOM should include relevant datasets with good geographical coverage that can also account for natural variability in the resident marine mammal populations. In this study, seasonal and temporal trends of blubber thickness were evaluated for three marine mammal species-harbor seal (Phoca vitulina), grey seal (Halichoerus grypus) and harbor porpoise (Phocoena phocoena)-resident in the southern Baltic Sea collected and investigated under stranding networks. Additionally, the effects of age, season and sex were analyzed. Seasonal variation of blubber thickness was evident for all species, with harbor seals presenting more pronounced effects in adults and grey seals and harbor porpoises presenting more pronounced effects in juveniles. For harbor seals and porpoises, fluctuations were present over the years included in the analysis. In the seal species, blubber thickness values were generally higher in males. In harbor seals and porpoises, blubber thickness values differed between the age classes: while adult harbor seals displayed thicker blubber layers than juveniles, the opposite was observed for harbor porpoises. Furthermore, while an important initial screening tool, blubber thickness assessment cannot be considered a valid methodology for overall health assessment in marine mammals and should be complemented with data on specific health parameters developed for each species.
Collapse
Affiliation(s)
- Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover Foundation, Büsum, Germany,*Correspondence: Ursula Siebert,
| | - Miguel L. Grilo
- MARE—Marine and Environmental Sciences Centre, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Lisbon, Portugal
| | - Tina Kesselring
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover Foundation, Büsum, Germany
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover Foundation, Büsum, Germany
| | - Katrin Ronnenberg
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover Foundation, Büsum, Germany
| | - Iwona Pawliczka
- Department of Oceanography and Geography, Krzysztof Skóra Hel Marine Station, University of Gdansk, Hel, Poland
| | - Anders Galatius
- Marine Mammal Research, Institute of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Line A. Kyhn
- Marine Mammal Research, Institute of Ecoscience, Aarhus University, Roskilde, Denmark
| | | | - Anita Gilles
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover Foundation, Büsum, Germany
| |
Collapse
|
4
|
Schmidt B, Hollenbach J, Mühlfeld C, Pfarrer C, Persson S, Kesselring T, Sonne C, Rigét F, Dietz R, Siebert U. Number of Primordial Follicles in Juvenile Ringed Seals (Pusa hispida) from the Gulf of Bothnia and West Greenland. Animals (Basel) 2022; 12:ani12050669. [PMID: 35268237 PMCID: PMC8909318 DOI: 10.3390/ani12050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Primordial follicles are important for the reproduction cycle and, therefore, also for the survival of the whole population of a species. Mammals have a large pool of primordial follicles, and it is thought that this pool represents the total number of oocytes. The aim of the present study was to determine the total primordial follicle number of juvenile ringed seals (Pusa hispida) from the Gulf of Bothnia and Greenland. Overall, 52 ovaries from two ringed seal populations (West Greenland (N = 6), Gulf of Bothnia, region in the Baltic Sea (N = 46)) were examined. All ovaries were cut into 2 mm thick slices and every slice was embedded in paraffin. Out of each tissue block, a 5 µm thick section was cut and stained with haematoxylin-eosin. The mean volume of the follicles and the total volume of primordial follicles per ovary were estimated by stereology and used to calculate the total estimated number of primordial follicles. The median of the total estimated number of primordial follicles seemed to be higher in Baltic individuals than in Greenland individuals (Gulf of Bothnia = 565,657; Greenland Sea = 122,475). This widens the total range of primordial follicles in ringed seals overall and might bear some potential for discussions regarding the influence of endocrine disruptors and environmental influences depending on different regions/populations and their exposure to various factors. Thus, this study aims to provide basic reference data of the number and mean volume of ringed seal primordial follicles.
Collapse
Affiliation(s)
- Britta Schmidt
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, D-25761 Büsum, Germany; (T.K.); (U.S.)
- Correspondence: ; Tel.: +49-511-856-8170
| | - Julia Hollenbach
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany; (J.H.); (C.P.)
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| | - Christiane Pfarrer
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany; (J.H.); (C.P.)
| | - Sara Persson
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden;
| | - Tina Kesselring
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, D-25761 Büsum, Germany; (T.K.); (U.S.)
- Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, D-30559 Hannover, Germany
| | - Christian Sonne
- Department of Bioscience—Marine Mammal Research, University of Aarhus, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark; (C.S.); (R.D.)
| | - Frank Rigét
- Department of Ecoscience, University of Aarhus, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark;
| | - Rune Dietz
- Department of Bioscience—Marine Mammal Research, University of Aarhus, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark; (C.S.); (R.D.)
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, D-25761 Büsum, Germany; (T.K.); (U.S.)
| |
Collapse
|
5
|
Ometere Boyi J, Stokholm I, Hillmann M, Søndergaard J, Persson S, de Wit CA, Siebert U, Kristina L. Relationships between gene transcription and contaminant concentrations in Baltic ringed seals: A comparison between tissue matrices. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106035. [PMID: 34856463 DOI: 10.1016/j.aquatox.2021.106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Ringed seals (Pusa hispida) are slowly recovering in the eastern and northern parts of the Baltic Sea after years of hunting pressure and contaminant exposure. Still, consequences of anthropogenic activities such as contaminant exposure and increasing temperatures are stressors that continue to have deleterious effects on their habitat and health. Transcription profiles of seven health-related genes involved in xenobiotic metabolism, endocrine disruption and stress were evaluated in blood, blubber, and liver of Baltic ringed seals in a multi-tissue approach. Selected persistent organic pollutants and total mercury concentrations were measured in blubber and liver, and muscle and liver of these animals, respectively. Concentrations of contaminants varied across tissues on a lipid weight basis but not with sex. mRNA transcript levels for all seven target genes did not vary between sexes or age classes. Transcript levels of thyroid hormone receptor alpha (TRα), retinoic acid receptor alpha (RARα) and heat shock protein 70 (HSP70) correlated with levels of persistent organic pollutants. TRα transcript levels also correlated positively with mercury concentrations in the liver. Of the three tissues assessed in this multi-tissue approach, blubber showed highest transcription levels of aryl hydrocarbon receptor nuclear translocator (ARNT), thyroid stimulating hormone receptor beta (TSHβ), oestrogen receptor alpha (ESR1) and peroxisome proliferator activated receptor alpha (PPARα). The wide range of genes expressed highlights the value of minimally invasive sampling (e.g. biopsies) for assessing health endpoints in free-ranging marine wildlife and the importance of identifying optimal matrices for targeted gene expression studies. This gene transcript profile study has provided baseline information on transcript levels of biomarkers for early on-set health effects in ringed seals and will be a useful guide to assess the impacts of environmental change in Baltic pinnipeds for conservation and management.
Collapse
Affiliation(s)
- Joy Ometere Boyi
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, Buesum D-25761, Germany
| | - Iben Stokholm
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, Buesum D-25761, Germany
| | - Miriam Hillmann
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, Buesum D-25761, Germany
| | - Jens Søndergaard
- Department of Bioscience, Aarhus University, Roskilde DK-4000, Denmark
| | - Sara Persson
- Swedish Museum of Natural History, Department of Environmental Research and Monitoring, Stockholm SE-10405, Sweden
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, Buesum D-25761, Germany
| | - Lehnert Kristina
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, Buesum D-25761, Germany.
| |
Collapse
|
6
|
Silva WTAF, Harding KC, Marques GM, Bäcklin BM, Sonne C, Dietz R, Kauhala K, Desforges JP. Life cycle bioenergetics of the gray seal (Halichoerus grypus) in the Baltic Sea: Population response to environmental stress. ENVIRONMENT INTERNATIONAL 2020; 145:106145. [PMID: 33038624 DOI: 10.1016/j.envint.2020.106145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 05/21/2023]
Abstract
Wildlife population dynamics are shaped by multiple natural and anthropogenic factors, including predation, competition, stressful life history events, and external environmental stressors such as diseases and pollution. Marine mammals such as gray seals rely on extensive blubber layers for insulation and energy storage, making this tissue critical for survival and reproduction. This lipid rich blubber layer also accumulates hazardous fat soluble pollutants, such as polychlorinated biphenyls (PCBs), that can directly impact adipose function or be mobilized during periods of negative energy balance or transferred to offspring to exert further impacts on target tissues or vulnerable life stages. To predict how marine mammals will respond to ecological and anthropogenic stressors, it is necessary to use process-based modelling approaches that integrate environmental inputs, full species life history, and stressor impacts with individual dynamics of energy intake, storage, and utilization. The purpose of this study was to develop a full lifecycle dynamic energy budget and individual based model (DEB-IBM) that captured Baltic gray seal physiology and life history, and showcase potential applications of the model to predict population responses to select stressors known to threaten gray seals and other marine mammals around the world. We explore variations of three ecologically important stressors using phenomenological simulations: food limitation, endocrine disrupting chemicals that reduce fertility, and infectious disease. Using our calibrated DEB-IBM for Baltic gray seals, we found that continuous incremental food limitation can be more detrimental to population size than short random events of starvation, and further, that the effect of endocrine disruptors on population growth and structure is delayed due to bioaccumulation, and that communicable diseases significantly decrease population growth even when spillover events are relatively less frequent. One important finding is the delayed effect on population growth rate from some stressors, several years after the exposure period, resulting from a decline in somatic growth, increased age at maturation and decreased fecundity. Such delayed responses are ignored in current models of population viability and can be important in the correct assessment of population extinction risks. The model presented here provides a test bed on which effects of new hazardous substances and different scenarios of future environmental change affecting food availability and/or seal energetic demands can be investigated. Thus, the framework provides a tool for better understanding how diverse environmental stressors affect marine mammal populations and can be used to guide scientifically based management.
Collapse
Affiliation(s)
- Willian T A F Silva
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Karin C Harding
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Gonçalo M Marques
- Marine, Environment & Technology Center (MARETEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | - Kaarina Kauhala
- Natural Resources Institute Finland, Itäinen Pitkäkatu, Turku, Finland
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark; Department of Natural Resource Sciences, McGill University, Ste Anne de Bellevue, Canada.
| |
Collapse
|