1
|
Zeng Q, Wang S, Chen L, Wang J. Transcriptome analysis reveals molecularly distinct subtypes in retinoblastoma. Sci Rep 2023; 13:16475. [PMID: 37777551 PMCID: PMC10542806 DOI: 10.1038/s41598-023-42253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023] Open
Abstract
Retinoblastoma is the most frequent intraocular malignancy in children. Little is known on the molecular basis underlying the biological and clinical behavior of this cancer. Here, using gene expression profiles, we demonstrate the existence of two major retinoblastoma subtypes that can be divided into six subgroups. Subtype 1 has higher expression of cone related genes and higher percentage of RB1 germline mutation. By contrast, subtype 2 tumors harbor more genes with ganglion/neuronal features. The dedifferentiation in subtype 2 is associated with stemness features including low immune infiltration. Gene Otology analysis demonstrates that immune response regulations and visual related pathways are the key molecular difference between subtypes. Subtype 1b has the highest risk of invasiveness across all subtypes. The recognition of these molecular subtypes shed a light on the important biological and clinical perspectives for retinoblastomas.
Collapse
Affiliation(s)
- Qi Zeng
- Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Sha Wang
- Eye Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- Hunan Key Laboratory of Ophthalmology, 87 Xiangya Road, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Lu Chen
- Eye Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Ophthalmology, 87 Xiangya Road, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwei Wang
- Eye Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Ophthalmology, 87 Xiangya Road, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Narayana RVL, Jana P, Tomar N, Prabhu V, Nair RM, Manukonda R, Kaliki S, Coupland SE, Alexander J, Kalirai H, Kondapi AK, Vemuganti GK. Carboplatin- and Etoposide-Loaded Lactoferrin Protein Nanoparticles for Targeting Cancer Stem Cells in Retinoblastoma In Vitro. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 34784412 PMCID: PMC8606840 DOI: 10.1167/iovs.62.14.13] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Cancer stem cells (CSCs) are known to contribute to tumor relapses by virtue of their chemoresistance. With the knowledge that nanoformulations can overcome drug resistance, we evaluated the efficacy and cytotoxicity of clinical-grade carboplatin (CPT)– and etoposide (ETP)–loaded lactoferrin nanoparticles (Lf-Nps) on total, CD133-enriched (non-CSC), and CD133-depleted (CSC) populations of retinoblastoma (Rb) Y79 cells. Methods Physicochemical properties of drug-loaded Lf-Nps were measured with transmission electron microscopy and attenuated total reflectance–Fourier transform infrared. The encapsulation efficiency, uptake, and release of drug-loaded Lf-Nps were measured using high-performance liquid chromatography and a UV-visible spectrophotometer. Cytotoxicity of the standard and drug-loaded Lf-Nps was evaluated by the MTT assay. Results The mean (SD) size and encapsulation efficiency of Lf-CPT and Lf-ETP were 61.2 (3.94) nm, 60% and 45.15 (5.85) nm, 38%, respectively, and the drug release efficiency was highest at pH 6. The increased drug uptake and lower release of drug-loaded Lf-Nps were observed in CSC and non-CSC populations compared to their standard forms. The relative increase of drug uptake and sustained intracellular retention of the drug-loaded Lf-Nps compared to standard drugs showed an enhanced cytotoxicity up to 50%, especially in Rb Y79 CSCs (IC50: CPT, 230.3; Lf-CPT, 118.2; ETP, 198.1; and Lf-ETP, 129) compared to non-CSCs. Conclusions Our study documents an increase in drug uptake, retention, and cytotoxicity of Lf-CPT and Lf-ETP on Y79 CSCs and non-CSCs as compared to their standard drugs in vitro. The reversal of chemoresistance in the CSC population by nanoformulation appears promising with the potential to pave the way for improved targeted therapy and better clinical outcomes.
Collapse
Affiliation(s)
- Revu V L Narayana
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Pritikana Jana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Neha Tomar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Varsha Prabhu
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Rohini M Nair
- School of Medical Sciences, University of Hyderabad, Hyderabad, India.,Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Radhika Manukonda
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, India.,Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Hyderabad, India
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom.,Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, United Kingdom
| | - Jodi Alexander
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom.,School of Biological Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom.,Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, United Kingdom
| | - Anand K Kondapi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Circ-E2F3 acts as a ceRNA for miR-204-5p to promote proliferation, metastasis and apoptosis inhibition in retinoblastoma by regulating ROCK1 expression. Exp Mol Pathol 2021; 120:104637. [PMID: 33844975 DOI: 10.1016/j.yexmp.2021.104637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/29/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Circular RNA (circRNA) plays an important role in the malignant progression of many tumors, including retinoblastoma (RB). However, the role and regulatory mechanism of circ-E2F3 in RB have not been fully elucidated. METHODS Quantitative real-time PCR was used to measure circ-E2F3, miR-204-5p and Rho-associated protein kinase 1 (ROCK1) expression. Cell proliferation, apoptosis and metastasis were monitored by MTT, colony formation, flow cytometry, transwell and wound healing assays. Dual-luciferase reporter assay was employed to verify the relationship between miR-204-5p and circ-E2F3 or ROCK1. ROCK1 protein expression was detected by western blot assay. Mice xenograft models were built to assess the role of circ-E2F3 on RB tumor growth. RESULTS Circ-E2F3 was upregulated in RB tissues and cells. Silencing of circ-E2F3 inhibited the proliferation, migration, invasion, and induced the apoptosis of RB cells in vitro, as well as reduced RB tumor growth in vivo. MiR-204-5p could be sponged by circ-E2F3, and its inhibitor reversed the suppressive effect of circ-E2F3 silencing on RB progression. In addition, ROCK1 was confirmed to interact with miR-204-5p. MiR-204-5p regulated RB progression by targeting ROCK1. Also, circ-E2F3 positively regulated ROCK1 expression by sponging miR-204-5p. CONCLUSION Circ-E2F3 functioned as a tumor promoter in RB through the miR-204-5p/ROCK1 axis.
Collapse
|
4
|
Wu C, Shang XQ, You ZP, Jin QF, Zhang YL, Zhou Y, Zhang YZ, Shi K. TRIM59 Promotes Retinoblastoma Progression by Activating the p38-MAPK Signaling Pathway. Invest Ophthalmol Vis Sci 2021; 61:2. [PMID: 32744597 PMCID: PMC7441337 DOI: 10.1167/iovs.61.10.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Retinoblastoma is a malignant tumor of the developing retina that mostly occurs in children. Our study aimed to investigate the effect of tripartite motif-containing protein 59 (TRIM59) on retinoblastoma growth and the underlying mechanisms. Methods We performed bioinformatic analysis of three datasets (GSE24673, GSE97508, and GSE110811) from the Gene Expression Omnibus database. Quantitative reverse-transcription PCR and immunoblotting of three retinoblastoma cell lines were conducted to verify TRIM59 as a differentially expressed gene. Specific siRNAs were used to inhibit TRIM59 expression in the HXO-Rb44 cell line. A lentiviral vector was transfected into the Y79 cell line to overexpress TRIM59. The effects of TRIM59 on retinoblastoma cell proliferation, cell cycling, and apoptosis were explored in vitro using the abovementioned cell lines. The effect of TRIM59 expression on retinoblastoma cell proliferation was evaluated in a mouse xenograft tumor model. Results TRIM59 expression in three retinoblastoma cell lines was remarkably elevated compared with normal control. Knocking down TRIM59 expression remarkably suppressed cell proliferation and growth and promoted cell apoptosis in HXO-Rb44 cells, whereas TRIM59 overexpression promoted tumor progression in Y79 cells. Silencing TRIM59 also markedly inhibited in vivo tumor growth in the xenograft model. Mechanistic studies revealed that TRIM59 upregulated phosphorylated p38, p-JNK1/2, p-ERK1/2, and p-c-JUN expression in retinoblastoma cells. Notably, the p38 inhibitor SB203580 attenuated the effects of TRIM59 on cell proliferation, apoptosis, and the G1/S phase transition. Conclusions TRIM59 plays an oncogenic role in retinoblastoma and exerts its tumor-promotive function by activating the p38-mitogen-activated protein kinase pathway.
Collapse
|
5
|
MiR-486-3p inhibits the proliferation, migration and invasion of retinoblastoma cells by targeting ECM1. Biosci Rep 2020; 40:224127. [PMID: 32401301 PMCID: PMC7273916 DOI: 10.1042/bsr20200392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 11/19/2022] Open
Abstract
It has been reported that miR-486-3p expression is decreased in retinoblastoma (RB) tumor tissues, however, its function in RB has been less reported. The present study aimed to explore the regulatory effects of miR-486-3p on RB cells. The expression of miR-486-3p in RB tissues and cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, proliferation, apoptosis, migration and invasion ability were determined by cell counting kit-8 (CCK-8) kit, clone formation assay, flow cytometry, scratch assay and transwell, respectively. Targetscan 7.2 and dual-luciferase reporter were used to verify target genes for miR-486-3p. The expressions of apoptosis-related proteins and ECM1 were detected by Western blot. The miR-486-3p expression was decreased in RB tissues and cells. In RB cells, overexpression of miR-486-3p inhibited cell proliferation, migration and invasion, while promoted apoptosis. Moreover, overexpression of miR-486-3p decreased Bcl-2 expression, while increased the expressions of Bax and Cleaved Caspase-3 (C caspase-3). ECM1 was the target gene of miR-486-3p, and miR-486-3p inhibited the expression of ECM1. Furthermore, ECM1 partially reversed the inhibitory effect of miR-486-3p on the proliferation, migration and invasion of RB cells. MiR-486-3p inhibited the proliferation, migration and invasion of RB by down-regulating ECM1.
Collapse
|
6
|
Wang H, Yang J, Pan H, Tai MC, Maher MH, Jia R, Ge S, Lu L. Dinutuximab Synergistically Enhances the Cytotoxicity of Natural Killer Cells to Retinoblastoma Through the Perforin-Granzyme B Pathway. Onco Targets Ther 2020; 13:3903-3920. [PMID: 32440155 PMCID: PMC7218403 DOI: 10.2147/ott.s228532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Conventional chemotherapy and enucleation usually fail to cure advanced retinoblastoma. We investigated the retinoblastoma immune microenvironment and the efficacy of the combination of dinutuximab and CD16-expressing NK-92MI (NK-92MIhCD16-GFP) cells on retinoblastoma cells in this study. Patients and Methods Immunohistochemistry and flow cytometry (FC) were performed to assess the expression level of GD2 in retinoblastoma tissues and cells. Gene set enrichment analysis (GSEA), immunohistochemisrztry and immunocytochemistry were conducted to assess the retinoblastoma immune microenvironment and the integrity of the blood-retinal barrier (BRB). After overexpressing CD16 in NK-92MI cells, fluorescence-activated cell sorting (FACS) was applied to select the positive subpopulation. LDH assays and FC were used to detect LDH release and apoptosis in retinoblastoma cells subjected to a combination of dinutuximab and NK-92MIhCD16-GFP cells. Finally, the release of perforin-granzyme B and the expression of CD107a in NK-92MIhCD16-GFP stimulated by retinoblastoma cells were assessed via enzyme-linked immunosorbent assays (ELISAs) and FC in the presence of dinutuximab or an isotype control. Results GD2 was heterogeneously expressed in retinoblastoma tissues and cell lines and positively correlated with proliferation and staging. GSEA revealed the immunosuppressive status of retinoblastoma microenvironment. The immune cell profile of retinoblastoma tissues and vitreous bodies suggested BRB destruction. LDH release and apoptosis in retinoblastoma cells caused by NK-92MIhCD16-GFP cells were significantly enhanced by dinutuximab. Finally, the release of perforin-granzyme B and the expression of CD107a in NK-92MIhCD16-GFP cells stimulated by retinoblastoma cells were obviously increased by dinutuximab. Conclusion This study indicates that retinoblastoma impairs the integrity of the BRB and contributes to dysregulated immune cell infiltrates. GD2 is a specific target for natural killer (NK) cell-based immunotherapy and that the combination of dinutuximab and NK-92MIhCD16-GFP cells exerts potent antitumor effects through antibody-dependent cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Huixue Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Hui Pan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Mei Chee Tai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed H Maher
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Biology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Linna Lu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Rezaeeyan H, Shirzad R, McKee TD, Saki N. Role of chemokines in metastatic niche: new insights along with a diagnostic and prognostic approach. APMIS 2018; 126:359-370. [PMID: 29676815 DOI: 10.1111/apm.12818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/04/2018] [Indexed: 01/10/2023]
Abstract
Chemokines are cytokines that are involved in the movement of leukocytes and the occurrence of immune responses. It has recently been noted that these cytokines play a role in the movement of cancer cells to different parts of the body and create a suitable environment [i.e. (pre) metastatic niche] for their growth and proliferation. We studied the role of chemokines in the metastasis of cancer cells, as well as their involvement in the proliferation and growth of these cells. Relevant literature was identified by a PubMed search (2005-2017) of English language papers using the terms 'chemokine,' 'metastasis niche,' and 'organotropism.' Based on the nature of cancer cells, the expression of chemokine receptors on these cells leads to metastasis to various organs, which ultimately causes changes in different signaling pathways. Finally, the targeting of chemokines on cancer cells could prevent the metastasis of cancer cells toward different organs.
Collapse
Affiliation(s)
- Hadi Rezaeeyan
- Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Shirzad
- WHO-Collaborating Centre for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Trevor D McKee
- Princess Margaret Cancer Centre, STTARR Innovation Facility, Toronto, ON, Canada
| | - Najmaldin Saki
- Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
SOST silencing promotes proliferation and invasion and reduces apoptosis of retinoblastoma cells by activating Wnt/β-catenin signaling pathway. Gene Ther 2017; 24:399-407. [DOI: 10.1038/gt.2017.31] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 12/25/2022]
|
9
|
Shahrabi S, Khosravi A, Shahjahani M, Rahim F, Saki N. Genetics and Epigenetics of Myelodysplastic Syndromes and Response to Drug Therapy: New Insights. Oncol Rev 2016; 10:311. [PMID: 28058097 PMCID: PMC5178845 DOI: 10.4081/oncol.2016.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematologic neoplasms ocurring mostly in the elderly. The clinical outcome of MDS patients is still poor despite progress in treatment approaches. About 90% of patients harbor at least one somatic mutation. This review aimed to assess the potential of molecular abnormalities in understanding pathogenesis, prognosis, diagnosis and in guiding choice of proper therapy in MDS patients. Papers related to this topic from 2000 to 2016 in PubMed and Scopus databases were searched and studied. The most common molecular abnormalities were TET2, ASXL1 as well as molecules involved in spliceosome machinery (U2AF1, SRSF2 and SF3B1). Patients with defects in TET2 molecule show better response to treatment with azacitidine. IDH and DNMT3A mutations are associated with a good response to decitabine therapy. In addition, patients with del5q subtype harboring TP53 mutation do not show a good response to lenalidomide therapy. In general, the results of this study show that molecular abnormalities can be associated with the occurrence of a specific morphological phenotype in patients. Therefore, considering the morphology of patients, different gene profiling methods can be selected to choice the most appropriate therapeutic measure in these patients in addition to faster and more cost-effective diagnosis of molecular abnormalities.
Collapse
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Semnan University of Medical Sciences, Semnan
| | - Abbas Khosravi
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Mohammad Shahjahani
- Colestan Hospital Clinical Research Development Unit. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Najmaldin Saki
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
- Colestan Hospital Clinical Research Development Unit. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Abstract
BACKGROUND Metastasis is the main cause of mortality in cancer patients. Two major routes of cancer cell spread are currently being recognized: dissemination via blood vessels (hematogenous spread) and dissemination via the lymphatic system (lymphogenous spread). Here, our current knowledge on the role of both blood and lymphatic vessels in cancer cell metastasis is summarized. In addition, I will discuss why cancer cells select one or both of the two routes to disseminate and I will provide a short description of the passive and active models of intravasation. Finally, lymphatic vessel density (LVD), blood vessel density (BVD), interstitial fluid pressure (IFP) and tumor hypoxia, as well as regional lymph node metastasis and the recently discovered primo vascular system (PVS) will be highlighted as important factors influencing tumor cell motility and spread and, ultimately, clinical outcome. CONCLUSIONS Lymphangiogenesis and angiogenesis are important phenomena involved in the spread of cancer cells and they are associated with a poor prognosis. It is anticipated that new discoveries and advancing knowledge on these phenomena will allow an improvement in the treatment of cancer patients.
Collapse
Affiliation(s)
- Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
- Department of General Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079, Lublin, Poland.
| |
Collapse
|
11
|
Are disseminated tumor cells in bone marrow and tumor-stroma ratio clinically applicable for patients undergoing surgical resection of primary colorectal cancer? The Leiden MRD study. Cell Oncol (Dordr) 2016; 39:537-544. [PMID: 27613548 PMCID: PMC5121180 DOI: 10.1007/s13402-016-0296-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 02/07/2023] Open
Abstract
Purpose Current TNM staging does not appropriately identify high-risk colorectal cancer (CRC) patients. The aim of this study was to evaluate whether the presence of disseminated tumor cells (DTCs) in the bone marrow (BM) and the presence of stroma in the primary tumor, i.e., the tumor-stroma ratio (TSR), in patients undergoing surgical resection of primary CRC provides information relevant for disease outcome. Methods Patients with primary CRC (n = 125), consecutively admitted for curative resection between 2001 and 2007, were included in the study. All patients underwent BM aspiration before surgery. Detection of tumor cells was performed using immunocytochemical staining for cytokeratin (CK-ICC). The TSR was determined on diagnostic H&E stained sections of primary tumors. Results DTCs were detected in the BM of 23/125 patients (18 %). No association was found between BM status and overall survival (HR 0.97 (95 % CI 0.45–2.09), p = 0.93). Also, no significant difference was found in their 5-year survival rate (resp. 72 % and 68 % for BM-positive versus BM-negative patients). The TSR was found to be associated with a worse overall survival (HR 2.16, 95 % CI 1.02–4.57, p = 0.04) with 5-year survival rates of 84 % versus 62 % for stroma-low and stroma-high patients, respectively. No relation was found between the presence of DTCs and TSR. Conclusions Our data indicate that the presence of DTCs in the BM of CRC patients is not associated with disease outcome. The TSR was, however, found to be associated with a worse overall survival, which indicates that for CRC the tumor microenvironment plays an important role in its behavior and prognosis.
Collapse
|
12
|
Saisongkorh V, Maiuthed A, Chanvorachote P. Nitric oxide increases the migratory activity of non-small cell lung cancer cells via AKT-mediated integrin αv and β1 upregulation. Cell Oncol (Dordr) 2016; 39:449-462. [PMID: 27376838 DOI: 10.1007/s13402-016-0287-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previously, nitric oxide (NO) has been found to affect the metastatic behavior of various types of cancer. In addition, it has been found that alterations in integrin expression may have profound effects on cancer cell survival and migration. Here, we aimed at assessing the effects of non-toxic concentrations of NO on human non-small cell lung cancer (NSCLC) cells, including the expression of integrins and the migration of these cells. METHODS The cytotoxic and proliferative effects of NO on human NSCLC-derived H460, H292 and H23 cells were tested by MTT assay. The migration capacities of these cells was evaluated by wound healing and transwell migration assays. The expression of integrins and migration-associated proteins was determined by Western blot analyses. RESULTS We found that NO treatment caused a significant increase in the expression of integrin αv and β1 in all three NSCLC-derived cell lines tested. Known migration-associated proteins acting downstream of these integrins, including focal adhesion kinase (FAK), active RhoA (Rho-GTP) and active cell division control 42 (Cdc42-GTP), were found to be significantly activated in response to NO. In addition, we found that NO-treated cells showed an increased motility and that this motility was associated with a significant increase in the number of filopodia per cell. We also found that NO-treated cells exhibited increased active protein kinase G (PKG), protein kinase B (AKT) and FAK expression levels. Using a pharmacological approach, we found that the integrin-modulating effect of NO is most likely brought about by a PKG/AKT-dependent mechanism, since the observed changes in integrin expression were abolished by AKT inhibitors, but not by FAK inhibitors. CONCLUSION Our data suggest a novel role of NO in the regulation of integrin expression and, concomitantly, the migratory capacity of NSCLC cells.
Collapse
Affiliation(s)
- Vhudhipong Saisongkorh
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Arnatchai Maiuthed
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand. .,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
13
|
Capobianco E. Immuno-regulated common markers but different network signatures in two associated cancers: evidences from epigenetic treatment. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:86. [PMID: 27047945 DOI: 10.21037/atm.2016.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Networks are now widely accepted inference tools in translational oncology. Besides providing agnostic model frameworks for complex data-driven clinical problems of diagnostic, therapeutic and prognostic impacts, networks mainly support insights, testable hypotheses and decision processes on the basis of their topological configurations and connectivity patterns. METHODS The purpose of this study is to emphasize the role of both gene and network signatures in two specific cancers. Retinoblastoma (RB) and osteosarcoma are associated to some extent. It is known that patients who carry germline mutations in the RB1 gene, and who survive RB, are typically at an increased risk of early-onset second cancers, including osteosarcomas. Gene signatures are widely used, but also criticized for their partial lack of reproducibility. Network signatures include gene association dynamics by identifying modules or communities in which subsets of genes functionally belong. RESULTS Two cancer cell lines (one per cancer type) were subjected to a similar epigenetic treatment regimen, using a demethylation agent (DAC, and including similar dose and time course administration). A minimal set of shared differentially expressed (DEG) genes was identified in cancer-specific cell lines from microarray analyses. However, the identified immune signatures were observed to translate into much diversified network signatures. CONCLUSIONS Our evidence is relevant to therapeutic developments, indicating that preference should be assigned to the assessment of bio-entities in a connected environment rather than considering single entities alone.
Collapse
Affiliation(s)
- Enrico Capobianco
- 1 Center for Computational Science, Miller School of Medicine, University of Miami, Miami, FL 33146, USA ; 2 Laboratory of Integrative Systems Medicine, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
14
|
TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cell Oncol (Dordr) 2016; 39:353-63. [PMID: 27042827 PMCID: PMC4972855 DOI: 10.1007/s13402-016-0280-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 01/15/2023] Open
Abstract
Purpose Tumor progression is associated with cell migration, invasion and metastasis. These processes are accompanied by the activation of specific proteases that are either linked to cellular membranes or are secreted into extracellular spaces. TNF-α is known to play an important role in various aspects of tumor progression. The aim of this work was to assess the effect of TNF-α on the migration of breast cancer cells and, in addition, to assess its association with the location of membrane-associated proteases in lipid rafts. Methods Wound scratch healing and Transwell migration assays were used to study the effect of TNF-α on the migration of both hormone-dependent and hormone-independent breast cancer-derived cells, i.e., MCF7 and MDA-MB-231, respectively. The expression and secretion of three matrix metalloproteases, MMP9, MMP2 and MT1-MMP, and two dipeptidyl peptidases, CD26 and FAP-α, was investigated using RT-PCR, Western blotting and gelatin zymography. In addition, activation of the MAPK/ERK signaling pathway was investigated by Western blotting. Results We found that a TNF-α-induced enhancement of breast cancer cell migration was accompanied by an increased secretion of MMP9, but not MMP2, into the culture media. We also found that TNF-α upregulated the expression of the dipeptidyl peptidases CD26 and FAP-α in a dose-dependent manner and, in addition, enhanced the concentration of all five proteases in lipid rafts in the breast cancer-derived cells tested, regardless of cell type. Furthermore, we found that TNF-α activated the MAPK/ERK signaling pathway by increasing the ERK1/2 phosphorylation level. Application of the MEK/ERK1/2 inhibitor U-0126 resulted in down-regulation of TNF-α-induced MMP9 secretion and abrogation of the enhanced concentration of proteases in the lipid rafts. Conclusions From our results we conclude that TNF-α-induced activation of the MAPK/ERK signaling pathway may promote breast cancer cell migration via both upregulation of MMP9, CD26 and FAP-α and concentration of these proteases, as also MT1-MMP and MMP2, in the lipid rafts. TNF-α may serve as a potential therapeutic target in breast cancers susceptible to TNF-α stimulation.
Collapse
|
15
|
Abstract
PURPOSE Although an anti-tumor effect of emodin has been reported before, its effect on human gynecological cancer cells has so far not been studied. Here, we assessed the effect of emodin on cervical cancer-derived (Hela), choriocarcinoma-derived (JAR) and ovarian cancer-derived (HO-8910) cells, and investigated the possible underlying molecular and cellular mechanisms. METHODS AND RESULTS The respective cells were treated with 0, 5, 10 or 15 μM emodin for 72 h. Subsequently, MTT and Transwell in vitro migration assays revealed that emodin significantly decreased the viability and invasive capacity of the gynecological cancer-derived cells tested. We found that emodin induced apoptosis and significantly decreased mitochondrial membrane potential and ATP release in these cells. We also found that emodin may exert its apoptotic effects via regulating the activity of caspase-9 and the expression of cleaved-caspase-3. Moreover, we found that emodin induced a cell cycle arrest at the G0/G1 phase, possibly through down-regulating the key cell cycle regulators Cyclin D and Cyclin E. Interestingly, emodin also led to autophagic cell death, as revealed by increased MAP LC3 expression, a marker of the autophagosome, and decreased expression of the autophagy regulators Beclin-1 and Atg12-Atg5. Finally, we found that the protein levels of both VEGF and VEGFR-2 were significantly decreased in emodin-treated cells, suggesting an anti-angiogenic effect of emodin on gynecological cancer-derived cells. CONCLUSIONS Our results suggest that emodin exhibits an anti-tumor effect on gynecological cancer-derived cells, possibly through multiple mechanisms including the induction of apoptosis and autophagy, the arrest of the cell cycle, and the inhibition of angiogenesis. Our findings may provide a basis for the design of potential emodin-based strategies for the treatment of gynecological tumors.
Collapse
|