1
|
Sun B, Zhao Y, Yang S, Li X, Li N, Wang Y, Han Q, Liu X, Tu Q, Zheng J, Zhang X. Celecoxib as a potential treatment for hepatocellular carcinoma in populations exposed to high PFAS levels. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137613. [PMID: 39955994 DOI: 10.1016/j.jhazmat.2025.137613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS), including perfluorooctane sulfonate and perfluorooctanoic acid, are associated with adverse human effects. However, few studies have assessed the effects of PFAS mixtures on hepatocellular carcinoma (HCC). In this study, we systematically investigated the effects and underlying mechanisms of PFAS mixtures on the proliferation, migration, and invasion of HCC cells (JHH-7 and Li-7) in vitro using a combination of biological techniques and high-coverage untargeted metabolomics. A six day exposure to a 5 μM PFAS mixture significantly enhanced the malignant progression of HCC in vitro. Metabolomic analysis identified the upregulation of prostaglandin E2 (PGE2) as a key factor associated with these effects. This hypothesis was further validated using celecoxib, a PGE2 inhibitor, which reduced PGE2 levels in HCC cells, consequently slowing their migration and invasion. Additionally, mice treated with celecoxib exhibited reduced tumor volumes compared with those treated with PFAS alone. These results suggest that PFAS exposure enhances HCC malignancy through the PI3K/AKT signaling pathway via increased PGE2 production. In conclusion, a 5 μM PFAS mixture accelerates HCC proliferation and invasion; moreover, celecoxib demonstrates potential as a therapeutic agent that inhibits these effects.
Collapse
Affiliation(s)
- Boshi Sun
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Yuqiao Zhao
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Shifeng Yang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Xiaodong Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Nana Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Yujie Wang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Qixiang Han
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Xuyun Liu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Qiushi Tu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Jie Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, United States.
| | - Xinyu Zhang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China.
| |
Collapse
|
2
|
Cros-Perrial E, Beaumel S, Gimbert M, Camus N, Vicente C, Sekiou I, Figuet L, Duruisseaux M, Dumontet C, Jordheim LP. SLX4 and XPF are involved in cell migration and EMT in a cell-specific manner. Biochem Pharmacol 2025; 236:116885. [PMID: 40118290 DOI: 10.1016/j.bcp.2025.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
SLX4 and XPF are two proteins involved in DNA repair, but very little is known about their potential roles in other processes of cancer cell biology. We developed original cell models with CRISPR-Cas9-mediated knock-out of SLX4 and/or XPF using five different cell lines (A549, NCI-H1703, COLO-357, HT-29 and HEK-293 T), and performed characterization with cell biology experiments including migration assays, drug sensitivity testing, cell proliferation assessment and Western blots for relevant proteins. Results showed decreased migration of all models in HT-29 cells, of XPF-deficient COLO-357 cells and of SLX4-deficient HEK-293 T cells. Modified cell models had overall increased sensitivity to cisplatin and mitomycine C, and some models showed an increased frequency of double-stranded DNA damages. One NCI-H1703 cell model showed major karyotypic modifications, and epithelial to mesenchymal transition (EMT)-related proteins were modified in several models. Finally, knocking out one or both proteins in A549 cells had not the same impact on in vivo growth in mice. These original cell models allowed us to identify new and DNA repair-unrelated cellular roles of SLX4 and XPF in cancer cell biology. Our results should be considered within work on Nucleotide Excision Repair (NER) inhibition targeting SLX, XPF or other related proteins.
Collapse
Affiliation(s)
- Emeline Cros-Perrial
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon, France
| | - Sabine Beaumel
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon, France
| | - Manon Gimbert
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon, France
| | - Ninon Camus
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon, France
| | - Clara Vicente
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon, France
| | - Imane Sekiou
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon, France
| | - Léa Figuet
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon, France
| | - Michaël Duruisseaux
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Charles Dumontet
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Lars Petter Jordheim
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon, France.
| |
Collapse
|
3
|
Is the regulation by miRNAs of NTPDase1 and ecto-5'-nucleotidase genes involved with the different profiles of breast cancer subtypes? Purinergic Signal 2021; 18:123-133. [PMID: 34741235 DOI: 10.1007/s11302-021-09824-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a public health problem worldwide, causing suffering and premature death among women. As a heterogeneous disease, BC-specific diagnosis and treatment are challenging. Ectonucleotidases are related to tumor development and their expression may vary among BC. miRNAs may participate in epigenetic events and may regulate ectonucleotidases in BC. This study aimed to evaluate the expression of ectonucleotidases according to BC subtypes and to predict if there is post-transcriptional regulation of them by miRNAs. MCF 10A (non-tumorigenic), MCF7 (luminal BC), and MDA-MB-231 (triple-negative BC - TNBC) breast cell lines were used and ENTPD1 (the gene encoding for NTPDase1) and NT5E (the gene encoding for ecto-5'-nucleotidase) gene expression was determined. Interestingly, the expression of ENTPD1 was only observed in MCF7 and NT5E was lower in MCF7 compared to MDA-MB-231 cell line. ATP, ADP, and AMP hydrolysis were observed on the surface of all cell lines, being higher in MDA-MB-231. Like qPCR, the activity of AMP hydrolysis was also lower in the MCF7 cells, which may represent a striking feature of this BC subtype. In silico analyses confirmed that the miRNAs miR-101-3p, miR-141-3p, and miR-340-5p were higher expressed in MCF7 cells and targeted NT5E mRNA. Altogether, data suggest that the regulation of NT5E by miRNAs in MCF7 lineage may direct the molecular profile of luminal BC. Thus, we suggest that the roles of ecto-5'-nucleotidase and the aforementioned miRNAs must be unraveled in TNBC to be possibly defined as diagnostic and therapeutic targets.
Collapse
|
4
|
Cadassou O, Forey P, Machon C, Petrotto E, Chettab K, Tozzi MG, Guitton J, Dumontet C, Cros-Perrial E, Jordheim LP. Transcriptional and Metabolic Investigation in 5'-Nucleotidase Deficient Cancer Cell Lines. Cells 2021; 10:cells10112918. [PMID: 34831141 PMCID: PMC8616413 DOI: 10.3390/cells10112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Enzymes of nucleoside and nucleotide metabolism regulate important cellular processes with potential impacts on nucleotide-unrelated parameters. We have used a set of CRISPR/Cas9-modified cell models expressing both, one, or none of the 5'-nucleotidases cN-II and CD73, together with RNA sequencing and targeted metabolomics, to decipher new regulatory roles of these proteins. We observed important transcriptional modifications between models as well as upon exposure to adenosine. Metabolite content varied differently between cell models in response to adenosine exposure but was rather similar in control conditions. Our original cell models allowed us to identify a new unobvious link between proteins in the nucleotide metabolism and other cellular pathways. Further analyses of our models, including additional experiments, could help us to better understand some of the roles played by these enzymes.
Collapse
Affiliation(s)
- Octavia Cadassou
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
| | - Prescillia Forey
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
| | - Christelle Machon
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 69495 Pierre Bénite, France
| | - Edoardo Petrotto
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy;
| | - Kamel Chettab
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
| | - Maria Grazia Tozzi
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy;
| | - Jérôme Guitton
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 69495 Pierre Bénite, France
| | - Charles Dumontet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 69495 Pierre Bénite, France
| | - Emeline Cros-Perrial
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
| | - Lars Petter Jordheim
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (O.C.); (P.F.); (C.M.); (E.P.); (K.C.); (J.G.); (C.D.); (E.C.-P.)
- Correspondence: ; Tel.: +33-478777128
| |
Collapse
|
5
|
Jordheim LP. The amazing cN-II, the enzyme that keeps us busy. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 41:239-246. [PMID: 34612808 DOI: 10.1080/15257770.2021.1983828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
cN-II is a cytosolic 5'-nucleotidase with preference for IMP and GMP over AMP. The enzyme has been extensively studied over the last 20-30 years both for its enzymatic activity, structure, role in nucleotide metabolism and in cell biology, as well as in diseases. With the aim of highlighting the complexity of the enzyme, I will, as during PP21, present work from our group and others working on cN-II and its various roles and not give an exhaustive overview of new data.
Collapse
Affiliation(s)
- Lars Petter Jordheim
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| |
Collapse
|
6
|
Pesi R, Allegrini S, Garcia-Gil M, Piazza L, Moschini R, Jordheim LP, Camici M, Tozzi MG. Cytosolic 5'-Nucleotidase II Silencing in Lung Tumor Cells Regulates Metabolism through Activation of the p53/AMPK Signaling Pathway. Int J Mol Sci 2021; 22:ijms22137004. [PMID: 34209768 PMCID: PMC8268954 DOI: 10.3390/ijms22137004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Cytosolic 5′-nucleotidase II (cN-II) is an allosteric catabolic enzyme that hydrolyzes IMP, GMP, and AMP. The enzyme can assume at least two different structures, being the more active conformation stabilized by ATP and the less active by inorganic phosphate. Therefore, the variation in ATP concentration can control both structure and activity of cN-II. In this paper, using a capillary electrophoresis technique, we demonstrated that a partial silencing of cN-II in a pulmonary carcinoma cell line (NCI-H292) is accompanied by a decrease in adenylate pool, without affecting the energy charge. We also found that cN-II silencing decreased proliferation and increased oxidative metabolism, as indicated by the decreased production of lactate. These effects, as demonstrated by Western blotting, appear to be mediated by both p53 and AMP-activated protein kinase, as most of them are prevented by pifithrin-α, a known p53 inhibitor. These results are in line with our previous observations of a shift towards a more oxidative and less proliferative phenotype of tumoral cells with a low expression of cN-II, thus supporting the search for specific inhibitors of this enzyme as a therapeutic tool for the treatment of tumors.
Collapse
Affiliation(s)
- Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (R.P.); (L.P.); (R.M.); (M.C.); (M.G.T.)
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (R.P.); (L.P.); (R.M.); (M.C.); (M.G.T.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, Università di Pisa, 56126 Pisa, Italy;
- CISUP, Centro per l’Integrazione della Strumentazione dell’Università di Pisa, 56127 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-1459
| | - Mercedes Garcia-Gil
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, Università di Pisa, 56126 Pisa, Italy;
- CISUP, Centro per l’Integrazione della Strumentazione dell’Università di Pisa, 56127 Pisa, Italy
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
| | - Lucia Piazza
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (R.P.); (L.P.); (R.M.); (M.C.); (M.G.T.)
| | - Roberta Moschini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (R.P.); (L.P.); (R.M.); (M.C.); (M.G.T.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, Università di Pisa, 56126 Pisa, Italy;
- CISUP, Centro per l’Integrazione della Strumentazione dell’Università di Pisa, 56127 Pisa, Italy
| | - Lars Petter Jordheim
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
| | - Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (R.P.); (L.P.); (R.M.); (M.C.); (M.G.T.)
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (R.P.); (L.P.); (R.M.); (M.C.); (M.G.T.)
| |
Collapse
|
7
|
Cytosolic 5'-Nucleotidase II Is a Sensor of Energy Charge and Oxidative Stress: A Possible Function as Metabolic Regulator. Cells 2021; 10:cells10010182. [PMID: 33477638 PMCID: PMC7831490 DOI: 10.3390/cells10010182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Cytosolic 5'-nucleotidase II (NT5C2) is a highly regulated enzyme involved in the maintenance of intracellular purine and the pyrimidine compound pool. It dephosphorylates mainly IMP and GMP but is also active on AMP. This enzyme is highly expressed in tumors, and its activity correlates with a high rate of proliferation. In this paper, we show that the recombinant purified NT5C2, in the presence of a physiological concentration of the inhibitor inorganic phosphate, is very sensitive to changes in the adenylate energy charge, especially from 0.4 to 0.9. The enzyme appears to be very sensitive to pro-oxidant conditions; in this regard, the possible involvement of a disulphide bridge (C175-C547) was investigated by using a C547A mutant NT5C2. Two cultured cell models were used to further assess the sensitivity of the enzyme to oxidative stress conditions. NT5C2, differently from other enzyme activities, was inactivated and not rescued by dithiothreitol in a astrocytoma cell line (ADF) incubated with hydrogen peroxide. The incubation of a human lung carcinoma cell line (A549) with 2-deoxyglucose lowered the cell energy charge and impaired the interaction of NT5C2 with the ice protease-activating factor (IPAF), a protein involved in innate immunity and inflammation.
Collapse
|