1
|
Mao L, Wang L, Huang Z, Chen JK, Tucker L, Zhang Q. Comprehensive insights into emerging advances in the Neurobiology of anorexia. J Adv Res 2025:S2090-1232(25)00206-1. [PMID: 40180244 DOI: 10.1016/j.jare.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Anorexia is a complex eating disorder influenced by genetic, environmental, psychological, and socio-cultural factors. Research into its molecular mechanisms and neural circuits has deepened our understanding of its pathogenesis. Recent advances in neuroscience, molecular biology, and genetics have revealed key molecular and neural circuit mechanisms underlying anorexia. AIM OF REVIEW Clarify the peripheral and central molecular mechanisms regulating various types of anorexia, identify key cytokines and neural circuits, and propose new strategies for its treatment. Key scientific concepts of review: Anorexia animal models, including activity-induced, genetic mutation, and inflammation-induced types, are explored for their relevance to studying the disorder. Anorexic behavior is regulated by cytokines, hormones (like GDF15, GLP-1, and leptin), and neural circuits such as AgRP, serotonergic, dopaminergic, and glutamatergic pathways. Disruptions in these pathways, including GABAergic signaling in AgRP neurons and 5-HT2C and D2 receptors, contribute to anorexia. Potential therapies target neurotransmitter receptors, ghrelin receptors, and the GDF15-GFRAL pathway, offering insights for treating anorexia, immune responses, and obesity.
Collapse
Affiliation(s)
- Liwei Mao
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lian Wang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Jian-Kang Chen
- Departments of Cellular Biology & Anatomy and Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lorelei Tucker
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
2
|
Kitahara S, Abe M, Kono C, Sakuma N, Ishii D, Kawasaki T, Ikari J, Suzuki T. Prognostic impact of the cross-sectional area of the erector spinae muscle in patients with pleuroparenchymal fibroelastosis. Sci Rep 2023; 13:17289. [PMID: 37828047 PMCID: PMC10570343 DOI: 10.1038/s41598-023-44138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Pleuroparenchymal fibroelastosis (PPFE) progresses slowly but sometimes relatively quickly, leading to decreased activities of daily living (ADL) and muscle weakness. Skeletal muscle atrophy and muscle weakness in chronic obstructive pulmonary disease (COPD) patients may be caused by cachexia and are associated with reduced ADLs and increased risk of death. However, the association between skeletal muscle mass and the prognosis of PPFE patients remains unknown. We retrospectively analysed the clinical significance of the cross-sectional area of the erector spinae muscle (ESMCSA), a skeletal muscle index, and predictors of mortality within 3 years in PPFE 51 patients, idiopathic pulmonary fibrosis (IPF) 52 patients and COPD 62 patients. PPFE patients had significantly lower ESMCSA than IPF or COPD patients, and lower ESMCSA (< 22.57 cm2) was associated with prognosis within 3 years (log-rank test; p = 0.006), whereas lower body mass index (BMI) showed no association. Multivariate analysis showed that ESMCSA was an independent predictor of mortality within 3 years in PPFE patients (hazard ratio, 0.854; 95% confidence interval: 0.737-0.990, p = 0.036). These results suggest the importance of monitoring ESMCSA in PPFE patients and that assessing ESMCSA in PPFE patients could be a more useful prognostic indicator than BMI.
Collapse
Affiliation(s)
- Shinsuke Kitahara
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
- Department of Respiratory Medicine, JR Tokyo General Hospital, 2-1-3, Yoyogi, Shibuya-ku, Tokyo, 151-8258, Japan
| | - Mitsuhiro Abe
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan.
| | - Chiyoko Kono
- Department of Respiratory Medicine, JR Tokyo General Hospital, 2-1-3, Yoyogi, Shibuya-ku, Tokyo, 151-8258, Japan
| | - Noriko Sakuma
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
- Department of Respiratory Medicine, JR Tokyo General Hospital, 2-1-3, Yoyogi, Shibuya-ku, Tokyo, 151-8258, Japan
| | - Daisuke Ishii
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Jun Ikari
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| |
Collapse
|
3
|
Cernackova A, Tillinger A, Bizik J, Mravec B, Horvathova L. Dynamics of cachexia-associated inflammatory changes in the brain accompanying intra-abdominal fibrosarcoma growth in Wistar rats. J Neuroimmunol 2023; 376:578033. [PMID: 36738563 DOI: 10.1016/j.jneuroim.2023.578033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Accumulated data indicate that inflammation affecting brain structures participates in the development of cancer-related cachexia. However, the mechanisms responsible for the induction and progression of cancer-related neuroinflammation are still not fully understood. Therefore, we studied the time-course of neuroinflammation in selected brain structures and cachexia development in tumor-bearing rats. After tumor cells inoculation, specifically on the 7th, 14th, 21st, and 28th day of tumor growth, we assessed the presence of cancer-associated cachexia in rats. Changes in gene expression of inflammatory factors were studied in selected regions of the hypothalamus, brain stem, and circumventricular organs. We showed that the initial stages of cancer growth (7th and 14th day after tumor cells inoculation), are not associated with cachexia, or increased expression of inflammatory molecules in the brain. Even when we did not detect cachexia in tumor-bearing rats by the 21st day of the experiment, the inflammatory brain reaction had already started, as we found elevated levels of interleukin 1 beta, interleukin 6, tumor necrosis factor alpha, and glial fibrillary acidic protein mRNA levels in the nucleus of the solitary tract. Furthermore, we found increased interleukin 1 beta expression in the locus coeruleus and higher allograft inflammatory factor 1 expression in the vascular organ of lamina terminalis. Ultimately, the most pronounced manifestations of tumor growth were present on the 28th day post-inoculation of tumor cells. In these animals, we detected cancer-related cachexia and significant increases in interleukin 1 beta expression in all brain areas studied. We also observed significantly decreased expression of the glial cell activation markers allograft inflammatory factor 1 and glial fibrillary acidic protein in most brain areas of cachectic rats. In addition, we showed increased expression of cluster of differentiation 163 and cyclooxygenase 2 mRNA in the hypothalamic paraventricular nucleus, A1/C1 neurons, and area postrema of cachectic rats. Our data indicate that cancer-related cachexia is associated with complex neuroinflammatory changes in the brain. These changes can be found in both hypothalamic as well as extrahypothalamic structures, while their extent and character depend on the stage of tumor growth.
Collapse
Affiliation(s)
- Alena Cernackova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia; Department of Biological and Medical Sciences, Faculty of Physical Education and Sports, Comenius University in Bratislava, Slovakia
| | - Andrej Tillinger
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Bizik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Mravec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia.
| | - Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
4
|
Huisman C, Norgard MA, Levasseur PR, Krasnow SM, van der Wijst MGP, Olson B, Marks DL. Critical changes in hypothalamic gene networks in response to pancreatic cancer as found by single-cell RNA sequencing. Mol Metab 2022; 58:101441. [PMID: 35031523 PMCID: PMC8851272 DOI: 10.1016/j.molmet.2022.101441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Cancer cachexia is a devastating chronic condition characterized by involuntary weight loss, muscle wasting, abnormal fat metabolism, anorexia, and fatigue. However, the molecular mechanisms underlying this syndrome remain poorly understood. In particular, the hypothalamus may play a central role in cachexia, given that it has direct access to peripheral signals because of its anatomical location and attenuated blood-brain barrier. Furthermore, this region has a critical role in regulating appetite and metabolism. METHODS To provide a detailed analysis of the hypothalamic response to cachexia, we performed single-cell RNA-seq combined with RNA-seq of the medial basal hypothalamus (MBH) in a mouse model for pancreatic cancer. RESULTS We found many cell type-specific changes, such as inflamed endothelial cells, stressed oligodendrocyes and both inflammatory and moderating microglia. Lcn2, a newly discovered hunger suppressing hormone, was the highest induced gene. Interestingly, cerebral treatment with LCN2 not only induced many of the observed molecular changes in cachexia but also affected gene expression in food-intake decreasing POMC neurons. In addition, we found that many of the cachexia-induced molecular changes found in the hypothalamus mimic those at the primary tumor site. CONCLUSION Our data reveal that multiple cell types in the MBH are affected by tumor-derived factors or host factors that are induced by tumor growth, leading to a marked change in the microenvironment of neurons critical for behavioral, metabolic, and neuroendocrine outputs dysregulated during cachexia. The mechanistic insights provided in this study explain many of the clinical features of cachexia and will be useful for future therapeutic development.
Collapse
Affiliation(s)
- Christian Huisman
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States; Knight Cancer Institute, Oregon Health & Science University, Portland, United States.
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States
| | - Stephanie M Krasnow
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States; Medical Scientist Training Program, Oregon Health & Science University, Portland, United States
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States; Knight Cancer Institute, Oregon Health & Science University, Portland, United States; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, United States.
| |
Collapse
|
5
|
van der Ende M, Plas RLC, van Dijk M, Dwarkasing JT, van Gemerden F, Sarokhani A, Swarts HJM, van Schothorst EM, Grefte S, Witkamp RF, van Norren K. Effects of whole-body vibration training in a cachectic C26 mouse model. Sci Rep 2021; 11:21563. [PMID: 34732809 PMCID: PMC8566567 DOI: 10.1038/s41598-021-98665-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 12/02/2022] Open
Abstract
Targeted exercise combined with nutritional and pharmacological strategies is commonly considered to be the most optimal strategy to reduce the development and progression of cachexia. For COPD patients, this multi-targeted treatment has shown beneficial effects. However, in many, physical activity is seriously hampered by frailty and fatigue. In the present study, effects of whole-body-vibration-training (WBV) were investigated, as potential alternative to active exercise, on body mass, muscle mass and function in tumour bearing mice. Twenty-four male CD2F1-mice (6–8 weeks, 21.5 ± 0.2 g) were stratified into four groups: control, control + WBV, C26 tumour-bearing, and C26 tumour-bearing + WBV. From day 1, whole-body-vibration was daily performed for 19 days (15 min, 45 Hz, 1.0 g acceleration). General outcome measures included body mass and composition, daily activity, blood analysis, assessments of muscle histology, function, and whole genome gene expression in m. soleus (SOL), m. extensor digitorum longus (EDL), and heart. Body mass, lean and fat mass and EDL mass were all lower in tumour bearing mice compared to controls. Except from improved contractility in SOL, no effects of vibration training were found on cachexia related general outcomes in control or tumour groups, as PCA analysis did not result in a distinction between corresponding groups. However, analysis of transcriptome data clearly revealed a distinction between tumour and trained tumour groups. WBV reduced the tumour-related effects on muscle gene expression in EDL, SOL and heart. Gene Set Enrichment Analysis showed that these effects were associated with attenuation of the upregulation of the proteasome pathway in SOL. These data suggest that WBV had minor effects on cachexia related general outcomes in the present experimental set-up, while muscle transcriptome showed changes associated with positive effects. This calls for follow-up studies applying longer treatment periods of WBV as component of a multiple-target intervention.
Collapse
Affiliation(s)
- Miranda van der Ende
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands.,Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Rogier L C Plas
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Miriam van Dijk
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Jvalini T Dwarkasing
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Frans van Gemerden
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Attusa Sarokhani
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Hans J M Swarts
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaske van Norren
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Biswas AK, Acharyya S. Cancer-Associated Cachexia: A Systemic Consequence of Cancer Progression. ANNUAL REVIEW OF CANCER BIOLOGY 2020; 4:391-411. [DOI: 10.1146/annurev-cancerbio-030419-033642] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Cancer is a life-threatening disease that has plagued humans for centuries. The vast majority of cancer-related mortality results from metastasis. Indeed, the invasive growth of metastatic cancer cells in vital organs causes fatal organ dysfunction, but metastasis-related deaths also result from cachexia, a debilitating wasting syndrome characterized by an involuntary loss of skeletal muscle mass and function. In fact, about 80% of metastatic cancer patients suffer from cachexia, which often renders them too weak to tolerate standard doses of anticancer therapies and makes them susceptible to death from cardiac and respiratory failure. The goals of this review are to highlight important findings that help explain how cancer-induced systemic changes drive the development of cachexia and to discuss unmet challenges and potential therapeutic strategies targeting cachexia to improve the quality of life and survival of cancer patients.
Collapse
Affiliation(s)
- Anup K. Biswas
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Vinke P, Wesselink E, van Orten-Luiten W, van Norren K. The Use of Proton Pump Inhibitors May Increase Symptoms of Muscle Function Loss in Patients with Chronic Illnesses. Int J Mol Sci 2020; 21:ijms21010323. [PMID: 31947724 PMCID: PMC6981685 DOI: 10.3390/ijms21010323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022] Open
Abstract
Long-term use of proton pump inhibitors (PPIs) is common in patients with muscle wasting-related chronic diseases. We explored the hypothesis that the use of PPIs may contribute to a reduction in muscle mass and function in these patients. Literature indicates that a PPI-induced reduction in acidity of the gastrointestinal tract can decrease the absorption of, amongst others, magnesium. Low levels of magnesium are associated with impaired muscle function. This unwanted side-effect of PPIs on muscle function has been described in different disease backgrounds. Furthermore, magnesium is necessary for activation of vitamin D. Low vitamin D and magnesium levels together can lead to increased inflammation involved in muscle wasting. In addition, PPI use has been described to alter the microbiota’s composition in the gut, which might lead to increased inflammation. However, PPIs are often provided together with nonsteroidal anti-inflammatory drugs (NSAIDs), which are anti-inflammatory. In the presence of obesity, additional mechanisms could further contribute to muscle alterations. In conclusion, use of PPIs has been reported to contribute to muscle function loss. Whether this will add to the risk factor for development of muscle function loss in patients with chronic disease needs further investigation.
Collapse
Affiliation(s)
- Paulien Vinke
- Nutritional Biology, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (P.V.); (W.v.O.-L.)
- Heart Center Leipzig at University of Leipzig, Department of Internal Medicine/Cardiology, Strümpellstraße 39, 04289 Leipzig, Germany
| | - Evertine Wesselink
- Nutrition and Disease, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
| | - Wout van Orten-Luiten
- Nutritional Biology, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (P.V.); (W.v.O.-L.)
- Department of Geriatric Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716RP Ede, The Netherlands
| | - Klaske van Norren
- Nutritional Biology, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (P.V.); (W.v.O.-L.)
- Correspondence:
| |
Collapse
|
8
|
Lønbro S, Wiggins JM, Wittenborn T, Elming PB, Rice L, Pampo C, Lee JA, Siemann DW, Horsman MR. Reliability of blood lactate as a measure of exercise intensity in different strains of mice during forced treadmill running. PLoS One 2019; 14:e0215584. [PMID: 31050686 PMCID: PMC6499470 DOI: 10.1371/journal.pone.0215584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/04/2019] [Indexed: 12/21/2022] Open
Abstract
Exercise has long been known to be beneficial to human health. Studies aimed at understanding the effects of exercise specifically focus on predetermined exercise intensities defined by measuring the aerobic capacity of each individual. Many disease models involving animal training often establish aerobic capacity by using the maximal lactate steady state (MLSS), a widely used method in humans that has frequently been used in rodent studies. The MLSS is defined as the highest exercise intensity at which blood lactate concentration remains constant and is roughly equivalent to 70–80% of maximal aerobic capacity. Due to our up-coming experiments investigating the effect of different exercise intensities in specific strains of tumor-bearing mice, the aim of the present study was to determine the MLSS in athymic nude (NCr nu/nu and NMRI), CDF1, and C3H mice by treadmill running at increasing speeds. However, despite thorough exercise acclimation and the use of different exercise protocols and aversive stimuli, less than half of the experiments across strains pointed towards an established MLSS. Moreover, gently prodding the mice during low to moderate intensity running caused a 30–121% (p<0.05) increase in blood lactate concentration compared to running without stimulation, further questioning the use of lactate as a measure of exercise intensity. Overall, MLSS is difficult to determine and large variations of blood lactate levels were observed depending on the exercise protocol, mice handling strategy and strain. This should be considered when planning experiments in mice using forced exercise protocols.
Collapse
Affiliation(s)
- Simon Lønbro
- Dept. of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Dept. of Public Health, Section for Sports Science, Aarhus University, Aarhus, Denmark
- * E-mail:
| | - Jennifer M. Wiggins
- Dept. of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Thomas Wittenborn
- Dept. of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lori Rice
- Dept. of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Christine Pampo
- Dept. of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Jennifer A. Lee
- Dept. of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Dietmar W. Siemann
- Dept. of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Michael R. Horsman
- Dept. of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Abstract
OBJECTIVE The purpose of this study was to evaluate the relationship between sarcopenia and overall and progression-free survival in patients with colorectal cancer. MATERIALS AND METHODS This study was retrospective and complied with HIPAA. Patients with colorectal cancer who underwent CT at the time of and 6-18 months after diagnosis were included. Patients were followed for at least 5 years after diagnosis. Skeletal muscle index (SMI) and mean muscle attenuation of the psoas and paraspinal muscles at the L4 level determined the degree of sarcopenia. Composite measurements combining psoas and paraspinal muscles (total muscle) were also obtained. Univariate and multivariate Cox proportional hazard analysis was performed to evaluate the association between survival and changes in SMI and changes in attenuation. Kaplan-Meier analysis was also performed. RESULTS A total of 101 patients were included (mean age ± SD, 63.7 ± 13.7 years; 68 men, 33 women). The hazard ratios for overall survival were 2.27, 1.68, and 1.54 for changes in SMI of the psoas muscle, paraspinal muscle, and total muscle (all p < 0.05). The hazard ratios for overall survival were 1.14, 1.18, and 1.24 for changes in attenuation of the psoas muscle, paraspinal muscle, and total muscle, respectively (all p < 0.05). The hazard ratios for progression-free survival were 1.33, 1.41, and 1.23 for changes in SMI of the psoas muscle, paraspinal muscle, and total muscle (not statistically significant). The hazard ratios for progression-free survival were 1.10, 1.21, and 1.23 for changes in attenuation of the psoas muscle, paraspinal muscle, and total muscle, respectively (p < 0.05). Kaplan-Meier analysis showed significant differences in overall and progression-free survival based on sex-specific quartiles of muscle quantity and quality. CONCLUSION Progressive sarcopenia after diagnosis of colorectal cancer has a significant negative prognostic association with overall and progression-free survival.
Collapse
|
10
|
van Norren K, Dwarkasing JT, Witkamp RF. The role of hypothalamic inflammation, the hypothalamic-pituitary-adrenal axis and serotonin in the cancer anorexia-cachexia syndrome. Curr Opin Clin Nutr Metab Care 2017; 20:396-401. [PMID: 28708669 DOI: 10.1097/mco.0000000000000401] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW In cancer patients, the development of cachexia (muscle wasting) is frequently aggravated by anorexia (loss of appetite). Their concurrence is often referred to as anorexia-cachexia syndrome. This review focusses on the recent evidence underlining hypothalamic inflammation as key driver of these processes. Special attention is given to the involvement of hypothalamic serotonin. RECENT FINDINGS The anorexia-cachexia syndrome is directly associated with higher mortality in cancer patients. Recent reports confirm its severe impact on the quality of life of patients and their families.Hypothalamic inflammation has been shown to contribute to muscle and adipose tissue loss in cancer via central hypothalamic interleukine (IL)1β-induced activation of the hypothalamic-pituitary-adrenal axis. The resulting release of glucocorticoids directly stimulates catabolic processes in these tissues via activation of the ubiquitin-proteosome pathway. Next to this, hypothalamic inflammation has been shown to reduce food intake in cancer by triggering changes in orexigenic and anorexigenic responses via upregulation of serotonin availability and stimulation of its signalling pathways in hypothalamic tissues. This combination of reduced food intake and stimulation of tissue catabolism represents a dual mechanism by which hypothalamic inflammation contributes to the development and maintenance of anorexia and cachexia in cancer. SUMMARY Hypothalamic inflammation is a driving force in the development of the anorexia-cachexia syndrome via hypothalamic-pituitary-adrenal axis and serotonin pathway activation.
Collapse
Affiliation(s)
- Klaske van Norren
- aDivision of Human Nutrition, Nutrition and Pharmacology Group, Wageningen University, Wageningen bNutricia Research, Utrecht, the Netherlands
| | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Cancer anorexia is a negative prognostic factor and is broadly defined as the loss of the interest in food. However, multiple clinical domains contribute to the phenotype of cancer anorexia. The characterization of the clinical and molecular pathophysiology of cancer anorexia may enhance the efficacy of preventive and therapeutic strategies. RECENT FINDINGS Clinical trials showed that cancer anorexia should be considered as an umbrella encompassing different signs and symptoms contributing to appetite disruption in cancer patients. Loss of appetite, early satiety, changes in taste and smell are determinants of cancer anorexia, whose presence should be assessed in cancer patients. Interestingly, neuronal correlates of cancer anorexia-related symptoms have been revealed by brain imaging techniques. SUMMARY The pathophysiology of cancer anorexia is complex and involves different domains influencing eating behavior. Limiting the assessment of cancer anorexia to questions investigating changes in appetite may impede correct identification of the targets to address.
Collapse
Affiliation(s)
- Alessandro Laviano
- aDepartment of Clinical Medicine bDepartment of Clinical and Molecular Medicine, Sapienza University, Rome, Italy cCancer Metabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
12
|
Morley JE. Anorexia of ageing: a key component in the pathogenesis of both sarcopenia and cachexia. J Cachexia Sarcopenia Muscle 2017; 8:523-526. [PMID: 28452130 PMCID: PMC5566640 DOI: 10.1002/jcsm.12192] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 01/22/2023] Open
Abstract
The anorexia of aging was first recognized as a physiological syndrome 30 years ago. Its major causes are an alteration in fundal compliance with an increase in antral stretch and enhanced cholecystokinin activity leading to increased satiation.This anorexia leads to weight loss in aging persons and is one of the component causes of the aging related sarcopenia. This physiological anorexia also increases the risk of more severe anorexia when an older person has an increase in inflammatory cytokines such as occurs when they have an illness. This results in an increase in the anorexia due to cachexia in older persons.
Collapse
Affiliation(s)
- John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd., M238, St. Louis, MO, 63104, USA
| |
Collapse
|
13
|
Dwarkasing JT, Witkamp RF, Boekschoten MV, Ter Laak MC, Heins MS, van Norren K. Increased hypothalamic serotonin turnover in inflammation-induced anorexia. BMC Neurosci 2016; 17:26. [PMID: 27207102 PMCID: PMC4875640 DOI: 10.1186/s12868-016-0260-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 05/11/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. RESULTS In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. CONCLUSIONS Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.
Collapse
Affiliation(s)
- J T Dwarkasing
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands.
| | - R F Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands
| | - M V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands
| | - M C Ter Laak
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands
| | - M S Heins
- Brains On-line, P.O. Box 4030, 9701 EA, Groningen, The Netherlands
| | - K van Norren
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands
| |
Collapse
|
14
|
Konishi M, Ishida J, von Haehling S, Anker SD, Springer J. Nutrition in cachexia: from bench to bedside. J Cachexia Sarcopenia Muscle 2016; 7:107-9. [PMID: 27030816 PMCID: PMC4788973 DOI: 10.1002/jcsm.12111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/14/2016] [Indexed: 12/30/2022] Open
Abstract
As malnutrition is often present in cachexia, nutritional intervention has been one of the widely accepted strategies. A literature review of cachexia models with dietary interventions in the present issue of this journal pointed out that the majority of nutrient intervention studies were of n-3 fatty acid, mainly eicosapentaenoic acid and docosahexaenoic acid. Effect on protein catabolism and anti-inflammation are most pronounced benefits of n-3 fatty acid. The effectiveness of n-3 fatty acid may depend on control diet or even be attributed to the polyunsaturated fatty acid deficiency inadvertently produced in control group. However, there is not enough clinical evidence to support a benefit of n-3 fatty acid substitution in patients with cachexia. The second important result from this review is that the majority of studies did not provide information about dietary design or did not standardize design, content, source, and overall composition. To guide dietary design for researchers in preclinical studies, a model has been proposed in this review, which may be useful to predict the efficacy of new dietary intervention in cachexia science. From a clinical point of view, the limited effectiveness of nutritional support in cachexia may partly be explained by the multifactorial nature of this condition. Cachexia differs from malnutrition inasmuch as malnutrition can be reversed by adequate nutrition and/or by overcoming problems of absorption or utilization of nutrients, but cachexia cannot be successfully treated by nutrition alone. Multidisciplinary approach including the assessment and intervention in feeding, appetite, swallowing, exercise, psychosocial, and psychological issue may be needed to improve nutrition in patients with cachexia.
Collapse
Affiliation(s)
- Masaaki Konishi
- Innovative Clinical Trials, Department of Cardiology and Pneumology University Medical Centre Göttingen Göttingen Germany
| | - Junichi Ishida
- Innovative Clinical Trials, Department of Cardiology and Pneumology University Medical Centre Göttingen Göttingen Germany
| | - Stephan von Haehling
- Innovative Clinical Trials, Department of Cardiology and Pneumology University Medical Centre Göttingen Göttingen Germany
| | - Stefan D Anker
- Innovative Clinical Trials, Department of Cardiology and Pneumology University Medical Centre Göttingen Göttingen Germany
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology and Pneumology University Medical Centre Göttingen Göttingen Germany
| |
Collapse
|
15
|
Dwarkasing JT, Marks DL, Witkamp RF, van Norren K. Hypothalamic inflammation and food intake regulation during chronic illness. Peptides 2016; 77:60-6. [PMID: 26158772 DOI: 10.1016/j.peptides.2015.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/14/2015] [Accepted: 06/22/2015] [Indexed: 02/08/2023]
Abstract
Anorexia is a common symptom in chronic illness. It contributes to malnutrition and strongly affects survival and quality of life. A common denominator of many chronic diseases is an elevated inflammatory status, which is considered to play a pivotal role in the failure of food-intake regulating systems in the hypothalamus. In this review, we summarize findings on the role of hypothalamic inflammation on food intake regulation involving hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC). Furthermore, we outline the role of serotonin in the inability of these peptide based food-intake regulating systems to respond and adapt to changes in energy metabolism during chronic disease.
Collapse
Affiliation(s)
- J T Dwarkasing
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.
| | - D L Marks
- Department of Pediatric Endocrinology, Oregon Health & Sciences University, Portland, OR 97201, USA
| | - R F Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - K van Norren
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
16
|
Lee YM, Chang WC, Ma WL. Hypothesis: solid tumours behave as systemic metabolic dictators. J Cell Mol Med 2016; 20:1076-85. [PMID: 26843513 PMCID: PMC4882994 DOI: 10.1111/jcmm.12794] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
Current knowledge regarding mechanisms of carcinogenesis in human beings centres around the accumulation of genetic instability, amplified cellular signalling, disturbed cellular energy metabolism and microenvironmental regulation governed by complicated cell-cell interactions. In this article, we provide an alternative view of cancer biology. We propose that cancer behaves as a systemic dictator that interacts with tissues throughout the body to control their metabolism and eventually homeostasis. The mechanism of development of this endocrine organ-like tumour (EOLT) tissue might be the driving force for cancer progression. Here, we review the literature that led to the development of this hypothesis. The EOLT phenotype can be defined as a tumour that alters systemic homeostasis. The literature indicates that the EOLT phenotype is present throughout cancer progression. The feedback mechanism that governs the interaction between tumours and various organs is unknown. We believe that investigating the mechanism of EOLT development may advance the current knowledge of regulation within the tumour macroenvironment and consequently lead to new diagnostic methods and therapy.
Collapse
Affiliation(s)
- Yang-Ming Lee
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Endocrinology and Metabolism, Changhua Christian Hospital, Changhua, Taiwan
| | - Wei-Chun Chang
- Sex Hormone Research Center, Department of Gynecology and Obstetric, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, Department of Gynecology and Obstetric, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
17
|
Ezeoke CC, Morley JE. Pathophysiology of anorexia in the cancer cachexia syndrome. J Cachexia Sarcopenia Muscle 2015; 6:287-302. [PMID: 26675762 PMCID: PMC4670736 DOI: 10.1002/jcsm.12059] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
Anorexia is commonly present in persons with cancer and a major component of cancer cachexia. There are multiple causes of anorexia in cancer. Peripherally, these can be due to (i) substances released from or by the tumour, e.g. pro-inflammatory cytokines, lactate, and parathormone-related peptide; (ii) tumours causing dysphagia or altering gut function; (iii) tumours altering nutrients, e.g. zinc deficiency; (iv) tumours causing hypoxia; (v) increased peripheral tryptophan leading to increased central serotonin; or (vi) alterations of release of peripheral hormones that alter feeding, e.g. peptide tyrosine tyrosine and ghrelin. Central effects include depression and pain, decreasing the desire to eat. Within the central nervous system, tumours create multiple alterations in neurotransmitters, neuropeptides, and prostaglandins that modulate feeding. Many of these neurotransmitters appear to produce their anorectic effects through the adenosine monophosphate kinase/methylmalonyl coenzyme A/fatty acid system in the hypothalamus. Dynamin is a guanosine triphosphatase that is responsible for internalization of melanocortin 4 receptors and prostaglandin receptors. Dynamin is up-regulated in a mouse model of cancer anorexia. A number of drugs, e.g. megestrol acetate, cannabinoids, and ghrelin agonists, have been shown to have some ability to be orexigenic in cancer patients.
Collapse
Affiliation(s)
- Chukwuemeka Charles Ezeoke
- United States Navy Medical Corps and PGY-2, Internal Medicine Residency, Saint Louis University HospitalSt. Louis, MO, USA
| | - John E Morley
- Division of Geriatrics, Saint Louis University School of Medicine1402 S. Grand Blvd., M238, St. Louis, MO, 63104, USA
- Division of Endocrinology, Saint Louis University School of MedicineSt. Louis, MO, USA
| |
Collapse
|
18
|
van Norren K, Rusli F, van Dijk M, Lute C, Nagel J, Dijk FJ, Dwarkasing J, Boekschoten MV, Luiking Y, Witkamp RF, Müller M, Steegenga WT. Behavioural changes are a major contributing factor in the reduction of sarcopenia in caloric-restricted ageing mice. J Cachexia Sarcopenia Muscle 2015; 6:253-68. [PMID: 26401472 PMCID: PMC4575557 DOI: 10.1002/jcsm.12024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/21/2014] [Accepted: 01/05/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In rodent models, caloric restriction (CR) with maintenance of adequate micronutrient supply has been reported to increase lifespan and to reduce age-induced muscle loss (sarcopenia) during ageing. In the present study, we further investigated effects of CR on the onset and severity of sarcopenia in ageing male C57BL/6 J mice. The aim of this study was to investigate whether CR induces changes in behaviour of the animals that could contribute to the pronounced health-promoting effects of CR in rodents. In addition, we aimed to investigate in more detail the effects of CR on the onset and severity of sarcopenia. METHODS The mice received either an ad libitum diet (control) or a diet matching 70 E% of the control diet (C). Daily activity, body composition (dual energy X-ray absorptiometry), grip strength, insulin sensitivity, and general agility and balance were determined at different ages. Mice were killed at 4, 12, 24, and 28 months. Skeletal muscles of the hind limb were dissected, and the muscle extensor digitorum longus muscle was used for force-frequency measurements. The musculus tibialis was used for real-time quantitative PCR analysis. RESULTS From the age of 12 months, CR animals were nearly half the weight of the control animals, which was mainly related to a lower fat mass. In the control group, the hind limb muscles showed a decline in mass at 24 or 28 months of age, which was not present in the CR group. Moreover, insulin sensitivity (oral glucose tolerance test) was higher in this group and the in vivo and ex vivo grip strength did not differ between the two groups. In the hours before food was provided, CR animals were far more active than control animals, while total daily activity was not increased. Moreover, agility test indicated that CR animals were better climbers and showed more climbing behaviours. CONCLUSIONS Our study confirms earlier findings that in CR animals less sarcopenia is present. The mice on the CR diet, however, showed specific behavioural changes characterized by higher bursts of activity within a short time frame before consumption of a 70 E% daily meal. We hypothesize that the positive effects of CR on muscle maintenance in rodents are not merely a direct consequence of a lower energy intake but also related to a more active behaviour in a specific time frame. The burst of activity just before immediate start of eating, might lead to a highly effective use of the restricted protein sources available.
Collapse
Affiliation(s)
- Klaske van Norren
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University Wageningen, The Netherlands ; Nutricia Research Utrecht, The Netherlands
| | - Fenni Rusli
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University Wageningen, The Netherlands
| | | | - Carolien Lute
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University Wageningen, The Netherlands
| | | | | | - Jvalini Dwarkasing
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University Wageningen, The Netherlands
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University Wageningen, The Netherlands
| | | | - Renger F Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University Wageningen, The Netherlands
| | - Michael Müller
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University Wageningen, The Netherlands
| | - Wilma T Steegenga
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University Wageningen, The Netherlands
| |
Collapse
|
19
|
Dwarkasing JT, Boekschoten MV, Argilès JM, van Dijk M, Busquets S, Penna F, Toledo M, Laviano A, Witkamp RF, van Norren K. Differences in food intake of tumour-bearing cachectic mice are associated with hypothalamic serotonin signalling. J Cachexia Sarcopenia Muscle 2015; 6:84-94. [PMID: 26136415 PMCID: PMC4435100 DOI: 10.1002/jcsm.12008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/11/2014] [Accepted: 10/29/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Anorexia is a common symptom among cancer patients and contributes to malnutrition and strongly impinges on quality of life. Cancer-induced anorexia is thought to be caused by an inability of food intake-regulating systems in the hypothalamus to respond adequately to negative energy balance during tumour growth. Here, we show that this impaired response of food-intake control is likely to be mediated by altered serotonin signalling and by failure in post-transcriptional neuropeptide Y (NPY) regulation. METHODS Two tumour cachectic mouse models with different food intake behaviours were used: a C26-colon adenocarcinoma model with increased food intake and a Lewis lung carcinoma model with decreased food intake. This contrast in food intake behaviour between tumour-bearing (TB) mice in response to growth of the two different tumours was used to distinguish between processes involved in cachexia and mechanisms that might be important in food intake regulation. The hypothalamus was used for transcriptomics (affymetrix chips). RESULTS In both models, hypothalamic expression of orexigenic NPY was significantly higher compared with controls, suggesting that this change does not directly reflect food intake status but might be linked to negative energy balance in cachexia. Expression of genes involved in serotonin signalling showed to be different between C26-TB mice and Lewis lung carcinoma-TB mice and was inversely associated with food intake. In vitro, using hypothalamic cell lines, serotonin repressed neuronal hypothalamic NPY secretion while not affecting messenger NPY expression, suggesting that serotonin signalling can interfere with NPY synthesis, transport, or secretion. CONCLUSIONS Altered serotonin signalling is associated with changes in food intake behaviour in cachectic TB mice. Serotonins' inhibitory effect on food intake under cancer cachectic conditions is probably via affecting the NPY system. Therefore, serotonin regulation might be a therapeutic target to prevent the development of cancer-induced eating disorders.
Collapse
Affiliation(s)
- Jvalini T Dwarkasing
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Joseph M Argilès
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, University of Barcelona, Barcelona, Spain
| | | | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, University of Barcelona, Barcelona, Spain
| | - Fabio Penna
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, University of Barcelona, Barcelona, Spain
| | - Miriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, University of Barcelona, Barcelona, Spain
| | | | - R F Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Klaske van Norren
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.,Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
20
|
Norden DM, Devine R, Bicer S, Jing R, Reiser PJ, Wold LE, Godbout JP, McCarthy DO. Fluoxetine prevents the development of depressive-like behavior in a mouse model of cancer related fatigue. Physiol Behav 2014; 140:230-5. [PMID: 25554480 DOI: 10.1016/j.physbeh.2014.12.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023]
Abstract
Cancer patients frequently suffer from fatigue, a complex syndrome associated with tiredness and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, escalates during treatment, and can persist for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. We have previously shown that increased pro-inflammatory cytokine expression in the brain contributes to depressive- and fatigue-like behaviors in a mouse model of CRF. Inflammatory cytokines increase the activity of indoleamine 2,3-dioxygenase (IDO) and kynurenine 3-monooxygenase (KMO), which competitively reduce serotonin synthesis. Reduced serotonin availability in the brain and increased production of alternative neuroactive metabolites of tryptophan are thought to contribute to the development of depression and fatigue. The purpose of this study was to determine the effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on brain cytokines and behavioral measures of fatigue and depression in tumor-bearing mice. Here we show that tumor growth increased brain expression of pro-inflammatory cytokines and KMO. Treatment with fluoxetine had no effect on tumor growth, muscle wasting, fatigue behavior, or cytokine expression in the brain. Fluoxetine, however, reduced depressive-like behaviors in tumor bearing mice. In conclusion, our data confirm that increased brain expression of pro-inflammatory cytokines is associated with tumor-induced fatigue- and depressive-like behaviors. However, it is possible to separate the effects of tumor growth on mood and fatigue-like behaviors using SSRIs such as fluoxetine.
Collapse
Affiliation(s)
- Diana M Norden
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave., Columbus, OH, United States
| | - Raymond Devine
- Department of Physiology and Cell Biology, 370 W. 9th Ave., The Ohio State University, Columbus, OH, United States
| | - Sabahattin Bicer
- Division of Biosciences, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH, United States
| | - Runfeng Jing
- College of Nursing, The Ohio State University, 1585 Neil Ave., Columbus, OH, United States
| | - Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH, United States
| | - Loren E Wold
- Department of Physiology and Cell Biology, 370 W. 9th Ave., The Ohio State University, Columbus, OH, United States; College of Nursing, The Ohio State University, 1585 Neil Ave., Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave., Columbus, OH, United States; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr. Columbus, OH, United States
| | - Donna O McCarthy
- College of Nursing, Marquette University Milwaukee, WI, United States.
| |
Collapse
|