1
|
Huang C, Li W, Shen C, Jiang B, Zhang K, Li X, Zhong W, Li Z, Chen Z, Chen C, Jian X, Liu X, Huang H, Yang L, Yu B. YAP1 facilitates the pathogenesis of psoriasis via modulating keratinocyte proliferation and inflammation. Cell Death Dis 2025; 16:186. [PMID: 40108109 PMCID: PMC11923178 DOI: 10.1038/s41419-025-07521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Psoriasis is an autoinflammatory skin disease characterized by the abnormal activation of epidermal keratinocytes. The Hippo-YAP pathway is an evolutionarily conserved pathway that plays important roles in organ size control and tumorigenesis. Recently, accumulating evidence demonstrated that YAP1, the core downstream component of Hippo-YAP pathway, was up-regulated in psoriasis patients, suggesting its possible role in psoriasis development. However, its precise function and mechanism in psoriasis pathogenesis are still not well-clarified. In the present study, we confirmed the up-regulation of YAP1 in psoriasis keratinocytes by measuring its expression in psoriatic patient skins, psoriatic-like cellular model, and IMQ-induced mouse model. Further functional studies showed that YAP1 promoted keratinocyte proliferation and inflammation in vitro. Meanwhile, VP, a selective YAP1 antagonist, inhibited keratinocyte proliferation and inflammatory factor production in a dose-dependent way. Moreover, intradermal injection of si-Yap1 or VP hindered psoriasis development by impeding epidermal hyperplasia and relieving systemic inflammatory response in the IMQ-induced mouse model. Therefore, our findings suggest that YAP1 plays a crucial role in psoriasis pathogenesis through modulating keratinocyte activation and may serve as a novel target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| | - Wenting Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- The Digestive and Reproductive System Cancers Precise Prevention Engineering Research Center of Jiangsu Province, Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai' an, Jiangsu, China
| | - Changbing Shen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bin Jiang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Kaoyuan Zhang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiahong Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Weilong Zhong
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Zizhuo Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Zhenzhen Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Chaofeng Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xingling Jian
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaoming Liu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Haiyan Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Lili Yang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| |
Collapse
|
2
|
Guo ZF, Tongmuang N, Li C, Zhang C, Hu L, Capreri D, Zuo MX, Summer R, Sun J. Inhibiting endothelial cell Mst1 attenuates acute lung injury in mice. JCI Insight 2024; 9:e178208. [PMID: 39253972 PMCID: PMC11385092 DOI: 10.1172/jci.insight.178208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
Lung endothelium plays a pivotal role in the orchestration of inflammatory responses to acute pulmonary insults. Mammalian sterile 20-like kinase 1 (Mst1) is a serine/threonine kinase that has been shown to play an important role in the regulation of apoptosis, stress responses, and organ growth. This study investigated the role of Mst1 in lung endothelial activation and acute lung injury (ALI). We found that Mst1 was significantly activated in inflamed lung endothelial cells (ECs) and mouse lung tissues. Overexpression of Mst1 promoted nuclear factor κ-B (NF-κB) activation through promoting JNK and p38 activation in lung ECs. Inhibition of Mst1 by either its dominant negative form (DN-Mst1) or its pharmacological inhibitor markedly attenuated cytokine-induced expression of cytokines, chemokines, and adhesion molecules in lung ECs. Importantly, in a mouse model of lipopolysaccharide-induced (LPS-induced) ALI, both deletion of Mst1 in lung endothelium and treatment of WT mice with a pharmacological Mst1 inhibitor significantly protected mice from LPS-induced ALI. Together, our findings identified Mst1 kinase as a key regulator in controlling lung EC activation and suggest that therapeutic strategies aimed at inhibiting Mst1 activation might be effective in the prevention and treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Zhi-Fu Guo
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai
| | - Nopprarat Tongmuang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chao Li
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chen Zhang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Louis Hu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniel Capreri
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mei-Xing Zuo
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ross Summer
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Kong H, Han JJ, Gorbachev D, Zhang XA. Role of the Hippo pathway in autoimmune diseases. Exp Gerontol 2024; 185:112336. [PMID: 38042379 DOI: 10.1016/j.exger.2023.112336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
The immune system is an important defense against diseases, and it is essential to maintain the homeostasis of the body's internal environment. Under normal physiological conditions, the steady state of the immune system should be sustained to play normal immune response and immune function. Exploring the molecular mechanism of maintaining immune homeostasis under physiological and pathological conditions will provides understanding of the pathogenesis of autoimmune diseases, infections, metabolic disorders, and tumors, as well as new ideas and molecular targets for the prevention and treatment of these diseases. Hippo signaling pathway can not only regulate immune cells such as macrophages, T cells and dendritic cells, but also interact with immune-related signaling pathways such as NF-kB signaling pathway, TGF-β signaling pathway and Toll-like receptor signaling pathway, so as to resist the internal environment disorder caused by the invasion of exogenous pathogenic microorganisms and maintain the internal environment stability and physiological balance of the body. Hippo signaling pathway is also involved in the pathological process of immune system-related diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. Hippo pathway is closely related to organ development, stem cell biology, regeneration, and tumor biology. It affects cell differentiation by participating in extracellular and intracellular physiological signal reactions, sensing cell environment, and coordinating cell reactions. This pathway is crucial in maintaining immune homeostasis. This review summarizes the mechanism of Hippo pathway in different immune cells and some autoimmune diseases and the interaction between different immune signaling pathways and Hippo signaling pathway. It aims to explore the role of Hippo in autoimmune diseases and provide theoretical and practical basis for the treatment of autoimmune diseases through Hippo signaling pathway.
Collapse
Affiliation(s)
- Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Juan-Juan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China.
| |
Collapse
|
4
|
Li T, Wen Y, Lu Q, Hua S, Hou Y, Du X, Zheng Y, Sun S. MST1/2 in inflammation and immunity. Cell Adh Migr 2023; 17:1-15. [PMID: 37909712 PMCID: PMC10761064 DOI: 10.1080/19336918.2023.2276616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
The mammalian Sterile 20-like kinase 1/2 (MST1/2) belongs to the serine/threonine (GC) protein kinase superfamily. Collective studies confirm the vital role MST1/2 in inflammation and immunity. MST1/2 is closely related to the progress of inflammation. Generally, MST1/2 aggravates the inflammatory injury through MST1-JNK, MST1-mROS, MST1-Foxo3, and NF-κB pathways, as well as several regulatory factors such as tumor necrosis factor-α (TNF-α), mitochondrial extension factor 1 (MIEF1), and lipopolysaccharide (LPS). Moreover, MST1/2 is also involved in the regulation of immunity to balance immune activation and tolerance by regulating MST1/2-Rac, MST1-Akt1/c-myc, MST1-Foxos, MST1-STAT, Btk pathways, and lymphocyte function-related antigen 1 (LFA-1), which subsequently prevents immunodeficiency syndrome and autoimmune diseases. This article reviews the effects of MST1/2 on inflammation and immunity.
Collapse
Affiliation(s)
- Tongfen Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qiongfen Lu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaohua Du
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Guo ZF, Tongmuang N, Li C, Zhang C, Hu L, Capreri D, Zuo MX, Summer R, Sun J. Inhibiting endothelial cell Mst1 attenuates acute lung injury in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559864. [PMID: 37808846 PMCID: PMC10557750 DOI: 10.1101/2023.09.27.559864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background Lung endothelium plays a pivotal role in the orchestration of inflammatory and injury responses to acute pulmonary insults. Mammalian sterile 20-like kinase 1 (Mst1), a mammalian homolog of Hippo, is a serine/threonine kinase that is ubiquitously expressed in many tissues and has been shown to play an important role in the regulation of apoptosis, inflammation, stress responses, and organ growth. While Mst1 exhibits high expression in the lung, its involvement in the endothelial response to pulmonary insults remains largely unexplored. Methods Mst1 activity was assessed in lung endothelium by western blot. Mst1 endothelial specific knockout mice and a pharmacological inhibitor were employed to assess the effects of Mst1 on homeostatic and lipopolysaccharide (LPS)-induced endothelial responses. Readouts for these studies included various assays, including NF-κB activation and levels of various inflammatory cytokines and adhesion molecules. The role of Mst1 in lung injury was evaluated in a LPS-induced murine model of acute lung injury (ALI). Results Mst1 phosphorylation was significantly increased in lung endothelial cells after exposure to tumor necrosis factor (TNF)-alpha (TNF-α) and mouse lung tissues after LPS exposure. Overexpression of full length Mst1 or its kinase domain promoted nuclear factor kappaB (NF-κB) activation through promoting JNK and p38 activation, whereas dominant negative forms of Mst1 (DN-Mst1) attenuated endothelial responses to TNF-α and interleukin-1β. Consistent with this, targeted deletion of Mst1 in lung endothelium reduced lung injury to LPS in mice. Similarly, wild-type mice were protected from LPS-induced lung injury following treatment with a pharmacological inhibitor of Mst1/2. Conclusions Our findings identified Mst1 kinase as a key regulator in the control of lung EC activation and suggest that therapeutic strategies aimed at inhibiting Mst1 activation might be effective in the prevention and treatment of lung injury to inflammatory insults.
Collapse
|
6
|
Wang Q, Wang Y, Liu Q, Chu Y, Mi R, Jiang F, Zhao J, Hu K, Luo R, Feng Y, Lee H, Zhou D, Mi J, Deng R. MALT1 regulates Th2 and Th17 differentiation via NF-κB and JNK pathways, as well as correlates with disease activity and treatment outcome in rheumatoid arthritis. Front Immunol 2022; 13:913830. [PMID: 35967391 PMCID: PMC9367691 DOI: 10.3389/fimmu.2022.913830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Objective MALT1 regulates immunity and inflammation in multiple ways, while its role in rheumatoid arthritis (RA) is obscure. This study aimed to investigate the relationship of MALT1 with disease features, treatment outcome, as well as its effect on Th1/2/17 cell differentiation and underlying molecule mechanism in RA. Methods Totally 147 RA patients were enrolled. Then their blood Th1, Th2, and Th17 cells were detected by flow cytometry. Besides, PBMC MALT1 expression was detected before treatment (baseline), at week (W) 6, W12, and W24. PBMC MALT1 in 30 osteoarthritis patients and 30 health controls were also detected. Then, blood CD4+ T cells were isolated from RA patients, followed by MALT1 overexpression or knockdown lentivirus transfection and Th1/2/17 polarization assay. In addition, IMD 0354 (NF-κB antagonist) and SP600125 (JNK antagonist) were also added to treat CD4+ T cells. Results MALT1 was increased in RA patients compared to osteoarthritis patients and healthy controls. Meanwhile, MALT1 positively related to CRP, ESR, DAS28 score, Th17 cells, negatively linked with Th2 cells, but did not link with other features or Th1 cells in RA patients. Notably, MALT1 decreased longitudinally during treatment, whose decrement correlated with RA treatment outcome (treatment response, low disease activity, or disease remission). In addition, MALT1 overexpression promoted Th17 differentiation, inhibited Th2 differentiation, less affected Th1 differentiation, activated NF-κB and JNK pathways in RA CD4+ T cells; while MALT1 knockdown exhibited the opposite effect. Besides, IMD 0354 and SP600125 addition attenuated MALT1’s effect on Th2 and Th17 differentiation. Conclusion MALT1 regulates Th2 and Th17 differentiation via NF-κB and JNK pathways, as well as correlates with disease activity and treatment outcome in RA.
Collapse
Affiliation(s)
- Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Yapeng Wang
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Qingyang Liu
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Ying Chu
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Rui Mi
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Fengying Jiang
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Jingjing Zhao
- Department of Laboratory and Statistics, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Kelong Hu
- Department of Laboratory and Statistics, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Ran Luo
- Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Yufeng Feng
- Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
- Department of Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Harrison Lee
- Department of Rheumatology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Dong Zhou
- Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Jingyi Mi
- Department of Sport Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
- *Correspondence: Ruoyu Deng, ; Jingyi Mi,
| | - Ruoyu Deng
- Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
- Department of Life Science, The Fudan University, Shanghai, China
- *Correspondence: Ruoyu Deng, ; Jingyi Mi,
| |
Collapse
|
7
|
Li R, Lin W, Kuang Y, Wang J, Xu S, Shen C, Qiu Q, Shi M, Xiao Y, Liang L, Xu H. cGAS/STING signaling in the regulation of rheumatoid synovial aggression. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:431. [PMID: 35571412 PMCID: PMC9096383 DOI: 10.21037/atm-21-4533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/19/2021] [Indexed: 01/11/2023]
Abstract
Background Fibroblast-like synoviocytes (FLSs) play a critical role in promoting synovial aggression and joint destruction in rheumatoid arthritis (RA). Cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) signaling plays an important role in controlling a series of cellular biological processes. However, it is still unclear whether cGAS/STING signaling regulates rheumatoid synovial aggression. Methods Cell migration and invasion were detected using a Transwell chamber. Gene expression was measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and protein expression was detected by western blotting. Reactive oxygen species (ROS) levels were measured by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) probe. F-actin staining and immunofluorescence assays were used to investigate lamellipodia formation and nuclear translocation, respectively. A severe combined immunodeficiency (SCID) mouse model was established to observe the migration and invasion of RA FLSs in vivo. Results Our results showed that cytosolic double-stranded DNA (dsDNA)-induced cGAS/STING activation promoted the in vitro migration and invasion of RA FLSs. Moreover, RA FLSs treated with cGAS or STING short hairpin RNA (shRNA) exhibited reduced invasion into cartilage in the SCID model. Mechanistically, we determined that cGAS/STING activation leads to increased mitochondrial ROS levels, and thereby increases phosphorylation of mammalian sterile 20-like kinase 1 (MST1), a core component of the Hippo pathway, subsequently promoting activation of forkhead box1 (FOXO1). MST1 and FOXO1 knockdown also diminished the migration and invasion of RA FLSs. Conclusions Our findings suggest that cGAS/STING signaling has an important role in regulating rheumatoid synovial aggression and that targeting cGAS/STING may represent a novel potential therapy for RA.
Collapse
Affiliation(s)
- Ruiru Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Lin
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Kuang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingnan Wang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Siqi Xu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuyu Shen
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Qiu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maohua Shi
- Department of Rheumatology, the First People's Hospital of Foshan, Foshan, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Linh NTT, Giang NH, Lien NTK, Trang BK, Trang DT, Ngoc NT, Nghia VX, My LT, Mao CV, Hoang NH, Xuan NT. Association of PSORS1C3, CARD14 and TLR4 genotypes and haplotypes with psoriasis susceptibility. Genet Mol Biol 2022; 45:e20220099. [DOI: 10.1590/1678-4685-gmb-2022-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Le Tra My
- Institute of Genome Research, Vietnam
| | - Can Van Mao
- Vietnam Military Medical University, Vietnam
| | - Nguyen Huy Hoang
- University of Science and Technology, Vietnam; Institute of Genome Research, Vietnam
| | - Nguyen Thi Xuan
- University of Science and Technology, Vietnam; Institute of Genome Research, Vietnam
| |
Collapse
|