1
|
Mojtahedi A, Ghaderi S, Ghiasi M, Halabian R, Dehghan H, Padash A, Eftekhari E, Salimi A. Investigating the enhancement of neural differentiation of adipose-derived mesenchymal stem cell with Foeniculum vulgare nanoemulsions: An in vitro research. Tissue Cell 2025; 94:102806. [PMID: 40022910 DOI: 10.1016/j.tice.2025.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Neurons, distributed throughout the body, regulate various bodily functions. The recovery of the nervous system is often slow and can be irreversible. Currently, the approach of using mesenchymal stem cells (MSCs) in conjunction with conventional treatments for nervous system injuries is being explored. Nanoemulsions are systems designed for the nanoscale delivery of drug cargoes. Foeniculum vulgare (F. vulgare), a medicinal plant long utilized in complementary medicine, is the focus of this study. The aim is to utilize nanoemulsions of fennel to induce the differentiation of MSCs into neural-like cells in vitro. MATERIALS AND METHODS Human adipose-derived mesenchymal stem cells (hADSCs) were commercially purchased. These cells were cultured in DMEM medium containing 10 % fetal bovine serum and 1 % penicillin-streptomycin antibiotic. Based on a sequential extraction method, n-hexane (Hex), ethyl acetate (EtAc), and ethanolic extracts were obtained from the seeds of F. vulgare. To prepare the F. vulgare extract nanoemulsion, the aqueous phase (distilled water), the oily part (F. vulgare extract), Span 80 and Tween 20 were used. The optimal dose of F. vulgare nanoemulsion was determined using the MTT assay and acridine orange/ethidium bromide (AO/EB) staining. Neural differentiation was induced using a specialized differentiation medium on the MSCs, with the prepared nanoemulsions acting as inducers. The neural differentiation of the human differentiated hADSCs was studied and evaluated through Real-time PCR and immunocytochemistry (ICC) techniques on days 7 and 14. RESULTS The results obtained from the MTT and AO/EB tests indicated that the optimal dose of F. vulgare nanoemulsions is 1 μg/ml. Analysis of neural differentiation index gene expression revealed a significant (P ≤ 0.05) upregulation of MAP-2, β-tubulin III, and NSE genes on days 7 and 14 following treatment with the nanoemulsions. It is noteworthy that the nanoemulsion prepared from the hexane extract of the plant showed a significant increase in the expression of marker genes in the process of neural differentiation. Protein expression analysis demonstrated an increase in MAP-2, β-tubulin III, and NSE (gamma enolase) proteins in response to the nanoemulsion inducers compared to the control group (TCPS). DISCUSSION Overall, our findings indicate that F. vulgare nanoemulsions have a positive effect on the expression of genes and proteins related to neural differentiation in hADSCs. The proposed protocol may serve as a potential therapeutic strategy in complementary medicine for patients seeking to improve injuries to the nervous system. However, further studies and performance measurements are necessary in future research to confirm these results.
Collapse
Affiliation(s)
- Arya Mojtahedi
- Department of Biology, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Shima Ghaderi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Cardiovascular Research Center, Rajaie Cardiovascular Institute, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Dehghan
- Department of Basic Sciences, Medicinal Plants Research Center, Shahed University, Tehran, Iran
| | - Arash Padash
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Eftekhari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Taherianrad F, Dehghan H, Abbasabadi N, Padash A, Tehrani HJ, Tat M, Dayani A, Salimi A. Melissa officinalis extract nanoemulsion, Caffeic acid and Quercetin as a novel inducer for investigating neural differentiation of human Wharton's jelly mesenchymal stem cells. Tissue Cell 2025; 95:102815. [PMID: 40073469 DOI: 10.1016/j.tice.2025.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Cell therapy utilizing mesenchymal stem cells, which have the ability to differentiate into different lineages, has garnered significant attention in recent years. Melissa officinalis is rich in biologically active compounds and exhibits antioxidant activity, antimicrobial properties, and sedative effects. Nanoemulsions can facilitate the effective transfer of substances and also protect drugs and biological materials from environmental factors. The aim of the present study is to investigate the role of Melissa officinalis extract nanoemulsion and the active ingredients of caffeic acid and quercetin as inducers in increasing the efficiency of differentiation of mesenchymal stem cells into neural cells in a laboratory environment. MATERIALS AND METHODS Human WJMSCs were cultured in the basic culture medium consisting of: Hight glucose DMEM, 10 % FBS and 1 % penicillin/streptomycin. The alcoholic extract of Melissa officinalis was extracted and its nanoemulsion was prepared along with two other effective substances. Next, zeta potential and size of nanoparticles were measured by Dynamic light scattering (DLS) technique. The optimal dose of all three material was calculated by MTT (3-4,5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide) assay and Acridine orange-ethidium bromide (AO/EB) staining. In the following, neural differentiation was investigated using Real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR) and immunocytochemistry (ICC) techniques on days 7 and 14. RESULTS The results obtained from MTT and AO/EB assays showed that the optimal dose of nanoemulsion M. officinalis, caffeic acid and quercetin is 150 μg/ml, 75 μg/ml and 25 μg/ml, respectively. The ideal particle size for nanoemulsion is below 100 nm. The zeta potential of the M. officinalis extract nanoemulsion was reported to be -9.45 and the average particle size was 17.76 nm. The results of this study indicated that the expression of neural marker genes (MAP-2, β-tubulin III and NSE) and proteins (MAP-2, β-tubulin III and Gamma-enolase) increased in differentiated cells treated with the synthesized nanoemulsion compared to the control group on days 7 and 14 (P ≤ 0.05). CONCLUSION In general, our results showed that M. officinalis extract nanoemulsion, caffeic acid and quercetin caused induction of neural differentiation mechanism in human WJ-MSCs.
Collapse
Affiliation(s)
- Fatemeh Taherianrad
- Department of Cellular and Molecular biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad university, Tehran, Iran
| | - Hossein Dehghan
- Department of Basic Sciences, Medicinal Plants Research Center, Shahed University, Tehran, Iran
| | - Nafiseh Abbasabadi
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Arash Padash
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hora Jalali Tehrani
- Department of Developmental Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad university, Tehran, Iran
| | - Mahdi Tat
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abdolreza Dayani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Hemati S, Ghiasi M, Salimi A. Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells on Composite Polymeric Scaffolds: A Review. Curr Stem Cell Res Ther 2025; 20:33-49. [PMID: 38315659 DOI: 10.2174/011574888x263333231218065453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/07/2024]
Abstract
The mesenchymal stem cells (MSCs) are the fundamental part of bone tissue engineering for the emergence of reconstructive medicine. Bone tissue engineering has recently been considered a promising strategy for treating bone diseases and disorders. The technique needs a scaffold to provide an environment for cell attachment to maintain cell function and a rich source of stem cells combined with appropriate growth factors. MSCs can be isolated from adipose tissue (ASCs), bone marrow (BM-MSCs), or umbilical cord (UC-MSCs). In the present study, the potential of ASCs to stimulate bone formation in composite polymeric scaffolds was discussed and it showed that ASCs have osteogenic ability in vitro. The results also indicated that the ASCs have the potential for rapid growth, easier adipose tissue harvesting with fewer donor site complications and high proliferative capacity. The osteogenic differentiation capacity of ASCs varies due to the culture medium and the addition of factors that can change signaling pathways to increase bone differentiation. Furthermore, gene expression analysis has a significant impact on improving our understanding of the molecular pathways involved in ASCs and, thus, osteogenic differentiation. Adding some drugs, such as dexamethasone, to the biomaterial composite also increases the formation of osteocytes. Combining ASCs with scaffolds synthesized from natural and synthetic polymers seems to be an effective strategy for bone regeneration. Applying exopolysaccharides, such as schizophyllan, chitosan, gelatin, and alginate in composite scaffolds enhances the osteogenesis potential of ASCs in bone tissue regeneration.
Collapse
Affiliation(s)
- Saideh Hemati
- Department of Cellular and Molecular Biology, Faculty of Biology, Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Hemati S, Hatamian-Zarmi A, Halabian R, Ghiasi M, Salimi A. Schizophyllan promotes osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol Biol Rep 2023; 50:10037-10045. [PMID: 37902909 DOI: 10.1007/s11033-023-08877-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Bioactive polysaccharides are a promising way for bone disease prevention with high efficiency. Schizophyllan (SPG) is a polysaccharide derived from a species of fungus with anticancer, antitumor, and anti-inflammatory effects. In the present study, for the first time, the cell proliferation, osteogenic markers, mineral deposition, and osteogenic gene expression of human adipose tissue-derived mesenchymal stem cells (hADMSCs) grown on SPG were evaluated by in vitro assays. METHODS AND RESULTS The cytotoxicity of SPG was measured using the MTT assay and acridine orange staining. Differentiation of hADMSCs was assessed using alkaline phosphatase (ALP) activity test, cellular calcium content assay, and mineralized matrix staining. To this end, Alizarin red S, von Kossa staining, and the expression of bone-specific markers, including ALP, Runx2, and osteonectin, were used by real-time RT-PCR over a 2-week period. According to the results, SPG at 10 µg/ml concentration was determined as the optimal dosage for differentiation studies. The results of osteogenic differentiation tests showed that compared to the control groups in vitro, SPG enhanced the osteogenic markers and mineralization as well as upregulation of the expression of bone specific genes in differentiated hADMSCs during differentiation. CONCLUSIONS The results revealed that SPG could be applied as effective factor for osteogenic differentiation in the future. The current study provides insights into the hADMSC-based treatment and introduces promising therapeutic material for individuals who suffer from bone defects and injuries.
Collapse
Affiliation(s)
- Saideh Hemati
- Department of Cellular and Molecular Biology, Faculty of Biology, Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Masoumi N, Ghollasi M, Raheleh Halabian, Eftekhari E, Ghiasi M. Carbachol, along with calcium, indicates new strategy in neural differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Regen Ther 2023; 23:60-66. [PMID: 37122359 PMCID: PMC10130343 DOI: 10.1016/j.reth.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/25/2023] [Accepted: 04/06/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Over the past few years, stem cells have represented a promising treatment in neurological disorders due to the well-defined characteristics of their capability to proliferate and differentiate into any cell type, both in vitro and in vivo. Additionally, previous studies have shown that calcium signaling modulates the proliferation and differentiation of neural progenitor cells. The present study investigated the effect of carbachol (CCh), a cholinergic agonist activating acetylcholine receptors, with and without calcium, on the neural differentiation of human adipose tissue-derived mesenchymal stem cells (hADSCs) in neural media, including forskolin and 3-isobutyl-1-methyl-xanthine and retinoic acid. METHODS For this purpose, first, the MTT assay and acridine orange staining were studied to obtain the optimal concentration of CCh. Next, the differentiation tests, such as cellular calcium assay as well as evaluation of qualitative and quantitative expression of neuronal index markers through immunofluorescence staining and gene expression analysis, respectively, were performed on days 7 and 14 of the differentiation period. RESULTS According to the results, CCh at 1 μM concentration had no cytotoxicity on hADSCs and also induced cell proliferation. Furthermore, CCh with and without calcium increased the expression of neural-specific genes (NSE, MAP2, β-III-tubulin, and MAPK3) and proteins (γ-enolase, MAP2, and β-III-tubulin) as well as the amount of calcium in differentiated hADSCs at 7 and 14 days after induction. CONCLUSIONS In conclusion, the findings suggest that CCh acts as an influential therapeutic factor in the field of neural regenerative medicine and research.
Collapse
Affiliation(s)
- Niloofar Masoumi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Eftekhari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Sadraei F, Ghollasi M, Khakpai F, Halabian R, Jalali Tehrani H. Osteogenic differentiation of pre-conditioned bone marrow mesenchymal stem cells with Nisin on modified poly-L-lactic-acid nanofibers. Regen Ther 2022; 21:263-270. [PMID: 36092506 PMCID: PMC9440272 DOI: 10.1016/j.reth.2022.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Fariba Sadraei
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Corresponding author. Applied Microbiology Research Center, Systems Biology Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran, Postal Code 14359-44711.
| | - Hora Jalali Tehrani
- Department of Developmental Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
A new hydrogel with fluorapatite nanoparticles for osteogenic differentiation of human adipose-derived stem cells in tissue engineering field. Cell Tissue Res 2022; 390:399-411. [PMID: 36152061 DOI: 10.1007/s00441-022-03691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Since scaffolds are engineered to support functional tissue formation, their design and materials play an essential role in medical fields by providing different mechanical function. The aim of this study was to investigate the synthesis and structural characterization of collagen-gelatin (COL-GEL) composite scaffolds containing fluorapatite (FA) nanoparticles as well as evaluation of the osteogenic differentiation of human adipose-derived stem cells (hADSCs). First, the composite scaffolds were evaluated using Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The cytotoxicity of scaffolds and various concentrations of FA nanoparticles was studied through MTT assay and acridine orange/ethidium bromide staining. Next, the differentiated hADSCs were analyzed using Alizarin red and von Kossa staining, calcium content assay, alkaline phosphatase (ALP) activity, real-time RT-PCR, and immunocytochemical analyses. According to the characterization analyses, the composite scaffolds were properly integrated. The results also illustrated that COL-GEL composite scaffolds in the presence of FA nanoparticles not only showed no cytotoxicity but also increased ALP activity and calcium deposition as well as the expression of osteogenic genes, including Runx2, Col-I, ALP, and osteocalcin and the synthesis of proteins such as osteocalcin and osteopontin in vitro. The obtained data were confirmed by Alizarin red and von Kossa staining. These results are very promising for further tissue engineering experiments, in which FA nanoparticle incorporation into COL-GEL composite scaffolds is a novel approach that improves the surface COL-GEL composite scaffolds for tissue engineering application in vitro.
Collapse
|
8
|
Yarmohammadi R, Ghollasi M, Kheirollahzadeh F, Soltanyzadeh M, Heshmati M, Amirkhani MA. Osteogenic differentiation of human induced pluripotent stem cell in the presence of testosterone and 17 β-estradiol in vitro. In Vitro Cell Dev Biol Anim 2022; 58:179-188. [PMID: 35175493 DOI: 10.1007/s11626-022-00652-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Recently, numerous scientific approaches have been explored to treat various diseases using stem cells. In 2006, induced pluripotent stem cell (iPSC) were introduced by Takahashi and Yamanaka and showed the potential of self-renewing and differentiation into all types of targeted cells in vitro. In this investigation, we studied the effect of testosterone (T) individually or in the presence of 17 β-estradiol (E2) on osteogenic differentiation of human iPSC (hiPSC) during 2 wk. The optimal concentrations of sex steroid hormones were examined by MTT assay and acridine orange (AO) staining. The impact of E2 and T either individually or together as a combination was examined by ALP activity; the content of total mineral calcium, by von Kossa and alizarin red staining. Additionally, the expression rate of osteogenic specific markers was studied via real-time RT-PCR and immunocytochemistry analyses at day 14 of differentiation. The obtained results illustrated that the differentiation medium supplemented with T-E2 increased not only the ALP enzyme activity and the content of calcium but also the osteogenic-related gene and protein expressions on the 14th day. Furthermore, the results were confirmed by mineralized matrix staining. In conclusion, these data suggest that T could be used as an effective factor for osteogenic induction of hiPSCs combined with the E2 in bone regeneration.
Collapse
Affiliation(s)
- Reyhaneh Yarmohammadi
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box, 15719-14911, Tehran, Iran.
| | | | - Maryam Soltanyzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box, 15719-14911, Tehran, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|