1
|
Luo FH, Chen ZH, Zeng FF, Yang X, Li JJ, Zhang FX, Shi W. Botany, phytochemistry, pharmacologic activities, traditional applications, pharmacokinetics, quality control and toxicity of Zanthoxyli Radix: An updated review. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118783. [PMID: 39244175 DOI: 10.1016/j.jep.2024.118783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxyli Radix (ZR), the dry root of Zanthoxylum nitidum (Roxb.) DC (ZN) is known as Liang Mian Zhen in China and has been the preferred Chinese medicine for the treatment of inflammation and cancer disease at home and abroad. ZR has been used as the core ingredient in anti-inflammatory traditional medicines, such as Sanjiuweitai granules and Jinji tablets, etc. AIM OF THE WORK: This review aimed to provide a comprehensive overview of ZR in terms of traditional uses, quality control, botany, phytochemistry, pharmacology, toxicology, and pharmacokinetics. Meanwhile, the anti-inflammatory substances and mechanism of ZR were emphasized, to offer new perspectives and broad scopes for future studies. MATERIALS AND METHODS The information was retrieved from Web of Science, Researchgate, Google Scholar, SciFinder, X-MOL, PubMed, China National Knowledge Infrastructure (CNKI), Chinese Masters and Doctoral Dissertations, and Elsevier between 1984 and 2024. RESULTS Till now, a total of 184 chemical components have been identified in ZR, including 91 alkaloids, 22 lignans, 4 flavonoids, 19 coumarins, 17 terpenoids, and 31 other types. Pharmacological studies have proved that ZR had a variety of biological activities, such as anti-tumour, antibacterial, antioxidant and other activities, particularly in anti-inflammation. ZR exerts anti-inflammatory disease effects by modulating various signaling pathways, including MAPK, NF-κB, P13/AKT and JAK/STAT. Pharmacokinetic studies have shown that ZR exhibits low absorption rates, broad distribution, and rapid metabolism. Additionally, this review also revealed the shortcomings of current research on ZR and possible future research directions. CONCLUSION Extensive literature analysis indicates that ZR and its bioactive constituents possess diverse pharmacological activities, especially anti-inflammation. Moreover, in order to promote the safety and adaptability of ZR in clinical application, it is also strongly recommended that further research should focus on toxicity studies, pharmacokinetic studies of herb-drug interactions, and quality control.
Collapse
Affiliation(s)
- Fu-Hui Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Fen-Fen Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Xia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Jin-Jin Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
2
|
Wen J, Xiang Q, Guo J, Zhang J, Yang N, Huang Y, Chen Y, Hu T, Rao C. Pharmacological activities of Zanthoxylum L. plants and its exploitation and utilization. Heliyon 2024; 10:e33207. [PMID: 39022083 PMCID: PMC11252797 DOI: 10.1016/j.heliyon.2024.e33207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and exploitation and utilizations of Zanthoxylum L. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. This article uses "Zanthoxylum L." "Zanthorylum bungeanum" as the keywords and collects relevant information on Zanthoxylum L. plants through electronic searches (Elsevier, PubMed, ACS, Web of Science, Science Direct, CNKI, Google Scholar), relevant books, and classic literature about Chinese herb. The plants of this genus are rich in volatile oils, alkaloids, amides, lignans, coumarins and organic acids, and has a wide range of pharmacological activities, including but not limited to anti-inflammatory, analgesic, anti-tumor, hypoglycemic, hypolipidemic, antioxidant and anti-infectious. This article reviewed both Chinese and international research progress on the active ingredients and pharmacological activities of Zanthoxylum L. as well as the applications of this genus in the fields of food, medicinal and daily chemicals, and clarified the material basis of its pharmacological activities. Based on traditional usage, phytochemicals, and pharmacological properties, of Zanthoxylum L. species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Zanthoxylum L. is a potential medicinal and edible plant with diverse pharmacological effects. Due to its various advantages, it may have vast application potential in the food and medicinal industries and daily chemicals. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of Zanthoxylum L. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
3
|
Zhu YY, Wang ZJ, Zhu M, Zhou ZS, Hu BY, Wei MZ, Zhao YL, Dai Z, Luo XD. A dual mechanism with H 2S inhibition and membrane damage of morusin from Morus alba Linn. against MDR-MRSA. Bioorg Med Chem 2024; 97:117544. [PMID: 38071943 DOI: 10.1016/j.bmc.2023.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
It's urgent to discover new antibiotics along with the increasing emergence and dissemination of multidrug resistant (MDR) bacterial pathogens. In the present investigation, morusin exhibited rapid bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) by targeting the phospholipid of bacterial inner membrane, increasing membrane rigidity and disrupting bacterial homeostasis together with the membrane permeability, which caused fundamental metabolic disorders. Furthermore, morusin can also accumulate ROS, suppress H2S production, and aggravate oxidative damage in bacteria. Importantly, morusin also inhibited the spread of wounds and reduced the bacterial burden in the mouse model of skin infection caused by MRSA. It's a chance to meet the challenge of existing antibiotic resistance and avoid the development of bacterial resistance, given the multiple targets of morusin.
Collapse
Affiliation(s)
- Yan-Yan Zhu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Meng Zhu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Zhong-Shun Zhou
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Bin-Yuan Hu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Mei-Zhen Wei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Zhi Dai
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| |
Collapse
|
4
|
Wang L, Zhu Y, Jiang J, Tan G, Ma Q, Zhang H. Dynamic changes in the levels of metabolites and endogenous hormones during the germination of Zanthoxylum nitidum (Roxb.) DC. Seeds. PLANT SIGNALING & BEHAVIOR 2023; 18:2251750. [PMID: 37639213 PMCID: PMC10464536 DOI: 10.1080/15592324.2023.2251750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Accumulating experimental data have shown that endogenous hormones play important roles in regulating seed dormancy and germination. Zanthoxylum nitidum is a medicinal plant that propagates via seeds, which require a long dormancy period for normal germination, and complex changes in metabolites occur during the germination process. However, the regulatory network of endogenous hormones and metabolites during the germination of Z. nitidum seeds remains unclear. This study investigated the dynamic changes in the levels of metabolites and endogenous hormones during the germination of Z. nitidum seeds. The results revealed an increase in the levels of gibberellin 3 (GA3), 12-oxophytodienoic acid (OPDA), 1-aminocyclopropane-1-carboxylic acid (ACC) and trans-zeatin (TZ) and decrease in the levels of abscisic acid (ABA), jasmonic acid (JA), N-[(-)-jasmonoyl]-(S)-isoleucine (JA-Ile) and trans-zeatin riboside (TZR). Overall, 112 differential metabolites (DAMs) were screened from 3 seed samples (Sa, Sb and Sc), most of which are related to primary metabolism. A total of 16 DAMs (including 3 monosaccharides, 3 phosphate lipids, 3 carboxylic acids, 1 amino acid, 2 pyrimidines, and 4 nucleotides) were identified in the three sample comparison pairs (Sa vs Sb, Sa vs Sc, and Sb vs Sc); these DAMs were significantly enriched in purine metabolism; glycerophospholipid metabolism, citrate cycle (TCA cycle), alanine, aspartate and glutamate metabolism and pyruvate metabolism. OPDA, ACC and GAs were significantly positively correlated with upregulated metabolites, whereas ABA and JA were significantly positively correlated with downregulated metabolites. Finally, a hypothetical metabolic network of endogenous hormones that regulate seed germination was constructed. This study deepens our understanding of the importance of endogenous hormonal profiles that mediate seed germination.
Collapse
Affiliation(s)
- Liang Wang
- Research and Development Center, China Resources Sanjiu Medical & Pharmaceutical CO., LTD., Shenzhen, China
| | - Yanxia Zhu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Key Laboratory for High-quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jianping Jiang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Key Laboratory for High-quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guiyu Tan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Key Laboratory for High-quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Qing Ma
- Research and Development Center, China Resources Sanjiu Medical & Pharmaceutical CO., LTD., Shenzhen, China
| | - Hongsheng Zhang
- Research and Development Center, China Resources Sanjiu Medical & Pharmaceutical CO., LTD., Shenzhen, China
| |
Collapse
|
5
|
Zhu Y, Ma T, Lin Y, Peng Y, Huang Y, Jiang J. SSR molecular marker developments and genetic diversity analysis of Zanthoxylum nitidum (Roxb.) DC. Sci Rep 2023; 13:20767. [PMID: 38008750 PMCID: PMC10679188 DOI: 10.1038/s41598-023-48022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Zanthoxylum nitidum (Roxb.) is a commonly used traditional Chinese medicine. However, the collection and protection of wild germplasm resources of Z. nitidum are still insufficient, and there is limited research on its genetic diversity and fingerprint. In the present study, 15 simple sequence repeat (SSR) markers were developed by genotyping based on multiplexed shotgun sequencing. The genetic diversity of 51 populations (142 individuals) of Z. nitidum was evaluated using these 15 SSRs. A total of 245 alleles (Na) were detected, with an average value of 16.333, and the average polymorphism information content was 0.756. The genetic distance among 51 populations was 0.164~1.000, with an average of 0.659. Analysis of molecular variance showed low genetic differentiation (40%) and high genetic differentiation (60%) between populations and individuals, respectively. The genetic differentiation coefficient (Fst) of the population was 0.338, indicating that 66.2% of the genetic variation occurred within the population, and the gene flow (Nm) was 0.636, demonstrating that the gene exchange between populations was low. Clustering analysis revealed that the genetic similarity coefficient was 0.30, dividing the 51 populations into 4 groups of 2, 17, 3, and 29 populations. There was no specific relationship between geographical location differences and genetic distance. The genetic diversity level of Z. nitidum is relatively high, and our results provide a theoretical basis for the rapid identification of Z. nitidum germplasm resources and variety selection.
Collapse
Affiliation(s)
- Yanxia Zhu
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Tao Ma
- College of Agriculture and Engineering, Guangxi Vocational University of Agriculture, Nanning, 530009, China
| | - Yang Lin
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Yude Peng
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Yuan Huang
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jianping Jiang
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| |
Collapse
|
6
|
Szewczyk A, Pęczek F. Furoquinoline Alkaloids: Insights into Chemistry, Occurrence, and Biological Properties. Int J Mol Sci 2023; 24:12811. [PMID: 37628986 PMCID: PMC10454094 DOI: 10.3390/ijms241612811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Furoquinoline alkaloids exhibit a diverse range of effects, making them potential candidates for medicinal applications. Several compounds within this group have demonstrated antimicrobial and antiprotozoal properties. Of great interest is their potential as acetylcholinesterase inhibitors and anti-inflammatory agents in neurodegenerative diseases. The promising biological properties of furoquinoline alkaloids have motivated extensive research in this field. As a result, new compounds have been isolated from this group of secondary metabolites, and numerous pharmacological studies have been conducted to investigate their activity. It is crucial to understand the mechanisms of action of furoquinoline alkaloids due to their potential toxicity. Further research is required to elucidate their mechanisms of action and metabolism. Additionally, the exploration of derivative compounds holds significant potential in enhancing their pharmacological benefits. In vitro plant cultures offer an alternative approach to obtaining alkaloids from plant material, presenting a promising avenue for future investigations.
Collapse
Affiliation(s)
- Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Cracow, Poland
| | - Filip Pęczek
- SSG of Medicinal Plants and Mushroom Biotechnology, Department of Pharmaceutical Botany, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Cracow, Poland;
| |
Collapse
|
7
|
Chen S, Liao Y, Lv J, Hou H, Feng J. Quantitative Proteomics Based on iTRAQ Reveal that Nitidine Chloride Induces Apoptosis by Activating JNK/c-Jun Signaling in Hepatocellular Carcinoma Cells. PLANTA MEDICA 2022; 88:1233-1244. [PMID: 35104905 DOI: 10.1055/a-1676-4307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to investigate the cytotoxic effects and underlying molecular mechanisms of nitidine chloride (NC) in hepatocellular carcinoma cells via quantitative proteomics. MTT assays were used to detect the inhibitory effects of NC in Bel-7402 liver cancer cells, and the number of apoptotic cells was measured by flow cytometry. Quantitative proteomics technology based on iTRAQ was used to discover differential expressed proteins after NC treatment, and bioinformatic techniques were further used to screen potential targets of NC. Molecular docking was applied to evaluate the docking activity of NC with possible upstream proteins, and their expression was detected at the mRNA and protein levels by quantitative reverse transcription PCR and western blotting. NC inhibited the proliferation of Bel-7402 cells after 24 h of treatment and stimulated apoptosis in vitro. The proteomics experiment showed that NC triggers mitochondrial damage in HCC cells and transcription factor AP-1 (c-Jun) may be a potential target of NC (fold change = 4.36 ± 0.23). Molecular docking results revealed the highest docking score of NC with c-Jun N-terminal kinase (JNK), one of the upstream proteins of c-Jun. Moreover, the mRNA and protein expression of c-Jun and JNK were significantly increased after NC treatment (p < 0.05). These findings indicate that NC significantly induced mitochondrial damage in HCC cells, and induced apoptosis by activating JNK/c-Jun signaling.
Collapse
Affiliation(s)
- Shipeng Chen
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Department of Pharmacy, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Yinan Liao
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinyan Lv
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Huaxin Hou
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Feng
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Zhang JH, Cao M, Zhang Y, Li XH, Gu YC, Li XN, Di YT, Hao XJ. Scalemic myrionsumamide A, tetracyclic skeleton alkaloids from Myrioneuron effusum. RSC Adv 2022; 12:28147-28151. [PMID: 36320238 PMCID: PMC9527643 DOI: 10.1039/d2ra05342j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Investigation of the alkaloids from Myrioneuron effusum leads to the isolation of myrionsumamide A (1), a pair of enantiomeric alkaloids with an unprecedented tetracyclic system skeleton. These two alkaloids were separated by chiral HPLC with a ratio of 3 : 5 from the scalemic mixture. Their structures including absolute configurations were determined by NMR spectroscopy, X-ray diffraction data and ECD calculations. Both (+)-1 and (-)-1 showed antibacterial activity against Staphylococcus aureus with MIC at 7.81 μg ml-1.
Collapse
Affiliation(s)
- Jia-Hui Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming 650201China,Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical SciencesBeijing100730China
| | - Mingming Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming 650201China
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming 650201China
| | - Xiao-Hui Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming 650201China,Yunnan Institute of Materia MedicaKunming 650111China
| | - Yu-Cheng Gu
- Jealott's Hill International Research Centre, SyngentaBracknellBerkshire RG42 6EYUK
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming 650201China
| | - Ying-Tong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming 650201China
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming 650201China,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of SciencesGuiyang 550014China,Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical SciencesBeijing100730China
| |
Collapse
|
9
|
Rao SW, Duan YY, Pang HQ, Xu SH, Hu SQ, Cheng KG, Liang D, Shi W. Spectrum-Effect Relationship Analysis of Bioactive Compounds in Zanthoxylum nitidum (Roxb.) DC. by Ultra-High Performance Liquid Chromatography Mass Spectrometry Coupled With Comprehensive Filtering Approaches. Front Pharmacol 2022; 13:794277. [PMID: 35355711 PMCID: PMC8959880 DOI: 10.3389/fphar.2022.794277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 01/13/2023] Open
Abstract
Zanthoxylum nitidum (Roxb.) DC. (ZN), with strong effects of anti-inflammation and antioxidant activities is treated as a core herb in traditional Chinese medicine (TCM) preparation for treating stomachache, toothache, and rheumatoid arthritis. However, the active ingredients of ZN are not fully clarified due to its chemical complexity. In the present study, a double spectrum–effect analysis strategy was developed and applied to explore the bioactive components in herbs, and ZN was used as an example. Here, the chemical components in ZN were rapidly and comprehensively profiled based on the mass defect filtering-based structure classification (MDFSC) and diagnostic fragment-ion-based extension approaches. Furthermore, the fingerprints of 20 batches of ZN samples were analyzed by high-performance liquid chromatography, and the anti-inflammatory and antioxidant activities of the 20 batches of ZN samples were studied. Finally, the partial least squares regression (PLSR), gray relational analysis models, and Spearman’s rank correlation coefficient (SRCC) were applied to discover the bioactive compounds in ZN. As a result, a total of 48 compounds were identified or tentatively characterized in ZN, including 35 alkaloids, seven coumarins, three phenolic acids, two flavonoids, and one lignan. The results achieved by three prediction models indicated that peaks 4, 12, and 17 were the potential anti-inflammatory compounds in ZN, whereas peaks 3, 5, 7, 12, and 13 were involved in the antioxidant activity. Among them, peaks 4, 5, 7, and 12 were identified as nitidine, chelerythrine, hesperidin, and oxynitidine by comparison with the standards and other references. The data in the current study achieved by double spectrum–effect analysis strategy had great importance to improve the quality standardization of ZN, and the method might be an efficiency tool for the discovery of active components in a complex system, such as TCMs.
Collapse
Affiliation(s)
- Si-Wei Rao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Yuan-Yuan Duan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Han-Qing Pang
- Institute of Translational Medicine, Medical College, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Shao-Hua Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Shou-Qian Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Ke-Guang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| |
Collapse
|
10
|
Yu JH, Yu ZP, Capon RJ, Zhang H. Natural Enantiomers: Occurrence, Biogenesis and Biological Properties. Molecules 2022; 27:1279. [PMID: 35209066 PMCID: PMC8880303 DOI: 10.3390/molecules27041279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
The knowledge that natural products (NPs) are potent and selective modulators of important biomacromolecules (e.g., DNA and proteins) has inspired some of the world's most successful pharmaceuticals and agrochemicals. Notwithstanding these successes and despite a growing number of reports on naturally occurring pairs of enantiomers, this area of NP science still remains largely unexplored, consistent with the adage "If you don't seek, you don't find". Statistically, a rapidly growing number of enantiomeric NPs have been reported in the last several years. The current review provides a comprehensive overview of recent records on natural enantiomers, with the aim of advancing awareness and providing a better understanding of the chemical diversity and biogenetic context, as well as the biological properties and therapeutic (drug discovery) potential, of enantiomeric NPs.
Collapse
Affiliation(s)
- Jin-Hai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Zhi-Pu Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hua Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Nguyen NVT, Nguyen KNH, Nguyen KT, Kim KH, Aboul-Enein HY. The impact of chirality on the analysis of alkaloids in plant. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e71101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most of the alkaloids are chiral compounds and are clinically administered as the racemic mixture, even though its enantiomers have been known to exert different pharmacological activity. The determination of the enantiomeric composition of alkaloid-containing plants is subject to severe attention from pharmacological and toxicological points of view. This review gives an overview of the chiral analysis of alkaloids that were used in theoretical studies and applications for plants in recent years.
Collapse
|
12
|
Wei WJ, Chen XH, Guo T, Liu XQ, Zhao Y, Wang LL, Lan JX, Li HW, Si YP, Wang ZM. A Review on Classification and Biological Activities of Alkaloids from the Genus Zanthoxylum Species. Mini Rev Med Chem 2021; 21:336-361. [PMID: 32912124 DOI: 10.2174/1389557520666200910091905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
Abstract
Many plants in the genus Zanthoxylum, belonging to the Rutaceae family, are used as folk medicines for the treatment of various diseases, which have gained much attention for their phytochemical and pharmacological activity investigations. Alkaloids are the largest secondary metabolites with structurally diverse types found in this genus and they demonstrate a wide range of biological activities. The aim of this review is to provide a summary on the isolation, classification, and biological properties of alkaloids from Zanthoxylum species, which also will bring more attention to other researchers for further biological study on alkaloids for the new drug development.
Collapse
Affiliation(s)
- Wen-Jun Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiao-Hui Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiao-Qian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhao
- Department of Biological Sciences, Lehman College, and The Graduate Center, The City University of New York, New York, United States
| | - Li-Li Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jin-Xu Lan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Han-Wei Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan-Po Si
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhi-Min Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Chen SS, Xie TZ, He YJ, Liu YY, Li L, Zhao LX, Luo XD. Alkaloids of Toddalia asiatica (Rutaceae). BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Yang Q, Mei X, Wang Z, Chen X, Zhang R, Chen Q, Kan J. Comprehensive identification of non-volatile bitter-tasting compounds in Zanthoxylum bungeanum Maxim. by untargeted metabolomics combined with sensory-guided fractionation technique. Food Chem 2021; 347:129085. [PMID: 33493837 DOI: 10.1016/j.foodchem.2021.129085] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Zanthoxylum Bungeanum Maxim. is an important seasoning in Chinese cooking, but its bitter taste limits its use by some consumers. In this study, metabolomic analysis based on ultra-high-performance liquid chromatograph-tandem mass spectrometry (UPLC-MS) was used to screen out a vast number of potential non-volatile bitter compounds in Z. bungeanum. Results showed that there were 37 potential bitter compounds in Z. bungeanum, and possible mechanisms underlying its bitter taste were provided. Further, instrumental analyses combined with sensory evaluation were used to identify the key bitter compounds in Gou jiao, a wild variant of Z. Bungeanum with a strong bitter taste. Totally 15 key bitter compounds were identified, most of which have a low bitterness recognition threshold. This study is the first comprehensive identification of non-volatile bitter compounds in Z. bungeanum and provides a basis for future investigations into mitigating bitterness and uncovering how the interaction between different bitter compounds affects taste.
Collapse
Affiliation(s)
- Qingqing Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China
| | - Xiaofei Mei
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China
| | - Zhirong Wang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China
| | - Xuhui Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China
| | - Rui Zhang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China
| | - Qiaoli Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China.
| |
Collapse
|
15
|
Dorababu A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch Pharm (Weinheim) 2020; 354:e2000232. [PMID: 33210348 DOI: 10.1002/ardp.202000232] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 12/22/2022]
Abstract
Although most of the heterocycles have been reported to possess a significant pharmacological activity, only a few of them, namely quinoline derivatives, have exhibited the finest biological activities. Despite the few medicinal properties of the plain quinoline molecule, its derivatives exhibit diverse pharmacological properties such as anticancer, anti-inflammatory, antibacterial, antiviral, antifungal, antiprotozoal activities, and so on. The potential antimicrobial properties of the quinoline derivatives are evident from the decades of research on these derivatives. Owing to limitations like drug resistance, high cost, severe side effects, and less bioavailability of previously synthesized antimicrobial agents, these drugs have become obsolete in recent years. Hence, the design of more efficient antimicrobial drugs must be given topmost priority. A breakthrough in drug discovery is a must to prevent malevolent microbial diseases. Addressing all these issues, researchers have been continuously contributing to antimicrobial drug discovery. Herein, a short description of the pharmacology of antimicrobial agents such as antibacterials and antifungals synthesized recently is provided. The versatile derivatization of the quinoline moiety leading to significant antimicrobial potencies is discussed, considering the structure-activity relationship.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry, SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| |
Collapse
|
16
|
Feng L, Han J, Wang J, Zhang AX, Miao YY, Tan NH, Wang Z. Pestalopyrones A-D, four tricyclic pyrone derivatives from the endophytic fungus Pestalotiopsis neglecta S3. PHYTOCHEMISTRY 2020; 179:112505. [PMID: 32919290 DOI: 10.1016/j.phytochem.2020.112505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Four undescribed pyrone derivatives, pestalopyrones A-D, containing unusual tricyclic 5/6/6 polycyclic skeletons, were isolated from the ethyl acetate extract of the endophytic fungus Pestalotiopsis neglecta S3 derived from the fresh stems of Rubia podantha Diels (Rubiaceae). Their planar structures were elucidated mainly by NMR and HRESIMS. Pestalopyrones A-D contained six contiguous chiral carbons, and the relative configurations of C-4, C-5, and C-8 in tricyclic 5/6/6 polycyclic skeletons were determined by ROESY spectra. For pestalopyrone B, the absolute configuration of C-16 was determined by the Mosher's method. All isolated compounds were tested for their cytotoxicity against cancer cell lines, antibacterial activity, and inhibitory effect on the lipopolysaccharide (LPS)-induced nitric oxide (NO) production, and the results showed that pestalopyrone A inhibited LPS-induced NO production with an IC50 value of 35.8 μM.
Collapse
Affiliation(s)
- Li Feng
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jing Han
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - An-Xin Zhang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan-Yuan Miao
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
17
|
Lu Q, Ma R, Yang Y, Mo Z, Pu X, Li C. Zanthoxylum nitidum (Roxb.) DC: Traditional uses, phytochemistry, pharmacological activities and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112946. [PMID: 32492492 DOI: 10.1016/j.jep.2020.112946] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum), which is known in China as Liang-Mian-Zhen, is mainly distributed in southern China and is widely used in traditional Chinese medicine. It is traditionally used for treating stomach ache, toothache, rheumatic arthralgia, traumatic injury and venomous snake bites. Additional medical applications include the treatment of inflammations, various types of cancer, bacterial and viral infections, gastric and oral ulcers and liver damage. AIM OF THIS REVIEW This paper aims to offer up-to-date information on the botany, traditional uses, phytochemistry, pharmacology and toxicity of Z. nitidum. This review also discussed the perspectives for possible future research on Z. nitidum. MATERIALS AND METHODS A comprehensive review was carried out on studies about Z. nitidum conducted in the past 60 years by using different resources, including Flora of China, Pharmacopoeia of the People's Republic of China and academic databases. RESULTS At present, more than 150 chemical constituents have been separated and identified from Z. nitidum, most of which include alkaloids. Biological activities, including anti-inflammation, analgesia, haemostasis, anticancer and antibacterial, were determined via in vitro and in vivo studies. The variations in the efficacy of Z. nitidum can be attributed to the biological activities of its natural products, especially alkaloids. Toxicity studies on Z. nitidum are relatively few, thus requiring further study. CONCLUSIONS This article generalises the current research achievements related to Z. nitidum, which is an important medicinal material in China. Some traditional uses of Z. nitidum have been assessed by pharmacological studies. Unresolved problems remain, including molecular mechanisms underlying biological activities, pharmacokinetics, toxicology and therapeutic effect, which are still being studied and explored before Z. nitidum can be integrated into clinical medicine.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China
| | - Runfang Ma
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China
| | - Yang Yang
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China
| | - Zhimi Mo
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China
| | - Xudong Pu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China.
| |
Collapse
|
18
|
Lu Q, Li C, Wu G. Insight into the inhibitory effects of Zanthoxylum nitidum against Helicobacter pylori urease and jack bean urease: Kinetics and mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112419. [PMID: 31759110 DOI: 10.1016/j.jep.2019.112419] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum nitidum (Roxb.) DC. is a traditional Chinese medicine characterised by anti-inflammatory and anti-Helicobacter pylori, which is widely used to treat H. pylori-induced gastric disease in China. However, the underlying mechanism related to its anti-H. pylori activity remains unclear. Urease plays a crucial role in the colonisation and survival of H. pylori. AIM OF THE STUDY The root aqueous extract of Z. nitidum against H. pylori urease (HPU) and jack bean urease (JBU) was investigated to illuminate the inhibitory potency, kinetics and potential mechanism. MATERIALS AND METHODS Z. nitidum components were determined by UPLC. The enzyme inhibitory effects of Z. nitidum were examined using modified spectrophotometric Berthelot (phenol-hypochlorite) method. Urease inhibition kinetics were determined by Lineweaver-Burk plots. Sulfhydryl group reagents and Ni2+-binding inhibitors were used in the mechanism study. Moreover, the molecular docking technique was used to investigate the binding conformations of the main compounds of Z. nitidum on Urease. RESULTS According to UPLC results, the major components of Z. nitidum were magnoflorine, sanguinarine, nitidine chloride, chelerythrine, skimmianine and L-Sesamin. Z. nitidum has higher enzyme inhibitory activity on HPU (IC50 = 1.29 ± 0.10 mg/mL) than on JBU (IC50 = 2.04 ± 0.27 mg/mL). Enzyme inhibitory kinetic analysis revealed that the type of Z. nitidum inhibition against HPU was a slow-binding and mixed-type, whereas a slow-binding and non-competitive type inhibited JBU. Further mechanism study indicated that the active site of sulfhydryl group might be the target of inhibition by Z. nitidum. The molecular docking study indicated that the above six main components of Z. nitidum exhibited stronger affinity to HPU than to JBU through interacting with the key amino acid residues located on the mobile flap or interacting with the active site Ni2+. Results indicated that these components are potential active ingredients directed against urease. CONCLUSIONS Z. nitidum inactivated urease in a concentration-dependent manner through slow-binding inhibition and binding to the urease active site sulfhydryl group. Our investigation might provide experimental evidence for the traditional application of Z. nitidum in the treatment of H. pylori-associated gastric disorders.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China.
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China.
| | - Guosong Wu
- Pharmacy Department, Guangzhou the People's Hospital of Baiyun District, Guangzhou, 510500, PR China.
| |
Collapse
|
19
|
Feng L, Wang J, Liu S, Zhang XJ, Bi QR, Hu YY, Wang Z, Tan NH. Colletopeptides A-D, Anti-inflammatory Cyclic Tridepsipeptides from the Plant Endophytic Fungus Colletotrichum sp. S8. JOURNAL OF NATURAL PRODUCTS 2019; 82:1434-1441. [PMID: 31181925 DOI: 10.1021/acs.jnatprod.8b00829] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Four new hybrid peptide-polyketide cyclic tridepsipeptides, colletopeptides A-D (1-4), were isolated and characterized from the endophytic fungus Colletotrichum sp. S8 derived from the stems of Rubia podantha with the guidance of LC-UV-MS detection. Their structures were elucidated by extensive spectroscopic analysis and X-ray crystallography. Compounds 1-4 are rare natural 12-membered cyclic tridepsipeptides containing a 3,5,11-trihydroxy-2-methyl dodecanoic acid unit in their structures. 1-4 inhibited lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophages with the IC50 values of 8.3, 38.7, 13.5, and 22.2 μM, respectively. 1 also inhibited the production of inflammatory factors IL-6 and TNF-α, and decreased the phosphorylation of NF-κB-associated proteins IκBα and p65.
Collapse
Affiliation(s)
- Li Feng
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Jia Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Shuai Liu
- Faculty of Life Science and Food Engineering , Huaiyin Institute of Technology , Huaian 223001 , People's Republic of China
| | - Xue-Jia Zhang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Qi-Rui Bi
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Yan-Yun Hu
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Zhe Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Ning-Hua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| |
Collapse
|
20
|
Liu M, Liu Q, Chen M, Huang X, Chen X. Large‐scale separation of acetylcholinesterase inhibitors from
Zanthoxylum nitidum
by pH‐zone‐refining counter‐current chromatography target‐guided by ultrafiltration high‐performance liquid chromatography with ultraviolet and mass spectrometry screening. J Sep Sci 2019; 42:1194-1201. [DOI: 10.1002/jssc.201801238] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Minzhuo Liu
- College of Chemistry and Chemical EngineeringCentral South University Changsha P. R. China
| | - Qi Liu
- College of Chemistry and Chemical EngineeringCentral South University Changsha P. R. China
| | - Miao Chen
- College of Chemistry and Chemical EngineeringCentral South University Changsha P. R. China
| | - Xueqian Huang
- College of Chemistry and Chemical EngineeringCentral South University Changsha P. R. China
| | - Xiaoqing Chen
- College of Chemistry and Chemical EngineeringCentral South University Changsha P. R. China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCentral South University Changsha P. R. China
| |
Collapse
|