1
|
Zhang L, Sun S, Su W, Tan M. Preventive effect of sea bass protein-based high internal phase Pickering emulsion loaded with astaxanthin on DEHP-induced liver lipid metabolism disorder. Int J Biol Macromol 2025; 292:139190. [PMID: 39732256 DOI: 10.1016/j.ijbiomac.2024.139190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The present study was to investigate the effect of the astaxanthin high internal phase Pickering emulsion (H-AXT) on DEHP-induced liver lipid metabolism disorder and to demonstrate its possible protective mechanism. We have developed an antioxidant activity emulsion system to deliver astaxanthin into the liver to maximize its ability to protect the liver. In vitro, H-AXT intervention inhibited oxidative stress restored the level of mitochondrial membrane potential to 90 % of that of normal LO2 cells, and alleviated the imbalance of energy metabolism by protecting mitochondrial structure and function. Based on metabonomics, it was proved that H-AXT inhibited triglyceride accumulation by antagonizing lipid metabolism disorder. In DEHP-induced mice, H-AXT intervention mitigated liver damage by inhibiting oxidative stress and inflammatory reaction, and alleviated metabolic dysfunction by regulating lipid levels and inhibiting fat accumulation. Meanwhile, H-AXT alleviated DEHP-induced testicular tissue damage and maintained the integrity of testicular tissue. The encapsulation of the emulsion system effectively promoted the liver uptake of astaxanthin to prevent liver diseases associated with metabolic disorders.
Collapse
Affiliation(s)
- Lijuan Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
2
|
Huang JJ, Xie Q, Lin S, Xu W, Cheung PCK. Microalgae-derived astaxanthin: bioactivities, biotechnological approaches and industrial technologies for its production. Crit Rev Food Sci Nutr 2025:1-35. [PMID: 39992396 DOI: 10.1080/10408398.2025.2468863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Microalgae are rich sources of astaxanthin well recognized for their potent bioactivities such as antioxidant, anti-cancer, and anti-inflammatory activities. Recent interests focused on the bioactivities of microalgae-derived astaxanthin on treating or preventing cancers mediated by their antioxidant and anti-inflammatory properties. This is due to the special structural configuration of microalgae-derived astaxanthin in terms of unsaturation (conjugated double bonds), stereochemical isomerism (3S,3'S optical isomer) and esterification (monoester), which display more potent bioactivities, compared with those from the other natural sources such as yeasts and higher plants, as well as synthetic astaxanthin. This review focuses on the recent advances on the bioactivities of microalgae-derived astaxanthin in association with cancers and immune diseases, with emphasis on their potential applications as natural antioxidants. Various well-developed biotechnological approaches for inducing astaxanthin production from microalgal culture, along with the proven and emerging industrial technologies to commercialize astaxanthin products in a large-scale manner, are also critically reviewed. These would facilitate the manufacture of bioactive microalgae-derived astaxanthin products to be applied in the food and pharmaceutical industries as salutary nutraceuticals.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Qun Xie
- Guangzhou Pharmaceutical Vocational School, Guangzhou, Guangdong Province, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, People's Republic of China
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
| |
Collapse
|
3
|
Aditi, Bhardwaj R, Yadav A, Swapnil P, Meena M. Characterization of microalgal β-carotene and astaxanthin: exploring their health-promoting properties under the effect of salinity and light intensity. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:18. [PMID: 39953577 PMCID: PMC11829443 DOI: 10.1186/s13068-025-02612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Microalgae are promising sources of valuable carotenoids like β-carotene and astaxanthin with numerous health benefits. This review summarizes recent studies on producing these carotenoids in microalgae under different salinity and light-intensity conditions, which are key factors influencing their biosynthesis. The carotenoid biosynthesis pathways in microalgae, involving the methylerythritol phosphate pathway in chloroplasts, are described in detail. The effects of high salinity and light stress on stimulating astaxanthin accumulation in species like Haematococcus pluvialis and Chromochloris zofingiensis and their synergistic impact are discussed. Similarly, the review covers how high light and salinity induce β-carotene production in Dunaliella salina and other microalgae. The diverse health-promoting properties of astaxanthin and β-carotene, such as their antioxidant, antiinflammatory, and anticancer activities, are highlighted. Strategies to improve carotenoid yields in microalgae through environmental stresses, two-stage cultivation, genetic engineering, and metabolic engineering approaches are evaluated. Overall, this review highlights advancements in β-carotene and astaxanthin production reporting the different microalgal capability to produce carotenoids under different stress level like 31.5% increase in β-carotene accumulation in Dunaliella salina and astaxanthin productivity reaching 18.1 mg/L/day in Haematococcus lacustris. It also explores novel biotechnological strategies, including CRISPR-Cas9, for enhancing carotenoid yield.
Collapse
Affiliation(s)
- Aditi
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rupesh Bhardwaj
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Ankush Yadav
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prashant Swapnil
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
4
|
Polamraju SM, Manochkumar J, Ganeshbabu M, Ramamoorthy S. Unveiling astaxanthin: biotechnological advances, delivery systems and versatile applications in nutraceuticals and cosmetics. Arch Microbiol 2025; 207:45. [PMID: 39869136 DOI: 10.1007/s00203-025-04241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements. This review provides a comprehensive analysis of ASX applications, emphasizing its dual roles in cosmetic and nutraceutical fields. It integrates insights into the qualitative differences of ASX from various natural sources and assesses biosynthetic pathways across organisms. Advanced biotechnological strategies for industrial-scale production are explored alongside innovative delivery systems, such as emulsions, films, microcapsules, nanoliposomes, and nanoparticles, designed to enhance ASX's bioavailability and functional efficacy. By unifying perspectives on its nutraceutical and cosmetic applications, this review highlights the challenges and advancements in formulation and commercialization. Prospective research directions for optimizing ASX's production and applications are also discussed, providing a roadmap for its future development.
Collapse
Affiliation(s)
- Sai Manojna Polamraju
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Madhubala Ganeshbabu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
5
|
Ding F, Zhao Y. Astaxanthin promotes the longevity of Caenorhabditis elegans via modulation of the intracellular redox status and PHA-4-mediated autophagy. Food Funct 2025; 16:617-627. [PMID: 39711123 DOI: 10.1039/d4fo03490b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Astaxanthin is a xanthophyll carotenoid which has been associated with a number of health-promoting effects, including anti-aging; however, the underlying mechanisms are not fully understood. In the present study, it was found that astaxanthin promoted the longevity of wild-type (N2) Caenorhabditis elegans (C. elegans). The lifespan-extending effect of astaxanthin was associated with a significant decrease of lipofuscin accumulation and the reduction of the age-related decline in spontaneous motility. Meanwhile, astaxanthin enhanced the oxidative stress resistance in C. elegans, preventing the elevation of the reactive oxygen species and alleviating juglone-induced toxicity. Further studies revealed that astaxanthin treatment induced the expression of the skn-1 gene; besides, the lifespan-extending effect of astaxanthin relied on SKN-1. Additionally, the expression of age-1, a PI3K homolog gene, and let-363, a target of the rapamycin (TOR) homolog gene, was decreased, while the expression of PHA-4, a transcription factor negatively regulated by TOR signaling, was increased by astaxanthin treatment. PHA-4 has been demonstrated to regulate the expression of genes playing critical roles in the autophagy-lysosome pathway (ALP). Consistently, several key genes related to ALP, including lgg-1, atg-5, vps-34, ncr-1 and asm-1 were upregulated in C. elegans treated with astaxanthin. Knockdown of pha-4 expression by siRNA prevented the elevation of the above ALP-related genes, while diminishing the lifespan-extension effect of astaxanthin. Overall, these results indicated that astaxanthin prolonged the lifespan of C. elegans via modulating the intracellular redox status and promoting PHA-4-mediated autophagy.
Collapse
Affiliation(s)
- Feng Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
- Department of Bioengineering, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| | - Yan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
- Department of Bioengineering, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| |
Collapse
|
6
|
Fan M, Hung JL, Hung SH, Chen LC, Horng CT. Improvement of Presbyopia, Dry Eye, Intraocular Pressure, and Near Vision Through Cassiae Tea Consumption. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:35. [PMID: 39859017 PMCID: PMC11766764 DOI: 10.3390/medicina61010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
Background and Objectives: This study aimed to illustrate a novel method for improving presbyopia by drinking cassiae tea. Materials and Methods: A total of 425 eyes from 425 participants (aged 52.5 ± 9.5 years) were recruited and divided into several experimental groups over a 6-month period. Participants consumed cassiae tea daily (10 g of cassiae semen brewed in 500 cc of water). Meanwhile, control group participants consumed 500 cc of plain water along with 1000 mg of vitamin C each day. Experiments 1 and 2: Participants with severe dry eye and intraocular pressure (IOP) > 30 mmHg were enrolled, and outcomes were assessed for these conditions, respectively. Experiments 3, 4, and 7: These experiments evaluated pupil size, near vision, and serum superoxide dismutase (SOD) levels in two groups of volunteers. Experiment 5: Different quantities of cassiae tea were prescribed to various groups, and near vision was measured. Experiment 6: Three questionnaires assessed presbyopic symptoms after cassiae tea consumption. Experiment 8: The antioxidant activity of cassiae tea compared with other bioactive compounds and Chinese herbs was evaluated using the DPPH test. Results: By the fourth month of the study, participants experienced increased tear volume and reduced IOP. Pupil size constricted, near vision improved, and serum SOD levels increased. Furthermore, greater consumption of cassiae tea was correlated with better near vision. The antioxidant activity of cassiae tea was found to surpass that of anthocyanins, wolfberry, and vitamin C. Conclusions: Drinking cassiae tea improves dry eye symptoms, reduces IOP, regulates pupil size, and enhances near vision due to its excellent antioxidant and pharmacological properties. These benefits may particularly aid individuals with presbyopia and those engaged in near-distance activities, such as smartphone use.
Collapse
Affiliation(s)
- Mei Fan
- Department of Pharmacy, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Jen-Lin Hung
- Master of Science Program in Health Care, Department of Nursing, Meiho University, Pingtung 912, Taiwan
| | - Shao-Huan Hung
- Master of Science Program in Health Care, Department of Nursing, Meiho University, Pingtung 912, Taiwan
| | - Li-Chai Chen
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Chi-Ting Horng
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
- Department of Ophthalmology, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| |
Collapse
|
7
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
8
|
Yu BS, Pyo S, Lee J, Han K. Microalgae: a multifaceted catalyst for sustainable solutions in renewable energy, food security, and environmental management. Microb Cell Fact 2024; 23:308. [PMID: 39543605 PMCID: PMC11566087 DOI: 10.1186/s12934-024-02588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
This review comprehensively examines the various applications of microalgae, focusing on their significant potential in producing biodiesel and hydrogen, serving as sustainable food sources, and their efficacy in treating both municipal and food-related wastewater. While previous studies have mainly focused on specific applications of microalgae, such as biofuel production or wastewater treatment, this review covers these applications comprehensively. It examines the potential for microalgae to be applied in various industrial sectors such as energy, food security, and environmental management. By bridging these different application areas, this review differs from previous studies in providing an integrated and multifaceted view of the industrial applications of microalgae. Since it is essential to increase the productivity of the process to utilize microalgae for various industrial applications, research trends in different microalgae cultivation processes, including the culture system (e.g., open ponds, closed ponds) or environmental conditions (e.g., pH, temperature, light intensity) to improve the productivity of biomass and valuable substances was firstly analyzed. In addition, microalgae cultivation technologies that can maximize the biomass and valuable substances productivity while limiting the potential for contamination that can occur when utilizing these systems have been described to maximize CO2 reduction. In conclusion, this review has provided a detailed analysis of current research findings and technological innovations, highlighting the important role of microalgae in addressing global challenges related to energy, food supply, and waste management. It has also provided valuable insights into future research directions and potential commercial applications in several bio-related industries, and illustrated how important continued exploration and development in this area is to realize the full potential of microalgae.
Collapse
Affiliation(s)
- Byung Sun Yu
- Department of biomedical Sciences, College of Bio-convergence, Dankook University, 31116, Dandae-ro 119, Dongnam-gu, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seonju Pyo
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kyudong Han
- Department of biomedical Sciences, College of Bio-convergence, Dankook University, 31116, Dandae-ro 119, Dongnam-gu, Cheonan, 31116, Republic of Korea.
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea.
| |
Collapse
|
9
|
Adıgüzel E, Ülger TG. A marine-derived antioxidant astaxanthin as a potential neuroprotective and neurotherapeutic agent: A review of its efficacy on neurodegenerative conditions. Eur J Pharmacol 2024; 977:176706. [PMID: 38843946 DOI: 10.1016/j.ejphar.2024.176706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Astaxanthin is a potent lipid-soluble carotenoid produced by several different freshwater and marine microorganisms, including microalgae, bacteria, fungi, and yeast. The proven therapeutic effects of astaxanthin against different diseases have made this carotenoid popular in the nutraceutical market and among consumers. Recently, astaxanthin is also receiving attention for its effects in the co-adjuvant treatment or prevention of neurological pathologies. In this systematic review, studies evaluating the efficacy of astaxanthin against different neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebrovascular diseases, and spinal cord injury are analyzed. Based on the current literature, astaxanthin shows potential biological activity in both in vitro and in vivo models. In addition, its preventive and therapeutic activities against the above-mentioned diseases have been emphasized in studies with different experimental designs. In contrast, none of the 59 studies reviewed reported any safety concerns or adverse health effects as a result of astaxanthin supplementation. The preventive or therapeutic role of astaxanthin may vary depending on the dosage and route of administration. Although there is a consensus in the literature regarding its effectiveness against the specified diseases, it is important to determine the safe intake levels of synthetic and natural forms and to determine the most effective forms for oral intake.
Collapse
Affiliation(s)
- Emre Adıgüzel
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, 70100, Karaman, Turkey.
| | - Taha Gökmen Ülger
- Bolu Abant İzzet Baysal University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Bolu, Turkey
| |
Collapse
|
10
|
Fereidouni F, Kashani L, Amidi F, Khodarahmian M, Zhaeentan S, Ardehjani NA, Rastegar T. Astaxanthin treatment decreases pro-inflammatory cytokines and improves reproductive outcomes in patients with polycystic ovary syndrome undergoing assisted reproductive technology: A randomized clinical trial. Inflammopharmacology 2024; 32:2337-2347. [PMID: 38916710 DOI: 10.1007/s10787-024-01504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/02/2024] [Indexed: 06/26/2024]
Abstract
RESEARCH QUESTION In a randomized, triple-blind, placebo-controlled clinical trial (RCT), we investigated the effect of astaxanthin (AST) on pro-inflammatory cytokines, oxidative stress (OS) markers, and assisted reproductive technology (ART) outcomes in 44 infertile Polycystic Ovary Syndrome (PCOS) patients. DESIGN Patients with PCOS were randomly divided into two groups. The intervention group received 6 mg AST, and the control group received placebo daily for 8 weeks. Blood samples were obtained from all patients before and after intervention and follicular fluid (FF) was collected during the ART procedure. Interleukin (IL) -6, IL-1β were evaluated from serum samples and FF and OS markers (malondialdehyde [MDA], catalase [CAT], superoxide dismutase [SOD], and reactive oxygen species [ROS]) were measured from FF. The groups were compared for ART outcomes as well. RESULTS A significant decrease in IL-6 and IL-1β concentrations (both, P = < 0.01) serum levels was found following AST treatment. FF cytokine levels and OS markers did not differ significantly between the groups. Reproductive outcomes, including the number of oocytes retrieved (P = 0.01), the MII oocyte count (P = 0.007), oocyte maturity rate (MII %) (P = 0.02) and number of frozen embryos (P = 0.03) significantly improved after intervention. No significant differences were found in chemical, clinical and multiple pregnancies between the groups. CONCLUSIONS AST pretreatment may modify inflammation and improve ART outcomes in PCOS infertile patients. Further investigations are recommended to verify these findings.
Collapse
Affiliation(s)
- Farzane Fereidouni
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ladan Kashani
- Department of infertility, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of infertility, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Zhaeentan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Ajabi Ardehjani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
12
|
Yadav K, Saxena A, Gupta M, Saha B, Sarwat M, Rai MP. Comparing Pharmacological Potential of Freshwater Microalgae Carotenoids Towards Antioxidant and Anti-proliferative Activity on Liver Cancer (HUH7) Cell Line. Appl Biochem Biotechnol 2024; 196:2053-2066. [PMID: 37462814 DOI: 10.1007/s12010-023-04635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 04/23/2024]
Abstract
Chemical-based carotenoids have large implications to health as they may cause adverse side effects. Naturally occurring carotenoids mainly from microalgal sources are emerging as excellent substitute to combat cancer diseases. Astaxanthin is the most powerful antioxidant that derived from selected established microalgae with limited yield. Microalgal bioprospecting may provide the high-yielding sources for astaxanthin production. Hence, in the present research, freshwater microalgae Monoraphidium sp. (NCM no. 5585) and Scenedesmus obliquus (NCM no. 5586) were chosen to explore the unique potential of producing astaxanthin. Identification of bioactive metabolites in extracted carotenoid was analyzed through HPLC. Astaxanthin is identified as a major bioactive metabolite in both carotenoid fraction and β carotene only in Scenedesmus obliquus. Antioxidant potential of microalgal carotenoids was obtained by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric-reducing antioxidant power (FRAP) assay. The anti-proliferation activity of the extracted carotenoid from Monoraphidium sp. and Scenedesmus obliquus was evaluated against hepatocellular liver carcinoma cell line HUH7 by 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) colorimetric assay. Higher astaxanthin in Monoraphidium sp. leads to boosted antioxidant and anti-proliferation activity contrary to Scenedesmus obliquus that possess both astaxanthin and β carotene. Though freshwater microalgae have a huge potential to create beneficial metabolites like carotenoids, they are rarely studied in the pharmaceutical industry. This work was the first to investigate the anti-proliferative activity of Monoraphidium sp. and Scenedesmus obliquus carotenoid fraction on the HUH7 hepatocarcinoma cell line.
Collapse
Affiliation(s)
- Kushi Yadav
- Algal Biotechnology Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Anjali Saxena
- Organic Synthesis and Medicinal Chemistry Lab, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Biswajit Saha
- Organic Synthesis and Medicinal Chemistry Lab, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Monika Prakash Rai
- Algal Biotechnology Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India.
| |
Collapse
|
13
|
Fayaz T, Rana SS, Goyal E, Ratha SK, Renuka N. Harnessing the potential of microalgae-based systems for mitigating pesticide pollution and its impact on their metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120723. [PMID: 38565028 DOI: 10.1016/j.jenvman.2024.120723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Due to increased pesticide usage in agriculture, a significant concentration of pesticides is reported in the environment that can directly impact humans, aquatic flora, and fauna. Utilizing microalgae-based systems for pesticide removal is becoming more popular because of their environmentally friendly nature, ability to degrade pesticide molecules into simpler, nontoxic molecules, and cost-effectiveness of the technology. Thus, this review focused on the efficiency, mechanisms, and factors governing pesticide removal using microalgae-based systems and their effect on microalgal metabolism. A wide range of pesticides, like atrazine, cypermethrin, malathion, trichlorfon, thiacloprid, etc., can be effectively removed by different microalgal strains. Some species of Chlorella, Chlamydomonas, Scenedesmus, Nostoc, etc., are documented for >90% removal of different pesticides, mainly through the biodegradation mechanism. The antioxidant enzymes such as ascorbate peroxidase, superoxide dismutase, and catalase, as well as the complex structure of microalgae cell walls, are mainly involved in eliminating pesticides and are also crucial for the defense mechanism of microalgae against reactive oxygen species. However, higher pesticide concentrations may alter the biochemical composition and gene expression associated with microalgal growth and metabolism, which may vary depending on the type of strain, the pesticide type, and the concentration. The final section of this review discussed the challenges and prospects of how microalgae can become a successful tool to remediate pesticides.
Collapse
Affiliation(s)
- Tufail Fayaz
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Soujanya S Rana
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Esha Goyal
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Sachitra Kumar Ratha
- Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
14
|
Ramadoss J, Govindasamy M, Sonachalam A, Huang CH, Alothman AA. CuMoO 4/Ti 3C 2Tx nanocomposite layers perform as an ultrasensitive electrochemical sensor for the detection of antioxidant rutin. Mikrochim Acta 2024; 191:226. [PMID: 38558261 DOI: 10.1007/s00604-024-06267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 04/04/2024]
Abstract
The focus of this paper is laid on synthesizing layered compounds of CuMoO4 and Ti3C2Tx using a simple wet chemical etching method and sonochemical method to enable rapid detection of rutin using an electrochemical sensor. Following structural examinations using XRD, surface morphology analysis using SEM, and chemical composition state analysis using XPS, the obtained CuMoO4/Ti3C2Tx nanocomposite electrocatalyst was confirmed and characterized. By employing cyclic voltammetry and differential pulse voltammetry, the electrochemical properties of rutin on a CuMoO4/Ti3C2Tx modified electrode were examined, including its stability and response to variations in pH, loading, sweep rate, and interference. The CuMoO4/Ti3C2Tx modified electrode demonstrates rapid rutin sensing under optimal conditions and offers a linear range of 1 µΜ to 15 µΜ, thereby improving the minimal detection limit (LOD) to 42.9 nM. According to electrochemical analysis, the CuMoO4/Ti3C2Tx electrode also demonstrated cyclic stability and long-lasting anti-interference capabilities. The CuMoO4/Ti3C2Tx nanocomposite demonstrated acceptable recoveries when used to sense RT in apple and grape samples. In comparison to other interfering sample analytes encountered in the current study, the developed sensor demonstrated high selectivity and anti-interference performance. As a result, our research to design of high-performance electrochemical sensors in the biomedical and therapeutic fields.
Collapse
Affiliation(s)
- Jagadeesh Ramadoss
- Centre for High-Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Mani Govindasamy
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City, 24303, Taiwan
| | - Arumugam Sonachalam
- Centre for High-Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Tamil Nadu Open University, Chennai, 600015, India.
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan City, 33305, Taiwan.
- College of Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan.
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
15
|
Santos‐Beneit F. What is the role of microbial biotechnology and genetic engineering in medicine? Microbiologyopen 2024; 13:e1406. [PMID: 38556942 PMCID: PMC10982607 DOI: 10.1002/mbo3.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Microbial products are essential for developing various therapeutic agents, including antibiotics, anticancer drugs, vaccines, and therapeutic enzymes. Genetic engineering techniques, functional genomics, and synthetic biology unlock previously uncharacterized natural products. This review highlights major advances in microbial biotechnology, focusing on gene-based technologies for medical applications.
Collapse
Affiliation(s)
- Fernando Santos‐Beneit
- Institute of Sustainable ProcessesValladolidSpain
- Department of Chemical Engineering and Environmental Technology, School of Industrial EngineeringUniversity of ValladolidValladolidSpain
| |
Collapse
|
16
|
Rossi N, Grosso C, Delerue-Matos C. Shrimp Waste Upcycling: Unveiling the Potential of Polysaccharides, Proteins, Carotenoids, and Fatty Acids with Emphasis on Extraction Techniques and Bioactive Properties. Mar Drugs 2024; 22:153. [PMID: 38667770 PMCID: PMC11051396 DOI: 10.3390/md22040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Shrimp processing generates substantial waste, which is rich in valuable components such as polysaccharides, proteins, carotenoids, and fatty acids. This review provides a comprehensive overview of the valorization of shrimp waste, mainly shrimp shells, focusing on extraction methods, bioactivities, and potential applications of these bioactive compounds. Various extraction techniques, including chemical extraction, microbial fermentation, enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pressurized techniques are discussed, highlighting their efficacy in isolating polysaccharides, proteins, carotenoids, and fatty acids from shrimp waste. Additionally, the bioactivities associated with these compounds, such as antioxidant, antimicrobial, anti-inflammatory, and antitumor properties, among others, are elucidated, underscoring their potential in pharmaceutical, nutraceutical, and cosmeceutical applications. Furthermore, the review explores current and potential utilization avenues for these bioactive compounds, emphasizing the importance of sustainable resource management and circular economy principles in maximizing the value of shrimp waste. Overall, this review paper aims to provide insights into the multifaceted aspects of shrimp waste valorization, offering valuable information for researchers, industries, and policymakers interested in sustainable resource utilization and waste-management strategies.
Collapse
Affiliation(s)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (N.R.); (C.D.-M.)
| | | |
Collapse
|
17
|
Hu C. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:12. [PMID: 38282092 PMCID: PMC10822835 DOI: 10.1007/s13659-024-00432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Marine natural products (MNPs) and marine organisms include sea urchin, sea squirts or ascidians, sea cucumbers, sea snake, sponge, soft coral, marine algae, and microalgae. As vital biomedical resources for the discovery of marine drugs, bioactive molecules, and agents, these MNPs have bioactive potentials of antioxidant, anti-infection, anti-inflammatory, anticoagulant, anti-diabetic effects, cancer treatment, and improvement of human immunity. This article reviews the role of MNPs on anti-infection of coronavirus, SARS-CoV-2 and its major variants (such as Delta and Omicron) as well as tuberculosis, H. Pylori, and HIV infection, and as promising biomedical resources for infection related cardiovascular disease (irCVD), diabetes, and cancer. The anti-inflammatory mechanisms of current MNPs against SARS-CoV-2 infection are also discussed. Since the use of other chemical agents for COVID-19 treatment are associated with some adverse effects in cardiovascular system, MNPs have more therapeutic advantages. Herein, it's time to protect this ecosystem for better sustainable development in the new era of ocean economy. As huge, novel and promising biomedical resources for anti-infection of SARS-CoV-2 and irCVD, the novel potential mechanisms of MNPs may be through multiple targets and pathways regulating human immunity and inhibiting inflammation. In conclusion, MNPs are worthy of translational research for further clinical application.
Collapse
Affiliation(s)
- Chunsong Hu
- Department of Cardiovascular Medicine, Jiangxi Academy of Medical Science, Nanchang University, Hospital of Nanchang University, No. 461 Bayi Ave, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
18
|
Yan T, Ding F, Zhang Y, Wang Y, Wang Y, Zhang Y, Zhu F, Zhang G, Zheng X, Jia G, Zhou F, Zhao Y, Zhao Y. Astaxanthin Inhibits H 2O 2-Induced Excessive Mitophagy and Apoptosis in SH-SY5Y Cells by Regulation of Akt/mTOR Activation. Mar Drugs 2024; 22:57. [PMID: 38393028 PMCID: PMC10890442 DOI: 10.3390/md22020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Oxidative stress, which damages cellular components and causes mitochondrial dysfunction, occurs in a variety of human diseases, including neurological disorders. The clearance of damaged mitochondria via mitophagy maintains the normal function of mitochondria and facilitates cell survival. Astaxanthin is an antioxidant known to have neuroprotective effects, but the underlying mechanisms remain unclear. This study demonstrated that astaxanthin inhibited H2O2-induced apoptosis in SH-SY5Y cells by ameliorating mitochondrial damage and enhancing cell survival. H2O2 treatment significantly reduced the levels of activated Akt and mTOR and induced mitophagy, while pretreatment with astaxanthin prevented H2O2-induced inhibition of Akt and mTOR and attenuated H2O2-induced mitophagy. Moreover, the inhibition of Akt attenuated the protective effect of astaxanthin against H2O2-induced cytotoxicity. Taken together, astaxanthin might inhibit H2O2-induced apoptosis by protecting mitochondrial function and reducing mitophagy. The results also indicate that the Akt/mTOR signaling pathway was critical for the protection of astaxanthin against H2O2-induced cytotoxicity. The results from the present study suggest that astaxanthin can reduce neuronal oxidative injury and may have the potential to be used for preventing neurotoxicity associated with neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China; (T.Y.); (F.D.); (Y.Z.); (Y.W.); (Y.W.); (Y.Z.); (F.Z.); (G.Z.); (X.Z.); (G.J.); (F.Z.); (Y.Z.)
| |
Collapse
|
19
|
Osawa Y, Kuwahara D, Hayashi Y, Honda M. Effects of Astaxanthin Preparation Form on the Efficiency of Egg Yolk Pigmentation in Laying Hens. J Oleo Sci 2024; 73:25-34. [PMID: 38171728 DOI: 10.5650/jos.ess23048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
This study investigated the effects of the preparation form of astaxanthin on egg yolk pigmentation and egg quality in laying hens. The following four astaxanthin sources were prepared in this study: (1) dried cell powder of Paracoccus carotinifaciens (Panaferd-AX), (2) fine cell powder of P. carotinifaciens (Panaferd-P), (3) astaxanthin oil suspension, and (4) water-soluble astaxanthin powder. These astaxanthin preparations were added to the basal diet at a final concentration of 2 mg/kg and fed to White Leghorn laying hens for 14 days. Although the administration of these astaxanthin preparations did not largely affect egg quality (i.e., egg weight, yolk weight, albumen height, and Haugh unit), feeding significantly improved astaxanthin concentration and yolk color fan score. When water-soluble astaxanthin powder was fed, the yolk astaxanthin concentration and color fan score were most improved, followed by Panaferd-P. These results indicated that astaxanthin pulverization and water solubilization significantly improved its bioavailability in laying hens. Furthermore, although diets rich in (all-E)-astaxanthin were fed to the hens, approximately 30% of astaxanthin was present as the Z-isomers in the egg yolk. These findings may contribute to improving not only the egg quality but the nutritional value of hen eggs.
Collapse
Affiliation(s)
| | | | | | - Masaki Honda
- Faculty of Science & Technology, Meijo University
| |
Collapse
|
20
|
Ryu YK, Lee WK, Choi WY, Kim T, Lee YJ, Park A, Kim T, Oh C, Heo SJ, Kim JH, Jeon GE, Kang DH. A novel drying film culture method applying a natural phenomenon: Increased carotenoid production by Haematococcus sp. BIORESOURCE TECHNOLOGY 2023; 390:129827. [PMID: 37802367 DOI: 10.1016/j.biortech.2023.129827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Low productivity and high cost remain major bottlenecks for the large-scale production of Haematococcus sp. This study explored biomass production and carotenoid accumulation in Haematococcus sp. (KCTC 12348BP) using drying film culture. The broth-cultured strain (3.2 × 106 cells/mL, 0.83 ± 0.02 mg/mL for a 21 d culture) was cultured under various conditions (different inoculum volumes and mist feeding intervals) in waterless agar plates at 28 ± 0.5 °C, under fluorescent light (12 h light-dark cycle) for 1 month. The maximum biomass obtained was 17.60 ± 0.72 g/m2, while the maximum astaxanthin concentration was 8.23 ± 1.13 mg/g in the culture using 1 mL inoculum and 3 d feeding interval. Drought stress in drying film culture effectively induced the accumulation of carotenoids from β-carotene, facilitating the production of canthaxanthin via the astaxanthin biosynthesis pathway. This cost-effective culture system can increase the biomass and carotenoid pigment production in Haematococcus sp.
Collapse
Affiliation(s)
- Yong-Kyun Ryu
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; Department of Marine Technology & Convergence Engineering (Marine Biotechnology), KIOST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Won-Kyu Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; Department of Marine Technology & Convergence Engineering (Marine Biotechnology), KIOST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Woon-Yong Choi
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Taihun Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Yeon-Ji Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Areumi Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Taeho Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Chulhong Oh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; Department of Marine Technology & Convergence Engineering (Marine Biotechnology), KIOST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; Department of Marine Technology & Convergence Engineering (Marine Biotechnology), KIOST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Ga Eun Jeon
- Marine Environment Impact Assessment Center, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Do-Hyung Kang
- Office of the President, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea.
| |
Collapse
|
21
|
Abbasian F, Alavi MS, Roohbakhsh A. Dietary carotenoids to improve hypertension. Heliyon 2023; 9:e19399. [PMID: 37662767 PMCID: PMC10472253 DOI: 10.1016/j.heliyon.2023.e19399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Hypertension is one of the major risk factors for cardiovascular diseases and the main reason for premature death in older adults. Although antihypertensive medications have been used frequently, hypertension prevalence has increased in the last decade. Lifestyle improvement is a cornerstone of hypertension prevention and control. High dietary consumptions of fruits and vegetables are linked to reduced risks of high blood pressure. Carotenoids are natural tetraterpene pigments produced by bacteria, fungi, algae, some animals, and various plants. Because of their high pharmacological potential and safety, they have been mentioned as unique therapeutic agents for a diverse range of diseases. Carotenoids modulate high blood pressure. They also have several additional benefits for the cardiovascular system, including antioxidative, anti-inflammatory, anti-atherogenic, and antiplatelet effects. They improve endothelial function and metabolic profile, as well. In the present article, we reviewed the literature data regarding carotenoids' influence on hypertension in both preclinical and clinical studies. Furthermore, we reviewed the underlying mechanisms associated with antihypertensive properties derived from in vitro and in vivo studies. Suppressing reactive oxygen species (ROS) production, Inhibiting angiotensin-II, endothelin-1, and oxidized low-density lipoprotein; and also nitric oxide enhancement are some of the mechanisms by which they lower blood pressure. The present article indicated that astaxanthine, β-carotene, bixin, capsanthin, lutein, crocin, and lycopene have antihypertensive properties. Having significant antioxidant properties, they can decrease high blood pressure and concomitant comorbidities.
Collapse
Affiliation(s)
- Firoozeh Abbasian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Farouk AE, Fahmy SR, Soliman AM, Ibrahim SA, Sadek SA. A nano-Liposomal formulation potentiates antioxidant, anti-inflammatory, and fibrinolytic activities of Allolobophora caliginosa coelomic fluid: formulation and characterization. BMC Biotechnol 2023; 23:28. [PMID: 37537554 PMCID: PMC10401763 DOI: 10.1186/s12896-023-00795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Coelomic fluid, a pharmacologically active compound in earthworms, exhibits a range of biological activities, including antioxidant, anti-inflammatory, and anticancer. However, the biological activities exerted by the coelomic fluid can be restrained by its low bioavailability and stability. Liposomes are progressively utilized as an entrapment system for natural bioactive compounds with poor bioavailability and stability, which could be appropriate for coelomic fluid. Thus, the present study was designed to fabricate, characterize, and evaluate the stability of liposomal formulation for Allolobophora caliginosa coelomic fluid (ACCF) as a natural antioxidant compound. METHODS The ACCF-liposomes were developed with a subsequent characterization of their physicochemical attributes. The physical stability, ACCF release behavior, and gastrointestinal stability were evaluated in vitro. The biological activities of ACCF and its liposomal formulation were also determined. RESULTS The liposomal formulation of ACCF had a steady characteristic absorption band at 201 nm and a transmittance of 99.20 ± 0.10%. Its average hydrodynamic particle size was 98 nm, with a PDI of 0.29 ± 0.04 and a negative zeta potential (-38.66 ± 0.33mV). TEM further confirmed the formation of vesicular, spherical nano-liposomes with unilamellar configuration. Additionally, a remarkable entrapment efficiency percent (77.58 ± 0.82%) with a permeability rate equal to 3.20 ± 0.31% and a high retention rate (54.16 ± 2.20%) for ACCF-liposomes were observed. The Fourier transform infrared spectroscopy (FTIR) result demonstrated that ACCF successfully entrapped inside liposomes. The ACCF-liposomes exhibited a slow and controlled ACCF release in vitro. Regarding stability studies, the liposomal formulation enhanced the stability of ACCF during storage and at different pH. Furthermore, ACCF-liposomes are highly stable in intestinal digestion conditions comparable to gastric digestion. The current study disclosed that liposomal formulation potentiates the biological activities of ACCF, especially antioxidant, anti-inflammatory, and thrombolytic activities. CONCLUSION These promising results offer a novel approach to increasing the bioaccessibility of ACCF, which may be crucial for the development of pharmaceuticals and nutraceutical-enriched functional foods.
Collapse
Affiliation(s)
- Asmaa E Farouk
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Sohair R Fahmy
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amel M Soliman
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Shimaa A Sadek
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
23
|
Sayuti NH, Muhammad Nawawi KN, Goon JA, Mokhtar NM, Makpol S, Tan JK. Preventative and Therapeutic Effects of Astaxanthin on NAFLD. Antioxidants (Basel) 2023; 12:1552. [PMID: 37627546 PMCID: PMC10451858 DOI: 10.3390/antiox12081552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant public health issue owing to its high incidence and consequences, and its global prevalence is presently 30% and rising, necessitating immediate action. Given the current controversies related to NAFLD, the search for novel therapeutic interventions continues. Astaxanthin is a carotenoid that primarily originates from marine organisms. It is the best antioxidant among carotenoids and one of the most significant components in treating NAFLD. The use of astaxanthin, a xanthophyll carotenoid, as a dietary supplement to treat chronic metabolic diseases is becoming more evident. According to growing data, astaxanthin may be able to prevent or even reverse NAFLD by reducing oxidative stress, inflammation, insulin resistance, lipid metabolism, and fibrosis. Astaxanthin might become a viable therapeutic or treatment option for NAFLD in the upcoming years. Elucidating the impact and mechanism of astaxanthin on NAFLD would not only establish a scientific basis for its clinical application, but also potentially enhance the precision of experimental methodology for future investigations targeting NAFLD treatment. This review explores the potential preventive and therapeutic effects of astaxanthin on liver disorders, especially NAFLD.
Collapse
Affiliation(s)
- Nor Hafiza Sayuti
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.H.S.)
| | - Khairul Najmi Muhammad Nawawi
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.H.S.)
| | - Norfilza Mohd Mokhtar
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.H.S.)
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.H.S.)
| |
Collapse
|
24
|
Paramakrishnan N, Lim KG, Paramaswaran Y, Ali N, Waseem M, Shazly GA, Bin Jardan YA, Muthuraman A. Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer's Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13. Mar Drugs 2023; 21:433. [PMID: 37623714 PMCID: PMC10455645 DOI: 10.3390/md21080433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is a major type of dementia disorder. Common cognitive changes occur as a result of cerebrovascular damage (CVD) via the disruption of matrix metalloproteinase-13 (MMP-13). In diabetic cases, the progress of vascular dementia is faster and the AD rate is higher. Patients with type 2 diabetes are known to have a higher risk of the factor for AD progression. Hence, this study is designed to investigate the role of astaxanthin (AST) in CVD-associated AD in zebrafish via the inhibition of MMP-13 activity. CVD was developed through the intraperitoneal and intracerebral injection of streptozotocin (STZ). The AST (10 and 20 mg/L), donepezil (1 mg/L), and MMP-13 inhibitor (i.e., CL-82198; 10 μM) were exposed for 21 consecutive days in CVD animals. The cognitive changes in zebrafish were evaluated through light and dark chamber tests, a color recognition test, and a T-maze test. The biomarkers of AD pathology were assessed via the estimation of the cerebral extravasation of Evans blue, tissue nitrite, amyloid beta-peptide aggregation, MMP-13 activity, and acetylcholinesterase activity. The results revealed that exposure to AST leads to ameliorative behavioral and biochemical changes. Hence, AST can be used for the management of AD due to its multi-targeted actions, including MMP-13 inhibition.
Collapse
Affiliation(s)
| | - Khian Giap Lim
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Yamunna Paramaswaran
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Waseem
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
25
|
Cunha SA, Borges S, Baptista-Silva S, Ribeiro T, Oliveira-Silva P, Pintado M, Batista P. Astaxanthin impact on brain: health potential and market perspective. Crit Rev Food Sci Nutr 2023; 64:11067-11090. [PMID: 37417323 DOI: 10.1080/10408398.2023.2232866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Nowadays, there is an emergent interest in new trend-driven biomolecules to improve health and wellbeing, which has become an interesting and promising field, considering their high value and biological potential. Astaxanthin is one of these promising biomolecules, with impressive high market growth, especially in the pharmaceutical and food industries. This biomolecule, obtained from natural sources (i.e., microalgae), has been reported in the literature to have several beneficial health effects due to its biological properties. These benefits seem to be mainly associated with Astaxanthin's high antioxidant and anti-inflammatory properties, which may act on several brain issues, thus attenuating symptoms. In this sense, several studies have demonstrated the impact of astaxanthin on a wide range of diseases, namely on brain disorders (such as Alzheimer's disease, Parkinson, depression, brain stroke and autism). Therefore, this review highlights its application in mental health and illness. Furthermore, a S.W.O.T. analysis was performed to display an approach from the market/commercial perspective. However, to bring the molecule to the market, there is still a need for more studies to increase deep knowledge regarding the real impact and mechanisms in the human brain.HIGHLIGHTSAstaxanthin has been mainly extracted from the algae Haematococcus pluvialisAstaxanthin, bioactive molecule with high antioxidant and anti-inflammatory propertiesAstaxanthin has an important protective effect on brain disordersAstaxanthin is highly marketable, mainly for food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sara A Cunha
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sandra Borges
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sara Baptista-Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Tânia Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Oliveira-Silva
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Batista
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| |
Collapse
|
26
|
Xie W, Tan S, Ren X, Yu J, Yang C, Xie H, Ma Z, Liu Y, Yang S. Tumor-targeted astaxanthin nanoparticles for therapeutic application in vitro. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2023; 55:100721. [DOI: 10.1016/j.colcom.2023.100721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Pereira L, Cotas J. Therapeutic Potential of Polyphenols and Other Micronutrients of Marine Origin. Mar Drugs 2023; 21:323. [PMID: 37367648 DOI: 10.3390/md21060323] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Polyphenols are compounds found in various plants and foods, known for their antioxidant and anti-inflammatory properties. Recently, researchers have been exploring the therapeutic potential of marine polyphenols and other minor nutrients that are found in algae, fish and crustaceans. These compounds have unique chemical structures and exhibit diverse biological properties, including anti-inflammatory, antioxidant, antimicrobial and antitumor action. Due to these properties, marine polyphenols are being investigated as possible therapeutic agents for the treatment of a wide variety of conditions, such as cardiovascular disease, diabetes, neurodegenerative diseases and cancer. This review focuses on the therapeutic potential of marine polyphenols and their applications in human health, and also, in marine phenolic classes, the extraction methods, purification techniques and future applications of marine phenolic compounds.
Collapse
Affiliation(s)
- Leonel Pereira
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Instituto do Ambiente Tecnologia e Vida, Faculdade de Ciências e Tecnologia, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - João Cotas
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
28
|
Mussagy CU, Kot A, Dufossé L, Gonçalves CNDP, Pereira JFB, Santos-Ebinuma VC, Raghavan V, Pessoa A. Microbial astaxanthin: from bioprocessing to the market recognition. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12586-1. [PMID: 37233757 DOI: 10.1007/s00253-023-12586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
The attractive biological properties and health benefits of natural astaxanthin (AXT), including its antioxidant and anti-carcinogenic properties, have garnered significant attention from academia and industry seeking natural alternatives to synthetic products. AXT, a red ketocarotenoid, is mainly produced by yeast, microalgae, wild or genetically engineered bacteria. Unfortunately, the large fraction of AXT available in the global market is still obtained using non-environmentally friendly petrochemical-based products. Due to the consumers concerns about synthetic AXT, the market of microbial-AXT is expected to grow exponentially in succeeding years. This review provides a detailed discussion of AXT's bioprocessing technologies and applications as a natural alternative to synthetic counterparts. Additionally, we present, for the first time, a very comprehensive segmentation of the global AXT market and suggest research directions to improve microbial production using sustainable and environmentally friendly practices. KEY POINTS: • Unlock the power of microorganisms for high value AXT production. • Discover the secrets to cost-effective microbial AXT processing. • Uncover the future opportunities in the AXT market.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas Y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2260000, Quillota, Chile.
| | - Anna Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 9, 97744, Saint-Denis, France
| | - Carmem N D P Gonçalves
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Jorge F B Pereira
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Valeria C Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Adalberto Pessoa
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Butantã, São Paulo, Brazil
| |
Collapse
|
29
|
Lee JY, Yu BS, Chang WS, Sim SJ. A strategy to maximize astaxanthin production from Haematococcus pluvialis in a cost-effective process by utilizing a PBR-LGP-PBR array (PLPA) hybrid system using light guide panel (LGP) and solar cells. BIORESOURCE TECHNOLOGY 2023; 376:128902. [PMID: 36933577 DOI: 10.1016/j.biortech.2023.128902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated economic feasibility through production efficiency, return on investment (ROI) and payout time of a hybrid system using a photobioreactor (PBR)-light guide panel (LGP)-PBR array (PLPA) and solar cells developed for astaxanthin and ω-3 FA simultaneous production of Haematococcus pluvialis. The economic feasibility of the PLPA hybrid system (8 PBRs) and the PBR-PBR-PBR array (PPPA) system (8 PBRs) was evaluated for producing high-value products while effectively reducing CO2. Introducing a PLPA hybrid system has increased the amount of culture per area by 1.6 times. Also, the shading effect was effectively suppressed with an LGP placed between each PBR, increasing biomass and astaxanthin productivity by 3.39-fold and 4.79-fold, respectively compared to the untreated H. pluvialis cultures. In addition, ROI increased by 6.55 and 4.71 times, and the payout time was reduced by 1.34 and 1.37 times, respectively in 10 and 100-ton scale processes.
Collapse
Affiliation(s)
- Ju Yeon Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Won Seok Chang
- Research Institute, Korea District Heating Corp., 92, Gigok-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17099, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
30
|
Teng Z, Zheng L, Yang Z, Li L, Zhang Q, Li L, Chen W, Wang G, Song L. Biomass production and astaxanthin accumulation of Haematococcus pluvialis in large-scale outdoor culture based on year-round survey: Influencing factors and physiological response. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
31
|
Rostami S, Alyasin A, Saedi M, Nekoonam S, Khodarahmian M, Moeini A, Amidi F. Astaxanthin ameliorates inflammation, oxidative stress, and reproductive outcomes in endometriosis patients undergoing assisted reproduction: A randomized, triple-blind placebo-controlled clinical trial. Front Endocrinol (Lausanne) 2023; 14:1144323. [PMID: 37020589 PMCID: PMC10067663 DOI: 10.3389/fendo.2023.1144323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Purpose In a randomized, triple-blind, placebo-controlled clinical trial (RCT) including 50 infertile women with endometriosis candidate for assisted reproductive techniques (ART), we studied the effect of Astaxanthin (AST) on pro-inflammatory cytokines, oxidative stress (OS) markers, and early pregnancy outcomes. Methods Before and after 12 weeks of AST treatment (6 mg per day), blood serum and follicular fluid (FF) samples were collected from 50 infertile women with endometriosis stage III/IV undergoing ART. Pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and OS markers (malondialdehyde [MDA], superoxide dismutase [SOD], catalase [CAT], and total antioxidant capacity [TAC]) were measured in the serum and FF. ART outcomes were also compared between the groups. Results Increased serum levels of TAC (398.661 ± 57.686 vs. 364.746 ± 51.569; P = 0.004) and SOD (13.458 ± 7.276 vs. 9.040 ± 5.155; P = 0.010) were observed after AST therapy in the treatment group. Furthermore, serum MDA (14.619 ± 2.505 vs. 15.939 ± 1.512; P = 0.031) decreased significantly following antioxidant treatment. In addition, significantly lower serum levels of IL-1β (4.515 ± 0.907 vs. 6.8760 ± 0.8478; P = 0.000), IL-6 (5.516 ± 0.646 vs. 5.0543 ± 0.709; P = 0.024) and TNF-α (2.520 ± 0.525 vs. 2.968 ± 0.548; P = 0.038) were observed after AST treatment. In addition, AST supplementation led to an improved number of oocytes retrieved (14.60 ± 7.79 vs. 9.84 ± 6.44; P = 0.043), number of mature (MII) oocytes (10.48 ± 6.665 vs. 6.72 ± 4.3; P = 0.041), and high-quality embryos (4.52 ± 2.41 vs. 2.72 ± 2.40; P = 0.024). Conclusion AST pretreatment can modulate inflammation and OS in endometriosis-induced infertile patients. ART outcomes also improved after 12 weeks of AST therapy. Our results suggest that AST can be a potential therapeutic target for infertile patients with endometriosis undergoing ART.
Collapse
Affiliation(s)
- Sahar Rostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Alyasin
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Obstetrics and Gynecology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saedi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Infertility, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moeini
- Department of Gynecology and Obstetrics, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Dasgupta Mandal D, Majumdar S. Bacteria as biofactory of pigments: Evolution beyond therapeutics and biotechnological advancements. J Biosci Bioeng 2023; 135:349-358. [PMID: 36872147 DOI: 10.1016/j.jbiosc.2023.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 03/06/2023]
Abstract
Bacterial pigments are the wonder molecules of nature that have attracted the attention of industries in recent years. To date, various synthetic pigments have been in use in food, cosmetics, and textile industries that have not only shown a notoriously toxic nature but also posed threat to the ecosystem. Moreover, nutraceuticals, fisheries, and animal husbandry were highly dependent on plant sources for products that aid in disease prevention and improve stock health. In this context, the use of bacterial pigments as new-generation colorants, food fortifiers, and supplements can hold great prospects as low-cost, healthy, and eco-friendly alternatives. The majority of studies on these compounds were restricted to antimicrobial, antioxidant, and anticancer potentials to date. Each of these can be highly beneficial for the development of new-generation drugs, but their other potential niche in various industries that pose health and environmental risks needs to be explored. Recent advances in novel strategies of metabolic engineering, advancements in optimization tools for the fermentation process, and the design of appropriate delivery systems will greatly expand the market of bacterial pigments in industries. This review summarizes the current technologies for enhancing production, recovery, stability, and appreciable use of bacterial pigments in industries apart from therapeutics with proper financial aspects. The toxicity perspectives have been focused to emphasize that these wonder molecules are the need of the hour and their future prospects have been highlighted. Extensive literature has been studied to include the challenges of bacterial pigments from environmental and health risk perspectives.
Collapse
Affiliation(s)
- Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| | - Subhasree Majumdar
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India; Department of Zoology, Sonamukhi College, Sonamukhi, Bankura 722207, West Bengal, India
| |
Collapse
|
33
|
Yang HE, Yu BS, Sim SJ. Enhanced astaxanthin production of Haematococcus pluvialis strains induced salt and high light resistance with gamma irradiation. BIORESOURCE TECHNOLOGY 2023; 372:128651. [PMID: 36682476 DOI: 10.1016/j.biortech.2023.128651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
This study was conducted to increase the productivity of biomass that contains high astaxanthin content by developing a mutant Haematococcus pluvialis strain with strong environmental tolerance. H. pluvialis has a low cell-growth rate and is vulnerable to stressors such as salinity or light intensity, which may hinder large-scale commercial cultivation. A mutant M5 strain selected through 5000-Gy gamma irradiation showed improved biomass and astaxanthin production under high-salinity and high-light intensity conditions. With enhanced SOD activity and overexpressed astaxanthin biosynthesis genes (lyc, crtR-b, bkt2), M5 demonstrated an increase in biomass and astaxanthin productivity by 86.70 % and 66.15 %, respectively compared to those of untreated cells. Also, the omega-3 content of M5 increased by 149.44 % under 40 mM CaCl2 compared to the untreated cells. Finally, even when subjected to high-intensity light irradiation for the whole life cycle, the biomass and astaxanthin concentration increased by 84.99 % and 241 %, respectively, compared to the wild-type cells.
Collapse
Affiliation(s)
- Ha Eun Yang
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
34
|
Liu X, Xie J, Zhou L, Zhang J, Chen Z, Xiao J, Cao Y, Xiao H. Recent advances in health benefits and bioavailability of dietary astaxanthin and its isomers. Food Chem 2023; 404:134605. [DOI: 10.1016/j.foodchem.2022.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
|
35
|
Gherabli A, Grimi N, Lemaire J, Vorobiev E, Lebovka N. Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies. Molecules 2023; 28:2089. [PMID: 36903334 PMCID: PMC10004699 DOI: 10.3390/molecules28052089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The freshwater microalga Haematococcus pluvialis is well known as the cell factory for natural astaxanthin, which composes up to 4-7% of its total dry weight. The bioaccumulation of astaxanthin in H. pluvialis cysts seems to be a very complex process that depends on different stress conditions during its cultivation. The red cysts of H. pluvialis develop thick and rigid cell walls under stress growing conditions. Thus, the biomolecule extraction requires general cell disruption technologies to reach a high recovery rate. This short review provides an analysis of the different steps in H. pluvialis's up and downstream processing including cultivation and harvesting of biomass, cell disruption, extraction and purification techniques. Useful information on the structure of H. pluvialis's cells, biomolecular composition and properties and the bioactivity of astaxanthin is collected. Special emphasis is given to the recent progress in application of different electrotechnologies during the growth stages and for assistance of the recovery of different biomolecules from H. pluvialis.
Collapse
Affiliation(s)
- Adila Gherabli
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110 Pomacle, France
| | - Nabil Grimi
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
| | - Julien Lemaire
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110 Pomacle, France
| | - Eugène Vorobiev
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
| | - Nikolai Lebovka
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
- Laboratory of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, 03142 Kyiv, Ukraine
| |
Collapse
|
36
|
Patil AD, Kasabe PJ, Dandge PB. Editorial Expression of Concern: Pharmaceutical and nutraceutical potential of natural bioactive pigment: astaxanthin. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:5. [PMID: 36723796 PMCID: PMC9892370 DOI: 10.1007/s13659-023-00370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Apurva D. Patil
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| | - Pramod J. Kasabe
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra India
| | - Padma B. Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| |
Collapse
|
37
|
Fullam T, Armon C, Barkhaus P, Barnes B, Beauchamp M, Benatar M, Bertorini T, Bowser R, Bromberg M, Mascias Cadavid J, Carter GT, Dimachkie M, Ennist D, Feldman EL, Heiman-Patterson T, Jhooty S, Lund I, Mcdermott C, Pattee G, Ratner D, Wicks P, Bedlack R. ALSUntangled # 69: astaxanthin. Amyotroph Lateral Scler Frontotemporal Degener 2023:1-5. [PMID: 36694292 DOI: 10.1080/21678421.2023.2171302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ALSUntangled reviews alternative and off-label treatments for people living with amyotrophic lateral sclerosis (PALS). Here we review astaxanthin which has plausible mechanisms for slowing ALS progression including antioxidant, anti-inflammatory, and anti-apoptotic effects. While there are no ALS-specific pre-clinical studies, one verified "ALS reversal" occurred in a person using a combination of alternative therapies which included astaxanthin. There have been no trials of astaxanthin in people living with ALS. Natural astaxanthin appears to be safe and inexpensive. Based on the above information, we support further pre-clinical and/or clinical trials of astaxanthin in disease models and PALS, respectively, to further elucidate efficacy.
Collapse
Affiliation(s)
| | - Carmel Armon
- Department of Neurology, Loma Linda University, Loma Linda, CA, USA
| | - Paul Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Benjamin Barnes
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | | | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Tulio Bertorini
- Neurology Department, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark Bromberg
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Gregory T Carter
- Department of Rehabilitation, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Mazen Dimachkie
- Department of Neurology, University of Kansas, Kansas City, KS, USA
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Sartaj Jhooty
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Gary Pattee
- Department of Neurology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Paul Wicks
- Independent Consultant, Lichfield, UK, and
| | | |
Collapse
|
38
|
The Role of Astaxanthin as a Nutraceutical in Health and Age-Related Conditions. Molecules 2022; 27:molecules27217167. [PMID: 36363994 PMCID: PMC9655540 DOI: 10.3390/molecules27217167] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
The current review provides an up-to-date analysis of scientific data on astaxanthin (ASX) sources and experimental studies on its health benefits as a potent antioxidant in the aging process. ASX is a liposoluble carotenoid nutrient and reddish-orange pigment, naturally synthesized by numerous microalgae, yeasts, and bacteria as secondary metabolites. Provides a reddish hue to redfish and shellfish flesh that feed on ASX-producing microorganisms. The microalga Haematococcus pluvialis is the most important source for its industrial bioproduction. Due to its strong antioxidant properties, numerous investigations reported that natural ASX is a more significant antioxidant agent than other antioxidants, such as vitamin C, vitamin E, and β-carotene. Furthermore, several data show that ASX possesses important nutraceutical applications and health benefits, especially in healthy aging processes. However, further studies are needed for a deeper understanding of the potential mechanisms through which ASX could lead to its effective role in the healthy aging process, such as supporting brain health and skin homeostasis. This review highlights the current investigations on the effective role of ASX in oxidative stress, aging mechanisms, skin physiology, and central nervous system functioning, and shows the potential clinical implications related to its consumption.
Collapse
|
39
|
Sun J, Yan J, Dong H, Gao K, Yu K, He C, Mao X. Astaxanthin with different configurations: sources, activity, post-modification and application in foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|