1
|
Auguet T, Bertran L, Capellades J, Abelló S, Aguilar C, Sabench F, del Castillo D, Correig X, Yanes O, Richart C. LC/MS-Based Untargeted Metabolomics Analysis in Women with Morbid Obesity and Associated Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:7761. [PMID: 37175468 PMCID: PMC10177925 DOI: 10.3390/ijms24097761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is a chronic and complex disease, with an increasing incidence worldwide that is associated with metabolic disorders such as type 2 diabetes mellitus (T2DM). Thus, it is important to determine the differences between metabolically healthy obese individuals and those with metabolic disorders. The aim of this study was to perform an untargeted metabolomics assay in women with morbid obesity (MO) compared to a normal weight group, and to differentiate the metabolome of these women with MO who present with T2DM. We carried out a liquid chromatography-mass spectrometry-based untargeted metabolomics assay using serum samples of 209 Caucasian women: 73 with normal weight and 136 with MO, of which 71 had T2DM. First, we found increased levels of choline and acylglycerols and lower levels of bile acids, steroids, ceramides, glycosphingolipids, lysophosphatidylcholines, and lysophosphatidylethanolamines in MO women than in the control group. Then, in MO women with T2DM, we found increased levels of glutamate, propionyl-carnitine, bile acids, ceramides, lysophosphatidylcholine 14:0, phosphatidylinositols and phosphoethanolamines, and lower levels of Phe-Ile/Leu. Thus, we found metabolites with opposite trends of concentration in the two metabolomic analyses. These metabolites could be considered possible new factors of study in the pathogenesis of MO and associated T2DM in women.
Collapse
Affiliation(s)
- Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
| | - Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
| | - Jordi Capellades
- Department of Electronic Engineering, Universitat Rovira i Virgili (URV), IISPV, 43007 Tarragona, Spain; (J.C.); (X.C.); (O.Y.)
| | - Sonia Abelló
- Servei de Recursos Científics i Tècnics, Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain;
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
| | - Fàtima Sabench
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
- Unitat de Cirurgia, Facultad de Medicina i Ciències de la Salut, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili (URV), IISPV, 43204 Reus, Spain
| | - Daniel del Castillo
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
- Unitat de Cirurgia, Facultad de Medicina i Ciències de la Salut, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili (URV), IISPV, 43204 Reus, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili (URV), IISPV, 43007 Tarragona, Spain; (J.C.); (X.C.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 43204 Madrid, Spain
| | - Oscar Yanes
- Department of Electronic Engineering, Universitat Rovira i Virgili (URV), IISPV, 43007 Tarragona, Spain; (J.C.); (X.C.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 43204 Madrid, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
| |
Collapse
|
2
|
Liu X, Zhao Z, Fan Y, Zhao D, Wang Y, Lv M, Qin X. Microbiome and metabolome reveal the metabolic and microbial variations induced by depression and constipation. Psychogeriatrics 2023; 23:319-336. [PMID: 36683263 DOI: 10.1111/psyg.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Depressed patients are often accompanied with constipation symptoms, and vice versa. However, the underlying mechanisms of such a bidirectional correlation have remained elusive. We aim to reveal the possible correlations between depression and constipation from the perspectives of gut microbiome and plasma metabolome. METHODS We constructed the depressed model and the constipated model of rats, respectively. First, we measured the locomotor activity status and the gastrointestinal functions of rats. And then, nuclear magnetic resonance plasma metabolomics was applied to reveal the shared and the unique metabolites of depression and constipation. In addition, 16 S ribosomal RNA gene sequencing was used to detect the impacts of constipation and depression on gut microbiota of rats. Finally, a multiscale and multifactorial network, that is, the 'phenotypes - differential metabolites - microbial biomarkers' integrated network, was constructed to visualise the mechanisms of connections between depression and constipation. RESULTS We found that spontaneous locomotor activity and gastrointestinal functions of both depressed rats and constipated rats significantly decreased. Further, eight metabolites and 14 metabolites were associated depression and constipation, respectively. Among them, seven metabolites and four metabolic pathways were shared by constipation and depression, mainly perturbing energy metabolism and amino acid metabolism. Additionally, depression and constipation significantly disordered the functions and the compositions of gut microbiota of rats, and decreased the ratio of Firmicutes to Bacteroidetes. CONCLUSION The current findings provide multiscale and multifactorial perspectives for understanding the correlations between depression and constipation, and demonstrate new mechanisms of comorbidity of depression and constipation.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Ziyu Zhao
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Yuhui Fan
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Di Zhao
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Yaze Wang
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Meng Lv
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Xuemei Qin
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| |
Collapse
|
3
|
Valles-Colomer M, Menni C, Berry SE, Valdes AM, Spector TD, Segata N. Cardiometabolic health, diet and the gut microbiome: a meta-omics perspective. Nat Med 2023; 29:551-561. [PMID: 36932240 PMCID: PMC11258867 DOI: 10.1038/s41591-023-02260-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/16/2023] [Indexed: 03/19/2023]
Abstract
Cardiometabolic diseases have become a leading cause of morbidity and mortality globally. They have been tightly linked to microbiome taxonomic and functional composition, with diet possibly mediating some of the associations described. Both the microbiome and diet are modifiable, which opens the way for novel therapeutic strategies. High-throughput omics techniques applied on microbiome samples (meta-omics) hold the unprecedented potential to shed light on the intricate links between diet, the microbiome, the metabolome and cardiometabolic health, with a top-down approach. However, effective integration of complementary meta-omic techniques is an open challenge and their application on large cohorts is still limited. Here we review meta-omics techniques and discuss their potential in this context, highlighting recent large-scale efforts and the novel insights they provided. Finally, we look to the next decade of meta-omics research and discuss various translational and clinical pathways to improving cardiometabolic health.
Collapse
Affiliation(s)
- Mireia Valles-Colomer
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Cristina Menni
- Department of Twin Research, King's College London, London, UK
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Ana M Valdes
- School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham National Institute for Health Research Biomedical Research Centre, Nottingham, UK
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- European Institute of Oncology, Scientific Institute for Research, Hospitalization and Healthcare, Milan, Italy.
| |
Collapse
|
4
|
Wang Z, Tang J, Jin E, Ren C, Li S, Zhang L, Zhong Y, Cao Y, Wang J, Zhou W, Zhao M, Huang L, Qu J. Metabolomic comparison followed by cross-validation of enzyme-linked immunosorbent assay to reveal potential biomarkers of diabetic retinopathy in Chinese with type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:986303. [PMID: 36157454 PMCID: PMC9492931 DOI: 10.3389/fendo.2022.986303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To identify the biomarkers in the critical period of development in diabetic retinopathy (DR) in Chinese with type 2 diabetes using targeted and untargeted metabolomics, and to explore the feasibility of their clinical application. METHODS This case-control study described the differential metabolites between 83 Chinese type 2 diabetes mellitus (T2DM) samples with disease duration ≥ 10 years and 27 controls matched cases. Targeted metabolomics using high-resolution mass spectrometry with liquid chromatography was performed on plasma samples of subjects. The results were compared to our previous untargeted metabolomics study and ELISA was performed to validate the mutual differential metabolites of targeted and untargeted metabolomics on plasma. Multiple linear regression analyses were performed to adjust for the significance of different metabolites between groups. RESULT Mean age of the subjects was 66.3 years and mean T2DM duration was 16.5 years. By cross-validating with results from previous untargeted metabolomic assays, we found that L-Citrulline (Cit), indoleacetic acid (IAA), 1-methylhistidine (1-MH), phosphatidylcholines (PCs), hexanoylcarnitine, chenodeoxycholic acid (CDCA) and eicosapentaenoic acid (EPA) were the most distinctive metabolites biomarkers to distinguish the severity of DR for two different metabolomic approaches in our study. We mainly found that samples in the DR stage showed lower serum level of Cit and higher serum level of IAA compared with samples in the T2DM stage, while during the progression of diabetic retinopathy, the serum levels of CDCA and EPA in PDR stage were significantly lower than NPDR stage. Among them, 4 differential key metabolites including Cit, IAA, CDCA and EPA were confirmed with ELISA. CONCLUSION This is the first study to compare the results of targeted and untargeted metabolomics via liquid chromatography-mass spectrometry to find the serum biomarkers which could reflect the metabolic variations among different stages of DR in Chinese. The progression of DR in Chinese at different critical stages was related to the serum levels of specific differential metabolites, of which there is a significant correlation between DR progression and increased IAA and decreased Cit, hexanoylcarnitine, CDCA, and EPA. However, larger studies are needed to confirm our results. Based on this study, it could be inferred that the accuracy of targeted metabolomics for metabolite expression in serum is to some extent higher than that of untargeted metabolomics.
Collapse
Affiliation(s)
- Zongyi Wang
- Department of Ophthalmology, Peking University People’s Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jiyang Tang
- Department of Ophthalmology, Peking University People’s Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Enzhong Jin
- Department of Ophthalmology, Peking University People’s Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Chi Ren
- Department of Ophthalmology, Peking University People’s Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Siying Li
- Department of Ophthalmology, Peking University People’s Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Linqi Zhang
- Department of Ophthalmology, Peking University People’s Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Yusheng Zhong
- Department of Ophthalmology, Peking University People’s Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Yu Cao
- Department of Ophthalmology, Peking University People’s Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jianmin Wang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Zhou
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People’s Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People’s Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
- *Correspondence: Jinfeng Qu, ; Lvzhen Huang,
| | - Jinfeng Qu
- Department of Ophthalmology, Peking University People’s Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
- *Correspondence: Jinfeng Qu, ; Lvzhen Huang,
| |
Collapse
|
5
|
Xia Q, Qian W, Chen L, Chen X, Xie R, Zhang D, Wu H, Sun H, Wang F, Liu J, Chen T. Comprehensive Metabolomics Study in Children With Graves' Disease. Front Endocrinol (Lausanne) 2021; 12:752496. [PMID: 34867796 PMCID: PMC8635134 DOI: 10.3389/fendo.2021.752496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE Graves' disease (GD) related hyperthyroidism (HT) has profound effects on metabolic activity and metabolism of macromolecules affecting energy homeostasis. In this study, we aimed to get a comprehensive understanding of the metabolic changes and their clinical relevance in GD children. METHODS We investigated serum substances from 30 newly diagnosed GD children and 30 age- and gender-matched healthy controls. We explored the metabolomics using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) analysis, and then analyzed the metabolomic data via multivariate statistical analysis. RESULTS By untargeted metabolomic analysis, a total of 730 metabolites were identified in all participants, among which 48 differential metabolites between GD and control groups were filtered out, including amino acids, dipeptides, lipids, purines, etc. Among these metabolites, 33 were detected with higher levels, while 15 with lower levels in GD group compared to controls. Pathway analysis showed that HT had a significant impact on aminoacyl-transfer ribonucleic acid (tRNA) biosynthesis, several amino acids metabolism, purine metabolism, and pyrimidine metabolism. CONCLUSION In this study, via untargeted metabolomics analysis, significant variations of serum metabolomic patterns were detected in GD children.
Collapse
Affiliation(s)
- Qin Xia
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Weifeng Qian
- Department of Thyroid and Breast Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Linqi Chen
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiuli Chen
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Rongrong Xie
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Dandan Zhang
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Haiying Wu
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Hui Sun
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Fengyun Wang
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Jingjing Liu
- Department of Biochemistry and Molecular Biology, School of Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Ting Chen
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Ting Chen,
| |
Collapse
|
6
|
Obesity-Related Metabolome and Gut Microbiota Profiles of Juvenile Göttingen Minipigs-Long-Term Intake of Fructose and Resistant Starch. Metabolites 2020; 10:metabo10110456. [PMID: 33198236 PMCID: PMC7697781 DOI: 10.3390/metabo10110456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 01/04/2023] Open
Abstract
The metabolome and gut microbiota were investigated in a juvenile Göttingen minipig model. This study aimed to explore the metabolic effects of two carbohydrate sources with different degrees of risk in obesity development when associated with a high fat intake. A high-risk (HR) high-fat diet containing 20% fructose was compared to a control lower-risk (LR) high-fat diet where a similar amount of carbohydrate was provided as a mix of digestible and resistant starch from high amylose maize. Both diets were fed ad libitum. Non-targeted metabolomics was used to explore plasma, urine, and feces samples over five months. Plasma and fecal short-chain fatty acids were targeted and quantified. Fecal microbiota was analyzed using genomic sequencing. Data analysis was performed using sparse multi-block partial least squares regression. The LR diet increased concentrations of fecal and plasma total short-chain fatty acids, primarily acetate, and there was a higher relative abundance of microbiota associated with acetate production such as Bacteroidetes and Ruminococcus. A higher proportion of Firmicutes was measured with the HR diet, together with a lower alpha diversity compared to the LR diet. Irrespective of diet, the ad libitum exposure to the high-energy diets was accompanied by well-known biomarkers associated with obesity and diabetes, particularly branched-chain amino acids, keto acids, and other catabolism metabolites.
Collapse
|
7
|
Curtasu MV, Knudsen KEB, Callesen H, Purup S, Stagsted J, Hedemann MS. Obesity Development in a Miniature Yucatan Pig Model: A Multi-compartmental Metabolomics Study on Cloned and Normal Pigs Fed Restricted or Ad Libitum High-Energy Diets. J Proteome Res 2018; 18:30-47. [PMID: 30365323 DOI: 10.1021/acs.jproteome.8b00264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Miniature-pig models for human metabolic disorders such as obesity and metabolic syndrome are gaining popularity. However, in-depth knowledge on the phenotypic and metabolic effects of metabolic dysregulation is lacking, and ad libitum feeding is not well-characterized in these pig breeds. Therefore, an investigation was performed into the metabolome of Yucatan minipigs fed ad libitum or restricted diets. Furthermore, we used cloned and conventional minipigs to assess if cloning reflects a presumably lowered variation between subjects. For 5 months, 17 female Yucatan minipigs were fed either ad libitum or restricted Western-style diets. Serum, urine, and liver tissues were collected and analyzed by non-targeted liquid chromatography-mass spectrometry metabolomics and by biochemical analyses. Several metabolic pathways were deregulated as a result of obesity and increased energy-dense feed intake, particularly the hepatic glutathione pathway and the pantothenic acid and tryptophan metabolic pathways in serum and urine. Although cloned minipigs were phenotypically similar to wild-type minipigs, the metabolomics analysis of serum and liver tissues showed several altered pathways, such as amino acid and purine metabolism. These changes, as an effect of cloning, could limit the use of cloned models in dietary intervention studies and provides no evidence of decreased variability between subjects.
Collapse
Affiliation(s)
- Mihai V Curtasu
- Department of Animal Science , Aarhus University , Blichers Alle 20 , DK-8830 Tjele , Denmark
| | - Knud Erik B Knudsen
- Department of Animal Science , Aarhus University , Blichers Alle 20 , DK-8830 Tjele , Denmark
| | - Henrik Callesen
- Department of Animal Science , Aarhus University , Blichers Alle 20 , DK-8830 Tjele , Denmark
| | - Stig Purup
- Department of Animal Science , Aarhus University , Blichers Alle 20 , DK-8830 Tjele , Denmark
| | - Jan Stagsted
- Diet4Life , Agro Food Park 13 , DK-8200 Aarhus N , Denmark
| | - Mette S Hedemann
- Department of Animal Science , Aarhus University , Blichers Alle 20 , DK-8830 Tjele , Denmark
| |
Collapse
|
8
|
Biomarkers for predicting type 2 diabetes development-Can metabolomics improve on existing biomarkers? PLoS One 2017; 12:e0177738. [PMID: 28692646 PMCID: PMC5503163 DOI: 10.1371/journal.pone.0177738] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Aim The aim was to determine if metabolomics could be used to build a predictive model for type 2 diabetes (T2D) risk that would improve prediction of T2D over current risk markers. Methods Gas chromatography-tandem mass spectrometry metabolomics was used in a nested case-control study based on a screening sample of 64-year-old Caucasian women (n = 629). Candidate metabolic markers of T2D were identified in plasma obtained at baseline and the power to predict diabetes was tested in 69 incident cases occurring during 5.5 years follow-up. The metabolomics results were used as a standalone prediction model and in combination with established T2D predictive biomarkers for building eight T2D prediction models that were compared with each other based on their sensitivity and selectivity for predicting T2D. Results Established markers of T2D (impaired fasting glucose, impaired glucose tolerance, insulin resistance (HOMA), smoking, serum adiponectin)) alone, and in combination with metabolomics had the largest areas under the curve (AUC) (0.794 (95% confidence interval [0.738–0.850]) and 0.808 [0.749–0.867] respectively), with the standalone metabolomics model based on nine fasting plasma markers having a lower predictive power (0.657 [0.577–0.736]). Prediction based on non-blood based measures was 0.638 [0.565–0.711]). Conclusions Established measures of T2D risk remain the best predictor of T2D risk in this population. Additional markers detected using metabolomics are likely related to these measures as they did not enhance the overall prediction in a combined model.
Collapse
|
9
|
Abstract
Metabolomics is a promising approach for the identification of chemical compounds that serve for early detection, diagnosis, prediction of therapeutic response and prognosis of disease. Moreover, metabolomics has shown to increase the diagnostic threshold and prediction of type 2 diabetes. Evidence suggests that branched-chain amino acids, acylcarnitines and aromatic amino acids may play an early role on insulin resistance, exposing defects on amino acid metabolism, β-oxidation, and tricarboxylic acid cycle. This review aims to provide a panoramic view of the metabolic shifts that antecede or follow type 2 diabetes. Key messages BCAAs, AAAs and acylcarnitines are strongly associated with early insulin resistance. Diabetes risk prediction has been improved when adding metabolomic markers of dysglycemia to standard clinical and biochemical factors.
Collapse
Affiliation(s)
| | - Carlos A Aguilar-Salinas
- a Instituto Nacional De Ciencias Médicas Y Nutrición "Salvador Zubirán" , Ciudad De México , D.F
| | - Ivette Cruz-Bautista
- a Instituto Nacional De Ciencias Médicas Y Nutrición "Salvador Zubirán" , Ciudad De México , D.F
| | | |
Collapse
|