1
|
Mukhopadhyay S, Youssef SH, Song Y, Nayak UY, Garg S. Harnessing the Power of Antimicrobial Peptides: From Mechanisms to Delivery Optimization for Topical Infections. Antibiotics (Basel) 2025; 14:379. [PMID: 40298559 PMCID: PMC12024199 DOI: 10.3390/antibiotics14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as promising agents for treating topical infections due to their enhanced biocompatibility and resistance to systemic degradation. AMPs possess host immunomodulatory effects and disintegrate bacterial cell membranes, a mechanism less prone to microbial resistance compared to conventional antibiotics, making AMPs potential candidates for antimicrobial delivery. The review discusses the challenges posed by antimicrobial resistance (AMR) and explores the mechanisms by which bacteria develop resistance to AMPs. The authors provide a detailed analysis of the mechanisms of action of AMPs, their limitations, and strategies to improve their efficacy. Conventional AMP delivery systems, including polymeric, synthetic, and lipid-based nanoparticles and cubosomes, face challenges of microbial resistance mechanisms via efflux pump systems, bacterial cell membrane modifications, and protease enzyme release. This review explores strategies to optimize these delivery systems. Furthermore, market statistics and the growing interest in peptide antibiotics have been explored in this review. The authors provide future research directions, such as exploring gene-targeting approaches to combat emerging bacterial resistance against AMPs, and emphasize considering the conformational stability of peptides, the skin microbiome's nature at the infection site, and proteolytic stability for developing efficient AMP delivery systems for topical infections.
Collapse
Affiliation(s)
- Songhita Mukhopadhyay
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.M.); (S.H.Y.); (Y.S.)
| | - Souha H. Youssef
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.M.); (S.H.Y.); (Y.S.)
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.M.); (S.H.Y.); (Y.S.)
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.M.); (S.H.Y.); (Y.S.)
| |
Collapse
|
2
|
Shao L, Li T, Yang S, Ma L, Cai B, Jia Q, Jiang H, Bai T, Li Y. The prebiotic effects of fructooligosaccharides enhance the growth characteristics of Staphylococcus epidermidis and enhance the inhibition of Staphylococcus aureus biofilm formation. Int J Cosmet Sci 2025; 47:155-167. [PMID: 39246292 DOI: 10.1111/ics.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE Oligosaccharides have been shown to enhance the production of short chain fatty acids (SCFAs) by gut probiotics and regulate gut microbiota, to improve intestinal health. Recent research indicates that oligosaccharides may also positively impact skin microbiota by selectively promoting the growth of skin commensal bacteria and inhibiting pathogenic bacteria. However, the specific metabolic and regulatory mechanisms of skin commensal bacteria in response to oligosaccharides remain unclear. This study aims to explore the influence of four oligosaccharides on the growth and metabolism of Staphylococcus epidermidis and further identify skin prebiotics that can enhance its probiotic effects on the skin. METHODS Fructooligosaccharides (FOS), isomaltooligosaccharide (IMO), galactooligosaccharides (GOS) and inulin were compared in terms of their impact on cell proliferation, SCFAs production of S. epidermidis CCSM0287 and the biofilm inhibition effect of their fermentation supernatants on Staphylococcus aureus CCSM0424. Furthermore, the effect of FOS on S. epidermidis CCSM0287 was analysed by the transcriptome analysis. RESULTS All four oligosaccharides effectively promoted the growth of S. epidermidis CCSM0287 cells, increased the production of SCFAs, with FOS demonstrating the most significant effect. Analysis of the SCFAs indicated that S. epidermidis CCSM0287 predominantly employs oligosaccharides to produce acetic acid and isovaleric acid, differing from the SCFAs produced by gut microbiota. Among the four oligosaccharides, the addition of 2% FOS fermentation supernatant significantly inhibited S. aureus CCSM0424 biofilm formation. Furthermore, RNA sequencing revealed 162 differentially expressed genes (84 upregulated and 78 downregulated) of S. epidermidis CCSM0287 upon FOS treatment compared with glucose treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis highlighted differences in the amino acid synthesis pathway, particularly in terms of arginine biosynthesis. CONCLUSION FOS promotes cell proliferation, increases the SCFA production of S. epidermidis CCSM0287 and enhance the inhibition of S. aureus biofilm formation, suggesting that FOS serves as a potential prebiotic for strain S. epidermidis CCSM0287.
Collapse
Affiliation(s)
- Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Tao Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Suzhen Yang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, China
| | - Laiji Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Banruo Cai
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qingwen Jia
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, China
| | - Hong Jiang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, China
| | - Tianming Bai
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, China
| | - Yan Li
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, China
| |
Collapse
|
3
|
Astaneh ME, Fereydouni N. Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS OMEGA 2024; 9:41107-41129. [PMID: 39398164 PMCID: PMC11465465 DOI: 10.1021/acsomega.4c04961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
This review examines the convergence of silver nanoparticles (AgNPs), three-dimensional (3D) printing, and wound healing, focusing on significant advancements in these fields. We explore the unique properties of AgNPs, notably their strong antibacterial efficacy and their potential applications in enhancing wound recovery. Furthermore, the review delves into 3D printing technology, discussing its core principles, various materials employed, and recent innovations. The integration of AgNPs into 3D-printed structures for regenerative medicine is analyzed, emphasizing the benefits of this combined approach and identifying the challenges that must be addressed. This comprehensive overview aims to elucidate the current state of the field and to direct future research toward developing more effective solutions for wound healing.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
4
|
Kostrzębska A, Junka A, Brożyna M, Musiał W. The Assessment of Physicochemical and Antimicrobial Properties of Hydrophilic Gels Containing Tetracycline Hydrochloride and Various Concentrations of Ethanol. Pharmaceutics 2024; 16:830. [PMID: 38931950 PMCID: PMC11207367 DOI: 10.3390/pharmaceutics16060830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
The high prevalence of acne, which affects nearly 85% of adolescents and young adults, underscores the importance of exploring new therapeutic solutions. The aim of the present study was to design a stable hydrogel formulation containing tetracycline hydrochloride (TC) in the presence of ethanol at various concentration levels. The antibiotic stability was assessed over a period of 84 days using the HPLC method. The rheological properties of the formulations and their microbiological activity were also evaluated. Hydrogels without ethanol and those containing 5% and 25% alcohol showed similar rheological properties and high stability of the antibiotic throughout the observation period. The formulation with the highest ethanol content of 50% differed significantly from the others in terms of rheological properties. Although the flow and viscosity curves were like those of the other formulations, the viscosity values were significantly lower. The stability of tetracycline in this formulation was also significantly lower, and by the 84th day of observation, the concentration of the drug had decreased to almost 45% of its initial content. The formulations containing the highest concentration of ethanol displayed the highest activity against the biofilm of the acne-causing agent, Cutibacterium acnes. The study demonstrated the possibility of developing stable and antimicrobial effective hydrogel formulations with tetracycline and ethanol as a substance enhancing drug penetration into the hair follicles.
Collapse
Affiliation(s)
- Agnieszka Kostrzębska
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Adam Junka
- Platform for Unique Models Application P.U.M.A., Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Malwina Brożyna
- Platform for Unique Models Application P.U.M.A., Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
5
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
6
|
Park S, Jang H, Seong SH, Kim JY, Lee EJ, Bae YJ, Ahn YJ, Kim J, Oh SH. The effects of long-pulsed alexandrite laser therapy on facial redness and skin microbiota compositions in rosacea: A prospective, multicentre, single-arm clinical trial. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40. [PMID: 37890996 DOI: 10.1111/phpp.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Rosacea is a chronic skin disorder characterised by abnormal neurovasculature and inflammation in the central region of the face. The efficacy of pulsed-dye laser and intense pulsed light treatments for rosacea have been demonstrated in several clinical trials. However, there is currently no research on the efficacy of long-pulsed alexandrite laser (LPAL) therapy alone for rosacea-related facial redness and its effect on skin microbiota. AIM To evaluate the efficacy of LPAL therapy on facial redness in rosacea and assess changes in skin microbiota composition. METHODS Subjects with rosacea (n = 21, mean age: 39.2 ± 11.3 years) were recruited from two medical institutions and received monthly LPAL treatments (Clarity II™, Lutronic Corp.) for 3 months. At each visit, clinical photographs were taken, and erythema was measured using a spectrometer. At the initial and final visits, the Dermatology Life Quality Index (DLQI) and Skin Sensitivity Questionnaire (SSQ) were evaluated. Skin swabs were obtained at the initial and final visit, and facial microbiome composition was analysed using 16S rRNA amplicon sequencing. RESULTS After three LPAL treatment sessions, the average facial erythema index, measured using Mexameter® decreased significantly from 360.0 ± 96.7 at baseline to 312.0 ± 94.5 at the final visit (p < .05). The DLQI and SSQ showed significant improvement of symptoms. Skin microbiome diversity and relative abundance were altered significantly, particularly in the genera Clostridium, Lawsonella, Bacteroides, and Lactobacillus. CONCLUSIONS LPAL therapy alone showed favourable efficacy for the treatment of facial redness in rosacea, with some impacts on the skin microbiota composition.
Collapse
Affiliation(s)
- Sujin Park
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunwoo Jang
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seol Hwa Seong
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jeong Bae
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Ju Ahn
- HuNBiome Co., Ltd., R&D Center, Seoul, Korea
| | - Jihee Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Dermatology, Yongin Severance Hospital, Yongin, Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Troitsky TS, Laine VN, Lilley TM. When the host's away, the pathogen will play: the protective role of the skin microbiome during hibernation. Anim Microbiome 2023; 5:66. [PMID: 38129884 PMCID: PMC10740296 DOI: 10.1186/s42523-023-00285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
The skin of animals is enveloped by a symbiotic microscopic ecosystem known as the microbiome. The host and microbiome exhibit a mutualistic relationship, collectively forming a single evolutionary unit sometimes referred to as a holobiont. Although the holobiome theory highlights the importance of the microbiome, little is known about how the skin microbiome contributes to protecting the host. Existing studies focus on humans or captive animals, but research in wild animals is in its infancy. Specifically, the protective role of the skin microbiome in hibernating animals remains almost entirely overlooked. This is surprising, considering the massive population declines in hibernating North American bats caused by the fungal pathogen Pseudogymnoascus destructans, which causes white-nose syndrome. Hibernation offers a unique setting in which to study the function of the microbiome because, during torpor, the host's immune system becomes suppressed, making it susceptible to infection. We conducted a systematic review of peer-reviewed literature on the protective role of the skin microbiome in non-human animals. We selected 230 publications that mentioned pathogen inhibition by microbes residing on the skin of the host animal. We found that the majority of studies were conducted in North America and focused on the bacterial microbiome of amphibians infected by the chytrid fungus. Despite mentioning pathogen inhibition by the skin microbiome, only 30.4% of studies experimentally tested the actual antimicrobial activity of symbionts. Additionally, only 7.8% of all publications studied defensive cutaneous symbionts during hibernation. With this review, we want to highlight the knowledge gap surrounding skin microbiome research in hibernating animals. For instance, research looking to mitigate the effects of white-nose syndrome in bats should focus on the antifungal microbiome of Palearctic bats, as they survive exposure to the Pseudogymnoascus destructans -pathogen during hibernation. We also recommend future studies prioritize lesser-known microbial symbionts, such as fungi, and investigate the effects of a combination of anti-pathogen microbes, as both areas of research show promise as probiotic treatments. By incorporating the protective skin microbiome into disease mitigation strategies, conservation efforts can be made more effective.
Collapse
Affiliation(s)
- T S Troitsky
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - V N Laine
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - T M Lilley
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Lyou ES, Kim MS, Kim SB, Park M, Kim KD, Jung WH, Lee TK. Single-cell phenotypes revealed as a key biomarker in bacterial-fungal interactions: a case study of Staphylococcus and Malassezia. Microbiol Spectr 2023; 11:e0043723. [PMID: 37909790 PMCID: PMC10714763 DOI: 10.1128/spectrum.00437-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Evaluating bacterial-fungal interactions is important for understanding ecological functions in a natural habitat. Many studies have defined bacterial-fungal interactions according to changes in growth rates when co-cultivated. However, the current literature lacks detailed studies on phenotypic changes in single cells associated with transcriptomic profiles to understand the bacterial-fungal interactions. In our study, we measured the single-cell phenotypes of bacteria co-cultivated with fungi using Raman spectroscopy with its transcriptomic profiles and determined the consequence of these interactions in detail. This rapid and reliable phenotyping approach has the potential to provide new insights regarding bacterial-fungal interactions.
Collapse
Affiliation(s)
- Eun Sun Lyou
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, South Korea
| | - Min Sung Kim
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, South Korea
- Bio-Chemical Analysis Group, Centre for Research Equipment, Korea Basic Science Institute, Cheongju, South Korea
| | - Soo Bin Kim
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, South Korea
| | - MinJi Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Kyong-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Tae Kwon Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, South Korea
| |
Collapse
|
9
|
Duarte M, Carvalho MJ, de Carvalho NM, Azevedo-Silva J, Mendes A, Ribeiro IP, Fernandes JC, Oliveira ALS, Oliveira C, Pintado M, Amaro A, Madureira AR. Skincare potential of a sustainable postbiotic extract produced through sugarcane straw fermentation by Saccharomyces cerevisiae. Biofactors 2023; 49:1038-1060. [PMID: 37317790 DOI: 10.1002/biof.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023]
Abstract
Postbiotics are defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host." They can be produced by fermentation, using culture media with glucose (carbon source), and lactic acid bacteria of the genus Lactobacillus, and/or yeast, mainly Saccharomyces cerevisiae as fermentative microorganisms. Postbiotics comprise different metabolites, and have important biological properties (antioxidant, anti-inflammatory, etc.), thus their cosmetic application should be considered. During this work, the postbiotics production was carried out by fermentation with sugarcane straw, as a source of carbon and phenolic compounds, and as a sustainable process to obtain bioactive extracts. For the production of postbiotics, a saccharification process was carried out with cellulase at 55°C for 24 h. Fermentation was performed sequentially after saccharification at 30°C, for 72 h, using S. cerevisiae. The cells-free extract was characterized regarding its composition, antioxidant activity, and skincare potential. Its use was safe at concentrations below ~20 mg mL-1 (extract's dry weight in deionized water) for keratinocytes and ~ 7.5 mg mL-1 for fibroblasts. It showed antioxidant activity, with ABTS IC50 of 1.88 mg mL-1 , and inhibited elastase and tyrosinase activities by 83.4% and 42.4%, respectively, at the maximum concentration tested (20 mg mL-1 ). In addition, it promoted the production of cytokeratin 14, and demonstrated anti-inflammatory activity at a concentration of 10 mg mL-1 . In the skin microbiota of human volunteers, the extract inhibited Cutibacterium acnes and the Malassezia genus. Shortly, postbiotics were successfully produced using sugarcane straw, and showed bioactive properties that potentiate their use in cosmetic/skincare products.
Collapse
Affiliation(s)
- Marco Duarte
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Maria João Carvalho
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Nelson Mota de Carvalho
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - João Azevedo-Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Adélia Mendes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Inês Pinto Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Porto, Portugal
| | - João Carlos Fernandes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana L S Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Carla Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Amaro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Raquel Madureira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
10
|
Kim J, Lee YI, Mun S, Jeong J, Lee DG, Kim M, Jo H, Lee S, Han K, Lee JH. Efficacy and Safety of Epidermidibacterium Keratini EPI-7 Derived Postbiotics in Skin Aging: A Prospective Clinical Study. Int J Mol Sci 2023; 24:4634. [PMID: 36902064 PMCID: PMC10003698 DOI: 10.3390/ijms24054634] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The present study investigated the effect of topical application of Epidermidibacterium Keratini (EPI-7) ferment filtrate, which is a postbiotic product of a novel actinobacteria, on skin aging, by performing a prospective randomized split-face clinical study on Asian woman participants. The investigators measured skin biophysical parameters, including skin barrier function, elasticity, and dermal density, and revealed that the application of the EPI-7 ferment filtrate-including test product resulted in significantly higher improvements in barrier function, skin elasticity, and dermal density compared to the placebo group. This study also investigated the influence of EPI-7 ferment filtrate on skin microbiome diversity to access its potential beneficial effects and safety. EPI-7 ferment filtrate increased the abundance of commensal microbes belonging to Cutibacterium, Staphylococcus, Corynebacterium, Streptococcus, Lawsonella, Clostridium, Rothia, Lactobacillus, and Prevotella. The abundance of Cutibacterium was significantly increased along with significant changes in Clostridium and Prevotella abundance. Therefore, EPI-7 postbiotics, which contain the metabolite called orotic acid, ameliorate the skin microbiota linked with the aging phenotype of the skin. This study provides preliminary evidence that postbiotic therapy may affect the signs of skin aging and microbial diversity. To confirm the positive effect of EPI-7 postbiotics and microbial interaction, additional clinical investigations and functional analyses are required.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Young In Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| | - Seyoung Mun
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Jinuk Jeong
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Dong-Geol Lee
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- R&I Center, COSMAX BTI, Seongnam 13486, Republic of Korea
| | - Misun Kim
- R&I Center, COSMAX BTI, Seongnam 13486, Republic of Korea
| | - HyungWoo Jo
- R&I Center, COSMAX BTI, Seongnam 13486, Republic of Korea
| | - Sieun Lee
- Global Medical Research Center, Seoul 06526, Republic of Korea
| | - Kyudong Han
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Republic of Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Noddeland HK, Lind M, Jensen LB, Petersson K, Skak-Nielsen T, Larsen FH, Malmsten M, Heinz A. Design and characterization of matrix metalloproteinase-responsive hydrogels for the treatment of inflammatory skin diseases. Acta Biomater 2023; 157:149-161. [PMID: 36526241 DOI: 10.1016/j.actbio.2022.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Enzyme-responsive hydrogels, formed by step growth photopolymerization of biscysteine peptide linkers with alkene functionalized polyethylene glycol, provide interesting opportunities as biomaterials and drug delivery systems. In this study, we developed stimuli-responsive, specific, and cytocompatible hydrogels for delivery of anti-inflammatory drugs for the treatment of inflammatory skin diseases. We designed peptide linkers with optimized sensitivity towards matrix metalloproteinases, a family of proteolytic enzymes overexpressed in the extracellular matrix of the skin during inflammation. The peptide linkers were crosslinked with branched 4-arm and 8-arm polyethylene glycols by thiol-norbornene photopolymerization, leading to the formation of a hydrogel network, in which the anti-inflammatory Janus kinase inhibitor tofacitinib citrate was incorporated. The hydrogels were extensively characterized by physical properties, in vitro release studies, cytocompatibility with fibroblasts, and anti-inflammatory efficacy testing in both an atopic dermatitis-like keratinocyte assay and an activated T-cell assay. The drug release was studied after single and multiple-time exposure to matrix metalloproteinase 9 to mimic inflammatory flare-ups. Drug release was found to be triggered by matrix metalloproteinase 9 and to depend on type of crosslinker and of the polyethylene glycol polymer, due to differences in architecture and swelling behavior. Moreover, swollen hydrogels showed elastic properties similar to those of extracellular matrix proteins in the dermis. Cell studies revealed limited cytotoxicity when fibroblasts and keratinocytes were exposed to the hydrogels or their enzymatic cleavage products. Taken together, our results suggest multi-arm polyethylene glycol hydrogels as promising matrix metalloproteinase-responsive drug delivery systems, with potential in the treatment of inflammatory skin disease. STATEMENT OF SIGNIFICANCE: Smart responsive drug delivery systems such as matrix metalloproteinase-responsive hydrogels are excellent candidates for the treatment of inflammatory skin diseases including psoriasis. Their release profile can be optimized to correspond to the patient's individual disease state by tuning formulation parameters and disease-related stimuli, providing personalized treatment solutions. However, insufficient cross-linking efficiency, low matrix metalloproteinase sensitivity, and undesirable drug release kinetics remain major challenges in the development of such drug delivery systems. In this study, we address shortcomings of previous work by designing peptide linkers with optimized sensitivity towards matrix metalloproteinases and high cross-linking efficiencies. We further provide a proof-of-concept for the usability of the hydrogels in inflammatory skin conditions by employing a drug release set-up simulating inflammatory flare-ups.
Collapse
Affiliation(s)
- Heidi Kyung Noddeland
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Louise Bastholm Jensen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Tine Skak-Nielsen
- Cells & Assays, In vitro Biology, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Flemming Hofmann Larsen
- Advanced Analytical and Structural Chemistry, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Sexton RE, Uddin MH, Bannoura S, Khan HY, Mzannar Y, Li Y, Aboukameel A, Al-Hallak MN, Al-Share B, Mohamed A, Nagasaka M, El-Rayes B, Azmi AS. Connecting the Human Microbiome and Pancreatic Cancer. Cancer Metastasis Rev 2022; 41:317-331. [PMID: 35366155 PMCID: PMC8976105 DOI: 10.1007/s10555-022-10022-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
Abstract
Pancreatic cancer is a deadly disease that is increasing in incidence throughout the world. There are no clear causal factors associated with the incidence of pancreatic cancer; however, some correlation to smoking, diabetes and alcohol has been described. Recently, a few studies have linked the human microbiome (oral and gastrointestinal tract) to pancreatic cancer development. A perturbed microbiome has been shown to alter normal cells while promoting cancer-related processes such as increased cell signaling, immune system evasion and invasion. In this article, we will review in detail the alterations within the gut and oral microbiome that have been linked to pancreatic cancer and explore the ability of other microbiomes, such as the lung and skin microbiome, to contribute to disease development. Understanding ways to identify a perturbed microbiome can result in advancements in pancreatic cancer research and allow for prevention, earlier detection and alternative treatment strategies for patients.
Collapse
Affiliation(s)
- Rachel E Sexton
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Sahar Bannoura
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Husain Yar Khan
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Yousef Mzannar
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Yiwei Li
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Mohammad Najeeb Al-Hallak
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Bayan Al-Share
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Amr Mohamed
- UH Seidman Cancer Center, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Misako Nagasaka
- University of California, Irvine, UCI Health Chao Family Comprehensive Cancer Center, CA, Irvine, USA
| | - Bassel El-Rayes
- O'Neal Comprehensive Cancer Center, University of Alabama, AL, Tuscaloosa, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Salimian J, Salehi Z, Ahmadi A, Emamvirdizadeh A, Davoudi SM, Karimi M, Korani M, Azimzadeh Jamalkandi S. Atopic dermatitis: molecular, cellular, and clinical aspects. Mol Biol Rep 2022; 49:3333-3348. [PMID: 34989960 DOI: 10.1007/s11033-021-07081-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Atopic dermatitis (AD) is a complicated, inflammatory skin disease, which numerous genetic and environmental factors play roles in its development. AD is categorized into different phenotypes and stages, although they are mostly similar in their pathophysiological aspects. Immune response alterations and structural distortions of the skin-barrier layer are evident in AD patients. Genetic makeup, lifestyle, and environment are also significantly involved in contextual factors. Genes involved in AD-susceptibility, including filaggrin and natural moisturizing, cause considerable structural modifications in the skin's lipid bilayer and cornified envelope. Additionally, the skin's decreased integrity and altered structure are accompanied by biochemical changes in the normal skin microflora's dysbiosis. The dynamic immunological responses, genetic susceptibilities, and structural modifications associated with AD's pathophysiology will be extensively discussed in this review, each according to the latest achievements and findings.
Collapse
Affiliation(s)
- Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Masoud Davoudi
- Department of Dermatology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Korani
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Gazi U, Taylan-Ozkan A, Mumcuoglu KY. Immune mechanisms in human Sarcoptes scabiei (Acari: Sarcoptidae) infestations. Parasite Immunol 2021; 44:e12900. [PMID: 34923637 DOI: 10.1111/pim.12900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Abstract
Scabies is a parasitic infestation of human and animal skin caused by different strains of the itch mite, Sarcoptes scabiei. The World Health Organization (WHO) has declared scabies in human as a neglected tropical disease, and today over 200 million people worldwide are affected. The two most commonly reported clinical manifestation of the condition are ordinary (OS) and crusted scabies (CS). CS, which can lead to fatal consequences due to secondary bacterial infections, is mostly observed in immunocompromised subjects but can also, although rarely, be detected in immunocompetent individuals. Innate and adaptive immune system components are involved in protection and pathogenesis of scabies, although with some differences between OS and CS. While the cutaneous immune response is dominated by CD4+ T-cells in OS, it is mainly mediated by CD8+ T-cells in CS. The two clinical conditions also differ in CD4+ T-cell-mediated immune responses with mixed TH 1/TH 2 (protective) and TH 2/TH 17 (non-protective) immunoprofiles in OS and CS, respectively. Moreover, the development of CS is associated with early immunosuppression that is followed by deleterious immune response to uncontrolled mite proliferation. However, the immune response to scabies still needs further attention due to inconsistent results in the literature. The aim of this study is to attract more attention to this area by summarizing the current literature on innate and adaptive immune responses triggered against S. scabiei mites.
Collapse
Affiliation(s)
- Umut Gazi
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Aysegul Taylan-Ozkan
- Department of Medical Microbiology, Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
| | - Kosta Y Mumcuoglu
- Parasitology Unit, Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
15
|
Nørreslet LB, Lilje B, Ingham AC, Edslev SM, Clausen ML, Plum F, Andersen PS, Agner T. Skin Microbiome in Patients with Hand Eczema and Healthy Controls: A Three-week Prospective Study. Acta Derm Venereol 2021; 102:adv00633. [PMID: 34877605 PMCID: PMC9631265 DOI: 10.2340/actadv.v101.845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pathogenesis of chronic hand eczema remains unclear. Insights into the skin microbiome in hand eczema and its potential relevance to disease severity may help to elucidate the underlying mechanisms of hand eczema. The aim of this study was to characterize the microbiome in patients with hand eczema and healthy controls. A 5-visit prospective study was conducted over a period of 3 weeks. At each visit, bacterial swabs were taken from the hands of patients with hand eczema and controls. The microbiome was examined using DNA extraction and 16S rRNA amplicon sequencing (V3–V4 regions). Fifty patients with hand eczema and 50 controls were included (follow-up rate=100%). The baseline bacterial α-diversity was reduced on the hands of patients with hand eczema compared with controls (effect size=–0.31; 95% confidence interval (95% CI) –0.50; –0.11; p = 0.003). The dysbiosis on the patients’ hands was stable over the study period, was associated with disease severity, and was characterized by reduced bacterial diversity and different bacterial community compositions.
Collapse
Affiliation(s)
- Line Brok Nørreslet
- Department of Dermatology, University of Copenhagen, Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen NV, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Suwarsa O, Hazari MN, Dharmadji HP, Dwiyana RF, Effendi RMRA, Hidayah RMN, Avriyanti E, Gunawan H, Sutedja E. A Pilot Study: Composition and Diversity of 16S rRNA Based Skin Bacterial Microbiome in Indonesian Atopic Dermatitis Population. Clin Cosmet Investig Dermatol 2021; 14:1737-1744. [PMID: 34824539 PMCID: PMC8610230 DOI: 10.2147/ccid.s338550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 01/14/2023]
Abstract
Background Atopic dermatitis (AD) interferes with quality of life and is influenced by important factors like skin microbiome. The results of the skin microbiome composition and diversity in AD varied in some studies. Purpose This study aims to determine the composition and diversity of the skin microbiome in Indonesian AD patients. Patients and Methods Genomic deoxyribonucleic acid (DNA) preparations were obtained from skin swabs of the cubital fossa of 16 subjects, nine of which were having mild AD, three moderate AD, and four healthy individuals. DNA extraction and sequencing of the 16S ribosomal ribonucleic acid (rRNA) gene using next-generation sequencing and bioinformatics analysis were further performed. Results Firmicutes (p), Bacilli (c), Bacillales (o), Staphylococcaceae (f), and Staphylococcus (g) were dominant in moderate AD. On the contrary, Proteobacteria (p), Gammaproteobacteria (c), Pseudomonadales (o), Moraxellaceae (f), and Acinetobacter (g) were dominant in mild AD. Staphylococcus aureus was found in the highest number in individuals with moderate AD. Interestingly, Ensifer adhaerens was found in mild AD. Microbial diversity was decreased in moderate AD. Conclusion Metagenomic analysis in this study identified microbes in moderate and mild AD and showed a low diversity of skin microbiomes in moderate AD. Interestingly, this is the first time that the bacteria Ensifer adhaerens was detected on the human skin.
Collapse
Affiliation(s)
- Oki Suwarsa
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Maryam Nissa Hazari
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Hartati Purbo Dharmadji
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Reiva Farah Dwiyana
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Raden Mohamad Rendy Ariezal Effendi
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Risa Miliawati Nurul Hidayah
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Erda Avriyanti
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Hendra Gunawan
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Endang Sutedja
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| |
Collapse
|
17
|
Kang GU, Jung DR, Lee YH, Jeon SY, Han HS, Chong GO, Shin JH. Potential Association between Vaginal Microbiota and Cervical Carcinogenesis in Korean Women: A Cohort Study. Microorganisms 2021; 9:294. [PMID: 33572693 PMCID: PMC7912413 DOI: 10.3390/microorganisms9020294] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 01/04/2023] Open
Abstract
Convincing studies demonstrated that vaginal flora is one of the most impactful key components for the well-being of the genital tract in women. Nevertheless, the potential capability of vaginal-derived bacterial communities as biomarkers to monitor cervical carcinogenesis (CC) has yet to be studied actively compared to those of bacterial vaginosis (BV). We hypothesized that vaginal microbiota might be associated with the progression of CC. In this study, we enrolled 23 participants, including healthy controls (HC group; n = 7), patients with cervical intraepithelial neoplasia (CIN) 2 and 3 (CIN group, n = 8), and patients with invasive cervical cancer (CAN group; n = 8). Amplicon sequencing was performed using the Ion Torrent PGM to characterize the vaginal microbiota. Patients with CIN and CAN presented vaginal microbiota dysbiosis compared with HC. The alpha diversity analysis revealed that CC has a trend to be increased in terms of diversity indexes. Moreover, CC was associated with the abundance of specific microbes, of which Lactobacillus and Gardnerella were the most significantly different between HC and CIN, whereas Streptococcus was differentially abundant in CAN compared with CIN. We then evaluated their diagnostic abilities. Testing in terms of diagnostic ability using the three genera revealed considerably high performance with an area under the receiver-operating characteristic curve of 0.982, 0.953, and 0.922. The current study suggests that the presence of Gardnerella and Streptococcus may be involved in the advancment of CC.
Collapse
Affiliation(s)
- Gi-Ung Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea;
| | - Da-Ryung Jung
- Department of Biomedical Convergence Science & Technology, Kyungpook National University, Daegu 41566, Korea;
| | - Yoon Hee Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41404, Korea; (Y.H.L.); (S.Y.J.)
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Se Young Jeon
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41404, Korea; (Y.H.L.); (S.Y.J.)
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41405, Korea;
| | - Gun Oh Chong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41404, Korea; (Y.H.L.); (S.Y.J.)
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Biomedical Convergence Science & Technology, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|