1
|
Alam M. Exploration of Binding Affinities of a 3β,6β-Diacetoxy-5α-cholestan-5-ol with Human Serum Albumin: Insights from Synthesis, Characterization, Crystal Structure, Antioxidant and Molecular Docking. Molecules 2023; 28:5942. [PMID: 37630192 PMCID: PMC10459092 DOI: 10.3390/molecules28165942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The present study describes the synthesis, characterization, and in vitro molecular interactions of a steroid 3β,6β-diacetoxy-5α-cholestan-5-ol. Through conventional and solid-state methods, a cholestane derivative was successfully synthesized, and a variety of analytical techniques were employed to confirm its identity, including high-resolution mass spectrometry (HRMS), Fourier transforms infrared (FT-IR), nuclear magnetic resonance (NMR), elemental analysis, and X-ray single-crystal diffraction. Optimizing the geometry of the steroid was undertaken using density functional theory (DFT), and the results showed great concordance with the data from the experiments. Fluorescence spectral methods and ultraviolet-vis absorption titration were employed to study the in vitro molecular interaction of the steroid regarding human serum albumin (HSA). The Stern-Volmer, modified Stern-Volmer, and thermodynamic parameters' findings showed that steroids had a significant binding affinity to HSA and were further investigated by molecular docking studies to understand the participation of active amino acids in forming non-bonding interactions with steroids. Fluorescence studies have shown that compound 3 interacts with human serum albumin (HSA) through a static quenching mechanism. The binding affinity of compound 3 for HSA was found to be 3.18 × 104 mol-1, and the Gibbs free energy change (ΔG) for the binding reaction was -9.86 kcal mol-1 at 298 K. This indicates that the binding of compound 3 to HSA is thermodynamically favorable. The thermodynamic parameters as well as the binding score obtained from molecular docking at various Sudlow's sites was -8.2, -8.5, and -8.6 kcal/mol for Sites I, II, and III, respectively, supporting the system's spontaneity. Aside from its structural properties, the steroid demonstrated noteworthy antioxidant activity, as evidenced by its IC50 value of 58.5 μM, which is comparable to that of ascorbic acid. The findings presented here contribute to a better understanding of the pharmacodynamics of steroids.
Collapse
Affiliation(s)
- Mahboob Alam
- Department of Safety Engineering, Dongguk University Wise, 123 Dongdae-ro, Gyeongju-si 780714, Gyeongbuk, Republic of Korea
| |
Collapse
|
2
|
Farhadian S, Heidari-Soureshjani E, Hashemi-Shahraki F, Hasanpour-Dehkordi A, Uversky VN, Shirani M, Shareghi B, Sadeghi M, Pirali E, Hadi-Alijanvand S. Identification of SARS-CoV-2 surface therapeutic targets and drugs using molecular modeling methods for inhibition of the virus entry. J Mol Struct 2022; 1256:132488. [PMID: 35125515 PMCID: PMC8797986 DOI: 10.1016/j.molstruc.2022.132488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023]
Abstract
Although COVID-19 emerged as a major concern to public health around the world, no licensed medication has been found as of yet to efficiently stop the virus spread and treat the infection. The SARS-CoV-2 entry into the host cell is driven by the direct interaction of the S1 domain with the ACE-2 receptor followed by conformational changes in the S2 domain, as a result of which fusion peptide is inserted into the target cell membrane, and the fusion process is mediated by the specific interactions between the heptad repeats 1 and 2 (HR1 and HR2) that form the six-helical bundle. Since blocking this interaction between HRs stops virus fusion and prevents its subsequent replication, the HRs inhibitors can be used as anti-COVID drugs. The initial drug selection is based on existing molecular databases to screen for molecules that may have a therapeutic effect on coronavirus. Based on these premises, we chose two approved drugs to investigate their interactions with the HRs (based on docking methods). To this end, molecular dynamics simulations and molecular docking were carried out to investigate the changes in the structure of the SARS-CoV-2 spike protein. Our results revealed, cefpiramide has the highest affinity to S protein, thereby revealing its potential to become an anti-COVID-19 clinical medicine. Therefore, this study offers new ways to re-use existing drugs to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, P. O. Box.115, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Ehsan Heidari-Soureshjani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, P. O. Box.115, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Ali Hasanpour-Dehkordi
- Social Determinants of Health Research Center, School of allied medical sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Majid Shirani
- Department of Urology, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, P. O. Box.115, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Mehraban Sadeghi
- Department of Environmental Health Engineering Shahrekord University of Medical Science, Shahrekord, Iran
| | - Esmaeil Pirali
- Aquatic Animal Diseases, Department of Fisheries, Faculty of natural Science, Shahrekord University, Iran
| | - Saeid Hadi-Alijanvand
- Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
3
|
Rajkhowa S, Pathak U, Patgiri H. Elucidating the Interaction and Stability of Withanone and Withaferin‐A with Human Serum Albumin, Lysozyme and Hemoglobin Using Computational Biophysical Modeling. ChemistrySelect 2022. [DOI: 10.1002/slct.202103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics Dibrugarh University Dibrugarh 786004 Assam India
| | - Upasana Pathak
- Centre for Biotechnology and Bioinformatics Dibrugarh University Dibrugarh 786004 Assam India
| | - Himangshu Patgiri
- Centre for Biotechnology and Bioinformatics Dibrugarh University Dibrugarh 786004 Assam India
| |
Collapse
|
4
|
Nassab CN, Arooj M, Shehadi IA, Parambath JBM, Kanan SM, Mohamed AA. Lysozyme and Human Serum Albumin Proteins as Potential Nitric Oxide Cardiovascular Drug Carriers: Theoretical and Experimental Investigation. J Phys Chem B 2021; 125:7750-7762. [PMID: 34232651 DOI: 10.1021/acs.jpcb.1c04614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide-containing drugs present a critical remedy for cardiovascular diseases. Nitroglycerin (NG, O-NO) and S-nitrosoglutathione (SNG, S-NO) are the most common nitric oxide drugs for cardiovascular diseases. Insights regarding the binding affinity of NO drugs with lysozyme and human serum albumin (HSA) proteins and their dissociation mechanism will provide inquisitive information regarding the potential of the proteins as drug carriers. For the first time, the binding interactions and affinities are investigated using molecular docking, conventional molecular dynamics, steered molecular dynamics, and umbrella sampling to explore the ability of both proteins to act as nitric oxide drug carriers. The molecular dynamics simulation results showed higher stability of lysozyme-drug complexes compared to HSA. For lysozyme, cardiovascular drugs were bound in the protein cavity mainly by the electrostatic and hydrogen bond interactions with residues ASP53, GLN58, ILE59, ARG62, TRP64, ASP102, and TRP109. For HSA, key binding residues were ARG410, TYR411, LYS414, ARG485, GLU450, ARG486, and SER489. The free energy profiles produced from umbrella sampling also suggest that lysozyme-drug complexes had better binding affinity than HSA-drug. Binding characteristics of nitric oxide-containing drugs NG and SNG to lysozyme and HSA proteins were studied using fluorescence and UV-vis absorption spectroscopy. The relative change in the fluorescence intensity as a function of drug concentrations was analyzed using Stern-Volmer calculations. This was also confirmed by the change in the UV-vis spectra. Fluorescence quenching results of both proteins with the drugs, based on the binding constant values, demonstrated significantly weak binding affinity to NG and strong binding affinity to SNG. Both computational and experimental studies provided important data for understanding protein-drug interactions and will aid in developing potential drug carrier systems in cardiovascular diseases.
Collapse
Affiliation(s)
- Chahlaa N Nassab
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Mahreen Arooj
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Ihsan A Shehadi
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Javad B M Parambath
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Sofian M Kanan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah 26666, UAE
| | - Ahmed A Mohamed
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| |
Collapse
|
5
|
Zhan JY, Ma K, Zheng QC, Yang GH, Zhang HX. Exploring the interactional details between aldose reductase (AKR1B1) and 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid through molecular dynamics simulations. J Biomol Struct Dyn 2018; 37:1724-1735. [PMID: 29671687 DOI: 10.1080/07391102.2018.1465851] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aldose reductase (AKR1B1) has been considered as a significant target for designing drugs to counteract the development of diabetic complications. In the present study, molecular dynamics (MD) simulations and molecular mechanics generalized Born surface area (MM-GB/SA) calculations were performed to make sure which tautomer is the preferred one among three tautomeric forms (Mtia1, Mtia2, and Mtia3) of 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (Mtia) for binding to AKR1B1. The overall structural features and the results of calculated binding free energies indicate that Mtia1 and Mtia2 have more superiority than Mtia3 in terms of binding to AKR1B1. Furtherly, the local active site conformational characteristics and non-covalent interaction analysis were identified. The results indicate that the combination of Mtia2 and AKR1B1 is more stable than that of Mtia1. Furthermore, two extra hydrogen bonds between AKR1B1 and Mtia2 are found with respect to Mtia1. In addition, Mtia2 makes slightly stronger electrostatic interaction with the positively charged nicotinamide group of NADP+ than Mtia1. Based on the results above, Mtia2 is the preferred tautomeric form among the three tautomers. Our study can provide an insight into the details of the interaction between AKR1B1 and Mtia at the atomic level, and will be helpful for the further design of AKR1B1 inhibitors.
Collapse
Key Words
- AKR1B1, Aldose Reductase
- ARI, aldose reductase inhibitor
- FEL, free energy landscape
- MD, molecular dynamics
- MM-GB/SA calculation
- MM-GB/SA, molecular mechanics generalized Born surface area
- Mtia, 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid
- PCA, principal component analysis
- Three AKR1B1-Mtia complex systems: AKR1B1-Mtia1, AKR1B1-Mtia2, and AKR1B1-Mtia3
- Three tautomeric forms of Mtia: Mtia1, Mtia2, and Mtia3
- aldose reductase
- inhibitor
- molecular dynamics
- tautomer
Collapse
Affiliation(s)
- Jiu-Yu Zhan
- b International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Ke Ma
- c Department of Pediatric Outpatient , The First Hospital of Jilin University , Changchun 130021 , People's Republic of China
| | - Qing-Chuan Zheng
- a Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , Jilin University , Changchun 130023 , People's Republic of China.,b International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Guang-Hui Yang
- d Jilin Provincial Institute of Education , Changchun 130022 , People's Republic of China
| | - Hong-Xing Zhang
- b International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| |
Collapse
|