1
|
Mansi, Khanna P, Yadav S, Singh A, Khanna L. Inclusion complexes of novel formyl chromone Schiff bases with β-Cyclodextrin: Synthesis, characterization, DNA binding studies and in-vitro release study. Carbohydr Polym 2025; 347:122667. [PMID: 39486925 DOI: 10.1016/j.carbpol.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 11/04/2024]
Abstract
The present study involved the synthesis of five novel Schiff bases (SB1-SB5) of formyl chromone and their inclusion complexes with β-cyclodextrin through kneading approach to enhance the solubility and stability of SBs. Characterization was conducted using FTIR, NMR, SEM, TEM, p-XRD, and Mass Spectrometry. UV fluorescence and pH stability studies confirmed the formation of the inclusion complex. Structural validation of complexes was conducted via molecular docking (PDB ID: 1BFN) and 50 ns MD simulation study. DFT studies were performed on SBs using B3LYP/6-31 + G(d,p) basis set. All SBs exhibited favorable ADME properties and high binding interactions were observed in molecular docking with ctDNA (PDB Id: 1BNA). Further, in-vitro UV absorption and fluorescence experiments demonstrated strong ctDNA interactions for all Schiff bases, with binding constants in the order of 105 M-1, indicating groove binding mode. Among the SBs, SB4 exhibited the highest affinity for DNA grooves, with a binding constant (Kb) of 1.7 × 106 M-1. However, the SB4/β-Cyd inclusion complex also interacted with DNA but with low binding constants compared to SB4. An in-vitro release study of SB4/β-Cyd, revealed 78.92 % dissolution of the inclusion complex, highlighting its potential for enhanced solubility and stability in biological systems.
Collapse
Affiliation(s)
- Mansi
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Shilpa Yadav
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Asmita Singh
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Leena Khanna
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India.
| |
Collapse
|
2
|
Mamindla A, Murugan D, Varadhan M, Ajaykamal T, Rangasamy L, Palaniandavar M, Rajendiran V. Mixed-ligand copper(ii)-diimine complexes of 3-formylchromone- N 4-phenyl thiosemicarbazone: 5,6-dmp co-ligand confers enhanced cytotoxicity. RSC Adv 2024; 14:31704-31722. [PMID: 39376525 PMCID: PMC11457010 DOI: 10.1039/d4ra04997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024] Open
Abstract
The promising biological applications of thiosemicarbazone derivatives have inspired the design, synthesis, and study of their Cu(ii) complexes for anticancer therapeutic applications. Herein, we have evaluated the DNA/protein binding, DNA cleaving, and cytotoxic properties of four mixed-ligand Cu(ii) complexes of the type [Cu(L)(diimine)](NO3) 1-4, where HL is 4-oxo-4H-chromene-3-carbaldehyde-4(N)-phenylthiosemicarbazone and diimine is 2,2'-bipyridine (bpy, 1) 1,10-phenanthroline (phen, 2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, 3), or dipyrido-[3,2-f:2',3'-h]-quinoxaline (dpq, 4). Interestingly, complex 3 with higher lipophilicity shows stronger DNA binding and oxidative DNA cleavage, higher ROS production, and more reversible redox behaviour, resulting in its remarkable cytotoxicity (IC50, 1.26 μM) against HeLa cervical cancer cells, and rendering it 5 times more potent than the widely used drug cisplatin. The same complex induces enhanced apoptotic cell death on HeLa cells but lower toxicity towards the non-cancerous PBMC cells. Molecular docking studies suggest that all the complexes bind in the minor groove of DNA and subdomain II of HSA, which is in close agreement with the experimental results. Also, 3 shows cytotoxicity higher than the analogous mixed ligand Cu(ii) complexes, reported already, emphasizing the importance of co-ligand in tuning the anticancer activity.
Collapse
Affiliation(s)
- Anjaneyulu Mamindla
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT) Vellore 632014 Tamilnadu India
| | - Manikandan Varadhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| | | | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT) Vellore 632014 Tamilnadu India
| | | | - Venugopal Rajendiran
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| |
Collapse
|
3
|
Abo-Salem HM, Ali EA, Abdelmegeed H, El Souda SSM, Abdel-Aziz MS, Ahmed KM, Fawzy NM. Chitosan nanoparticles of new chromone-based sulfonamide derivatives as effective anti-microbial matrix for wound healing acceleration. Int J Biol Macromol 2024; 272:132631. [PMID: 38810852 DOI: 10.1016/j.ijbiomac.2024.132631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
A new series of chromone and furochromone-based sulfonamide Schiff's base derivatives 3-12 were synthesized and evaluated for their antimicrobial activity against S. aureus, E. coli, C. albicans, and A. niger using agar diffusion method. Compound 3a demonstrated potent antimicrobial activities with MIC values of 9.76 and 19.53 μg/mL against S. aureus, E. coli and C. albicans, which is 2-fold and 4-fold more potent than neomycin (MIC = 19.53, 39.06 μg/mL respectively). To improve the effectiveness of 3a, it was encapsulated into chitosan nanoparticles (CS-3aNPs). The CS-3aNPs size was 32.01 nm, as observed by transmission electron microscope (TEM) images and the zeta potential value was 14.1 ± 3.07 mV. Encapsulation efficiency (EE) and loading capacity (LC) were 91.5 % and 1.6 %, respectively as indicated by spectral analysis. The CS-3aNPs extremely inhibited bacterial growth utilizing the colony-forming units (CFU). The ability of CS-3aNPs to protect skin wounds was evaluated in vivo. CS-3aNPs showed complete wound re-epithelialization, hyperplasia of the epidermis, well-organized granulation tissue formation, and reduced signs of wound infection, as seen through histological assessment which showed minimal inflammatory cells in comparison with untreated wound. Overall, these findings suggest that CS-3aNPs has a positive impact on protecting skin wounds from infection due to their antimicrobial activity.
Collapse
Affiliation(s)
- Heba M Abo-Salem
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt.
| | - Eman AboBakr Ali
- Polymers and Pigments Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Heba Abdelmegeed
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Sahar S M El Souda
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Khadiga M Ahmed
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Nagwa M Fawzy
- Chemistry of Natural and Microbial Products Department, National Research Center, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
4
|
Kumar S, Arora A, Maikhuri VK, Chaudhary A, Kumar R, Parmar VS, Singh BK, Mathur D. Advances in chromone-based copper(ii) Schiff base complexes: synthesis, characterization, and versatile applications in pharmacology and biomimetic catalysis. RSC Adv 2024; 14:17102-17139. [PMID: 38808245 PMCID: PMC11130647 DOI: 10.1039/d4ra00590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Chromones are well known as fundamental structural elements found in numerous natural compounds and medicinal substances. The Schiff bases of chromones have a much wider range of pharmacological applications such as antitumor, antioxidant, anti-HIV, antifungal, anti-inflammatory, and antimicrobial properties. A lot of research has been carried out on chromone-based copper(ii) Schiff-base complexes owing to their role in the organometallic domain and promise as potential bioactive cores. This review article is centered on copper(ii) Schiff-base complexes derived from chromones, highlighting their diverse range of pharmacological applications documented in the past decade, as well as the future research opportunities they offer.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry and Environmental Science, Medgar Evers College 1638 Bedford Avenue, Brooklyn New York 11225 USA
| | - Aditi Arora
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Vipin K Maikhuri
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Ankita Chaudhary
- Department of Chemistry, Maitreyi College, University of Delhi Delhi India
| | - Rajesh Kumar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry, R. D. S College, B. R. A. Bihar University Muzaffarpur India
| | - Virinder S Parmar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry and Environmental Science, Medgar Evers College 1638 Bedford Avenue, Brooklyn New York 11225 USA
- Amity Institute of Click Chemistry and Research Studies, Amity University Sector 125 Noida 201313 Uttar Pradesh India
| | - Brajendra K Singh
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Divya Mathur
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry, Daulat Ram College, University of Delhi Delhi India
| |
Collapse
|
5
|
Elsayed EH, Al-Wahaib D, Ali AED, Abd-El-Nabey BA, Elbadawy HA. Synthesis, characterization, DNA binding interactions, DFT calculations, and Covid-19 molecular docking of novel bioactive copper(I) complexes developed via unexpected reduction of azo-hydrazo ligands. BMC Chem 2023; 17:159. [PMID: 37986180 PMCID: PMC10662581 DOI: 10.1186/s13065-023-01086-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
In this work, we focused on the 3rd goal of the sustainable development plan: achieving good health and supporting well-being. Two redox-active hydrazo ligands namely, phenylcarbonohydrazonoyldicyanide (PCHD) and pyridin-4-ylcarbonohydrazonoyl-dicyanide (PyCHD), and their copper(I) complexes have been synthesized and characterized. The analytical data indicates the formation of copper(I) complexes despite starting with copper(II) perchlorate salt. The 1H-NMR and UV-visible spectral studies in DMSO revealed that PyCHD mainly exists in its azo-form, while PCHD exists in azo ↔ hydrazo equilibrium form, and confirmed the copper(I) oxidation state. XPS, spectral and electrochemistry data indicated the existence of copper(I) valence of both complexes. Cyclic voltammetry of PCHD and its copper(I) complex supported the reduction power of the ligand. The antimicrobial activity, cytotoxicity against the mammalian breast carcinoma cell line (MCF7), and DNA interaction of the compounds are investigated. All compounds showed high antimicrobial, and cytotoxic activities, relative to the standard drugs. Upon studying the wheat DNA binding, PCHD and PyCHD were found to bind through external contacts, while both [Cu(PCHD)2]ClO4.H2O and [Cu(PyCHD)2]ClO4.H2O were intercalated binding. In-silico molecular docking simulations against Estrogen Receptor Alpha Ligand Binding Domain (ID: 6CBZ) were performed on all produced compounds and confirmed the invitro experimentally best anticancer activity of [Cu(PyCHD)2]ClO4.H2O. The molecular docking tests against SARS-CoV-2 main protease (ID: 6 WTT) showed promising activity in the order of total binding energy values: [Cu(PCHD)2]ClO4.H2O > [Cu(PyCHD)2]ClO4.H2O > PCHD > PyCHD.
Collapse
Affiliation(s)
- Eman Hassan Elsayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Dhuha Al-Wahaib
- Chemistry Department, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Ali El-Dissouky Ali
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Hemmat A Elbadawy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Synthesis, Characterization, Pharmacological Screening, Molecular Docking, DFT, MESP, ADMET Studies of Transition Metal(II) Chelates of Bidentate Schiff Base Ligand. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
7
|
Singh A, Maiti SK, Gogoi HP, Barman P. Purine-based Schiff base Co(II), Cu(II), and Zn(II) complexes: Synthesis, characterization, DFT calculations, DNA binding study, and molecular docking. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Nabil N, Adly OMI, Shebl M, Taha A, Samy F. Ni II and Co II binary and ternary complexes of 3-formylchromone: spectroscopic characterization, antimicrobial activities, docking and modeling studies. RSC Adv 2022; 12:29939-29958. [PMID: 36321099 PMCID: PMC9580502 DOI: 10.1039/d2ra03475a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/29/2022] [Indexed: 12/01/2022] Open
Abstract
Reactions of 3-formylchromone (L) with Ni(ii) and Co(ii) ions having different anions (acetate, perchlorate, nitrate, and chloride) yielded a series of binary and ternary octahedral complexes with the general formula [ML n L' m X y (S) a ]Z y ·bS, where M = Ni or Co, n = 1-3, L' = auxiliary ligand = 8-hydroxyquinoline or 1,10-phenanthroline, m = 1 or 2, X = acetate or chloride, y = 0 or 2, S = H2O or MeOH, a = 0-2, Z = nitrate or perchlorate and b = 0-1.5. Elemental and thermal analyses and infra-red, electronic, mass, magnetic susceptibility and molar conductivity measurements were successfully utilized to characterize the structures of the chromone complexes. The chromone ligand acts as a neutral bidentate ligand through its formyl and γ-pyrone oxygen atoms. The obtained complexes were formed with molar ratios 1 : 2 and 1 : 3 M : L for the binary and 1 : 2 : 1 and 1 : 1 : 1 M : L : L' for the ternary complexes. The kinetic parameters of the thermal degradation steps were estimated and explained using the Coats-Redfern equations. The synthesized complexes showed antimicrobial activity with higher activity toward Candida albicans and Bacillus subtilis. Docking studies showed good agreement with the antimicrobial activity. Molecular modeling of the synthesized complexes was performed using Hyperchem at the PM3 level and the calculated structures correlate with the experimental data.
Collapse
Affiliation(s)
- Noha Nabil
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo 11566 Egypt +20 0222581243 +20 1096418414
| | - Omima M I Adly
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo 11566 Egypt +20 0222581243 +20 1096418414
| | - Magdy Shebl
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo 11566 Egypt +20 0222581243 +20 1096418414
| | - Ali Taha
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo 11566 Egypt +20 0222581243 +20 1096418414
| | - Fatma Samy
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo 11566 Egypt +20 0222581243 +20 1096418414
| |
Collapse
|
9
|
Experimental and theoretical studies of novel Schiff base based on diammino benzophenone with formyl chromone – BPAMC. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Keshtkar N, Zamanpour A, Esmaielzadeh S. Bioactive Ni(II), Cu(II) and Zn(II) complexes with an N3 functionalized Schiff base ligand: Synthesis, structural elucidation, thermodynamic and DFT calculation studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Kar K, Ghosh D, Kabi B, Chandra A. A concise review on cobalt Schiff base complexes as anticancer agents. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Spectral, Structural, and Antibacterial Study of Copper(II) Complex with N2O2 Donor Schiff Base Ligand and Its Usage in Preparation of CuO Nanoparticles. J CHEM-NY 2022. [DOI: 10.1155/2022/8913874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A new Schiff base complex, Cu(H2L)2 (H3L: 6,6
-((1E,1
E)-((azanediylbis(ethane-2,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2-methoxyphenol)), through the reaction of ligand H3L with Cu(NO3)2 3H2O, in the ratio of 2 : 1 in methanol solvent was prepared. The obtained ligand (H3L) was characterized by FT-IR, 13C NMR, 1H NMR and elemental analyses. Then its copper(II) complex was prepared and characterized by FT-IR spectroscopy, thermal studies, elemental analyses and single crystal X-ray diffraction. The X-ray crystallography revealed that the two H3L ligands in bidentate fashion coordinated to one copper center for producing Cu(H2L)2 complex. We used copper(II) Schiff base complex, Cu(H2L)2, for the preparation of CuO nanoparticles via solid-state thermal decomposition. The crystalline structure of the product was studied by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). XRD indicated that the new product was copper oxide. SEM image showed that the size of CuO nanoparticles was between 46 and 53 nm, and they had uniform shape. The antibacterial properties of the complex and ligand were also investigated. The results revealed that Schiff base complex showed higher biological activity than Schiff base ligand.
Collapse
|
13
|
Khursheed S, Tabassum S, Arjmand F. Comprehensive biological {DNA/RNA binding profile, cleavage &cytotoxicity activity} of structurally well-characterized chromone-appended Cu(II)(L1-3)(phen) potential anticancer drug candidates. Polyhedron 2022; 214:115638. [DOI: 10.1016/j.poly.2021.115638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Samy F, Shebl M. Co (II), Ni (II) and Cu (II) complexes of 4,6‐bis(2‐hydroxynaphthalen‐1‐yl)methyl‐ene)hydrazono)ethyl)benzene‐1,3‐diol: Synthesis, spectroscopic, biological and theoretical studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Samy
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Magdy Shebl
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|
15
|
Adhikari J, Bhattarai A, Chaudhary NK. Synthesis, characterization, physicochemical studies, and antibacterial evaluation of surfactant-based Schiff base transition metal complexes. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02062-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Bhalla P, Tomer N, Bhagat P, Malhotra R. Chromone functionalized pyridine chemosensor for cupric ions detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120279. [PMID: 34438118 DOI: 10.1016/j.saa.2021.120279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
A new Schiff base 2-ethoxy-3-{[(6-{[(2-ethoxy-4-hydroxy-2H-chromen-3-yl)methylidene]amino}pyridine-2-yl)imino]methyl}-2H-chromen-4-ol (CD) was synthesized as a result of the condensation of 2,6-diaminopyridine and 3-formyl chromone in 1:2 M ratio and used for cupric ions detection and characterized through FTIR, HRMS and 1H NMR spectral techniques. The sensing capability of Schiff base for cupric ions as compared to other transition metal ions was examined by absorbance and emission studies. A considerable decrease in emission intensity appeared in Schiff base in the case of cupric ions while irrelevant changes were examined for the rest of the ions. The binding stoichiometry was obtained as 1:2 for CD: Cu2+ complex intended from the job's plot which was confirmed through HRMS spectral technique. DFT calculations were carried for the confirmation of structural relationships and absorption-emission data. The Regression coefficient, Limit of detection, and Association constant were obtained as 98.7%, 1.2 × 10-6 M, and 3.26 × 104 M-1 respectively using Benesi-Hildebrand (B-H) equation. The sensing power of Schiff base CD to recognize cupric ions was unaltered by the addition of the rest of metal ions, which was authenticated through interference studies. Schiff base CD and its complex with cupric ions were found stable over an extensive time period as revealed by time-reliant studies. The data collected by pH studies revealed that the preferred pH range for detecting cupric ions by Schiff base CD was 6 to 11. The Schiff base was finally utilized for sensing cupric ions in a variety of spiked samples of water like canal water, tap water, groundwater, distilled water.
Collapse
Affiliation(s)
- Parul Bhalla
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Nisha Tomer
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Pooja Bhagat
- Department of Chemistry, AND College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Rajesh Malhotra
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India.
| |
Collapse
|
17
|
Adly OMI, Taha A, Ibrahim MA. New nickel (II), cobalt (III), and iron (III) complexes with
N
′‐[(2‐aminochromon‐3‐yl)methylidene]benzohydrazide: Synthesis, characterization, solvatochromic shift, dipole moment, and DFT calculations. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Omima M. I. Adly
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Ali Taha
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Magdy A. Ibrahim
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|
18
|
Copper(II) and oxidovanadium(IV) complexes of chromone Schiff bases as potential anticancer agents. J Biol Inorg Chem 2021; 27:89-109. [PMID: 34817681 DOI: 10.1007/s00775-021-01913-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
We report the synthesis, characterization and biological screening of new chromone Schiff bases derived from the condensation of three 6-substituted-3-formyl-chromones with pyridoxal (HL1-3) and its Cu(II) complexes [Cu(L1-3)Cl], 1-3. For the 6-methyl derivative, HL2, the VIVO-complex [VO(L2)Cl] (5), as well as ternary Cu and VIVO complexes with 1,10-phenanthroline (phen), [Cu(L2)(phen)Cl] (4) and [VO(L2)(phen)Cl] (6), were also prepared and evaluated. Their stability in aqueous medium and radical scavenging activity toward DPPH are screened, with [Cu(L2)(phen)Cl] (4) showing hydrolytic stability and [VO(L2)(phen)Cl] (6) high radical scavenging activity. Spectroscopic studies establish bovine serum albumin (BSA), a model for HSA, as a potential reversible carrier of [Cu(L2)(phen)Cl] in blood with KBC ≈ 105 M-1. The cytotoxic activity of a group of compounds is evaluated against a panel of human cancer cell lines of different origin (ovary, cervix, brain and breast) and compared to normal cells. Our results indicate that Cu complexes are more cytotoxic than the ligands but not selective towards cancer cells. The most potent complexes (4 and 6) are further evaluated for their apoptotic potential, induction of reactive oxygen species (ROS) and genotoxicity. Both complexes efficiently triggered cell death through apoptosis as evaluated by DNA morphology and TUNEL assay, increased ROS formation as determined by DCFDA (2',7'-dichlorodihydrofluorescein diacetate) analysis, and induced genotoxic damage as visualized via COMET assay in all cancer cells under study. Therefore, 4 and 6 may be potential precursor anticancer molecules, yet they need to be targeted toward cancer cells.
Collapse
|
19
|
Liu X, Dong Y, Alizade V, Khutsishvili M, Atha D, Borris RP, Clark BR. Molecular networking-driven isolation of 8'-Glycosylated biscoumarins from Cruciata articulata. PHYTOCHEMISTRY 2021; 190:112856. [PMID: 34233243 DOI: 10.1016/j.phytochem.2021.112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
A molecular networking-guided phytochemical investigation of Cruciata articulata led to the isolation of five unreported biscoumarins, four of which were characterized by a shared 6-methoxy-7,8'-dihydroxy-3,7'-biscoumarin aglycone. These were isolated alongside two known coumarin glycosides, daphnetin-8-O-β-D-glucoside and 6'-acetoxy-daphnetin-8-O-β-D-glucoside. Their structures were elucidated by extensive 1D and 2D NMR experiments, in combination with chemical transformation and MS/MS fragmentation analysis. Four of the biscoumarins were glycosylated at the 8' position: these are the first examples of this substitution pattern to be described in nature. All compounds were tested for cytotoxic, antimicrobial, anti-inflammatory, and α-glucosidase inhibitory properties, but did not display significant activity.
Collapse
Affiliation(s)
- Xueling Liu
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Yuyu Dong
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Valida Alizade
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku, AZ1102, Azerbaijan
| | - Manana Khutsishvili
- National Herbarium of Georgia, Ilia State University, Tbilisi, 100995, Georgia
| | | | - Robert P Borris
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
20
|
Kaur K, Patyal M, Gupta N. Characterization of reduced graphene oxide/macrocyclic Fe(II) complex nanocomposite as the counter electrode in Pt-free dye-sensitized solar cells. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1970146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kirandeep Kaur
- Department of Chemistry, Punjabi University, Patiala, India
| | | | - Nidhi Gupta
- Department of Basic and Applied Sciences, Punjabi University, Patiala, India
| |
Collapse
|
21
|
Hashem HE, Mohamed EA, Farag AA, Negm NA, Azmy EAM. New heterocyclic Schiff base‐metal complex: Synthesis, characterization, density functional theory study, and antimicrobial evaluation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heba E. Hashem
- Chemistry Department, Faculty of Women Ain Shams University Heliopolis Egypt
| | - Eslam A. Mohamed
- Chemistry Department Egyptian Petroleum Research Institute Nasr City Egypt
| | - Ahmed A. Farag
- Chemistry Department Egyptian Petroleum Research Institute Nasr City Egypt
| | - Nabel A. Negm
- Chemistry Department Egyptian Petroleum Research Institute Nasr City Egypt
| | - Eman A. M. Azmy
- Chemistry Department, Faculty of Women Ain Shams University Heliopolis Egypt
| |
Collapse
|
22
|
Singh K, Turk P, Dhanda A. Synthesis, spectral characterization, and antimicrobial evaluation of new imine derived from 3‐methylthiophene‐2‐carboxaldehyde and its Co(II), Ni(II), Cu(II), and Zn(II) metal complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kiran Singh
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Prerna Turk
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
- Government College Bherian Kurukshetra 136128 India
| | - Anita Dhanda
- Department of Microbiology Kurukshetra University Kurukshetra 136119 India
| |
Collapse
|
23
|
Abdelrhman EM, El‐Shetary B, Shebl M, Adly OM. Coordinating behavior of hydrazone ligand bearing chromone moiety towards Cu(II) ions: Synthesis, spectral, density functional theory (DFT) calculations, antitumor, and docking studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - B.A. El‐Shetary
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Magdy Shebl
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Omima M.I. Adly
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|
24
|
Structural, conformational and therapeutic studies on new thiazole complexes: drug-likeness and MOE-simulation assessments. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04380-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Jeyaraman P, Samuel M, Johnson A, Raman N. Synthesis, characterization, ADMET , in vitro and in vivo studies of mixed ligand metal complexes from a curcumin Schiff base and lawsone. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 40:242-263. [PMID: 33380278 DOI: 10.1080/15257770.2020.1867865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Complexes are currently synthesized from plant origin because of their therapeutic effect against certain diseases with toxicity. Hence, in this work, four new transition metal(II) mixed ligand complexes have been synthesized using a curcumin Schiff base (primary ligand) and lawsone (as co-ligand). The geometry of these complexes was explored by elemental analyses, molar conductance, thermal analysis, magnetic moment values, IR, NMR, Mass, electronic and EPR spectral studies. Electronic absorption titrations, viscosity measurements and molecular docking studies reveal that all the metal complexes interact with the CT DNA by groove binding. Among all the complexes, the copper(II) complex (complex 1) exhibits a higher Kb value (3.5 × 10-4 M) which reveals that it has a strong binding efficiency toward the CT DNA. The complexes also possess strong DNA cleavage efficiency. Cytotoxicity investigations on Artemia salina show that all the complexes possess higher cytotoxic effect than the ligand. Moreover, all the metal complexes have better antimicrobial efficacy than the ligand. Swiss ADME, PASS and pkCSM online softwares are helpful to predict the pharmacokinetic and biological actions of the curcumin Schiff base. Theoretical results obtained from the in silico study are experimentally corroborated by in vivo anti-inflammatory screening study. All the above studies demonstrate that the copper complex possesses biological activity similar to that of the drug like molecules. Research Highlights Synthesis and characterization of four novel transition mixed ligand complexes using plant moieties Promising in vivo anti-inflammatory agents and in vitro DNA metallonucleases Cytotoxicity investigation on Artemia salina Higher cytotoxic effect for the complexes than the ligand Identification of copper(II) complex as lead like molecule among all.
Collapse
Affiliation(s)
- Porkodi Jeyaraman
- Research Department of Chemistry, The Standard Fireworks Rajaratnam College for Women, Sivakasi, India
| | - Michael Samuel
- Research Department of Chemistry, VHNSN College, Viruthunagar, India
| | - Antonysamy Johnson
- Department of Plant Biology and Plant Biotechnology, St. Xavier College, Palayamkottai, India
| | - Natarajan Raman
- Research Department of Chemistry, VHNSN College, Viruthunagar, India
| |
Collapse
|
26
|
Samy F, Omar F. Synthesis, characterization, antitumor activity, molecular modeling and docking of new ligand, (2,5-pyrrole)-bis(5,6-diphenyl-[1,2,4]-triazin-3-yl)hydrazone and its complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Alkış ME, Buldurun K, Turan N, Alan Y, Yılmaz ÜK, Mantarcı A. Synthesis, characterization, antiproliferative of pyrimidine based ligand and its Ni(II) and Pd(II) complexes and effectiveness of electroporation. J Biomol Struct Dyn 2020; 40:4073-4083. [PMID: 33251985 DOI: 10.1080/07391102.2020.1852965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the study, a new Schiff base (ligand) was obtained using 4-aminopyrimidine-2(1H)-one, the starting material, and 2,3,4-trimethoxy benzaldehyde. Ni(II) and Pd(II) complexes were obtained from the reaction of the ligand and NiCl2·6H2O, PdCl2(CH3CN)2 (1:1 ratio). These compounds were characterized using the elemental and mass analysis, 1H, 13C-NMR, FT-IR, UV-Vis, magnetic susceptibility, thermal analysis, and the X-ray diffraction analyses. The antiproliferative activities of the synthesized ligand, Ni(II) and Pd(II) complexes were identified on the HepG2 (human liver cancer cells) cell line and their biocompatibility was tested on the L-929 (fibroblast cells) cell line by the MTT analysis method. Furthermore, the effects of electroporation (EP) on the cytotoxic activities of synthesized compounds were investigated in HepG2 cancer cells. According to the MTT findings of the study, the ligand did not exhibit an antiproliferative activity while its Ni(II) and Pd(II) complexes exhibited an antiproliferative activity. Moreover, it was observed that the antiproliferative activity of the Pd(II) complex was stronger than that of the Ni(II) complex. The combined application of EP + compounds is much more effective than the usage of the compounds alone in the treatment of HepG2 cancer cells. The EP increased the cytotoxicity of the Ni(II) and Pd(II) complexes by 1.66, and 2.54 times, respectively. It was concluded that Ni(II) and Pd(II) complexes may contribute as potential anti-cancer agents for the treatment of hepatocellular carcinoma and yield promising results in the case of being used in ECT.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehmet Eşref Alkış
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| | - Kenan Buldurun
- Department of Food Processing, Technical Sciences Vocational School, Muş Alparslan University, Muş, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| | - Yusuf Alan
- Department of Primary Education, Education Faculty, Muş Alparslan University, Muş, Turkey
| | - Ünzile Keleştemur Yılmaz
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| | - Asim Mantarcı
- Department of Physics, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| |
Collapse
|
28
|
Adam MSS, Ahmed MSM, El‐Hady OM, Shaaban S. Bis‐dioxomolybdenum (VI) oxalyldihydrazone complexes: Synthesis, characterization, DFT studies, catalytic epoxidation potential, molecular modeling and biological evaluations. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5573] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mohamed Shaker S. Adam
- Department of Chemistry, College of ScienceKing Faisal University P.O. Box 380 Al‐Hofuf Al‐Ahsa 31982 Saudi Arabia
- Chemistry Department, Faculty of ScienceSohag University Sohag 82534 Egypt
| | - Mohamed S. Mohamed Ahmed
- Department of Chemistry, College of ScienceKing Faisal University P.O. Box 380 Al‐Hofuf Al‐Ahsa 31982 Saudi Arabia
- Chemistry Department, Faculty of ScienceCairo University Giza Egypt
| | - Omar M. El‐Hady
- Chemistry Department, Faculty of ScienceSohag University Sohag 82534 Egypt
| | - Saad Shaaban
- Department of Chemistry, College of ScienceKing Faisal University P.O. Box 380 Al‐Hofuf Al‐Ahsa 31982 Saudi Arabia
- Chemistry Department, Faculty of ScienceMansoura University Mansoura Egypt
| |
Collapse
|
29
|
Zare‐Akbari Z, Dastmalchi S, Edjlali L, Dinparast L, Es'haghi M. A novel nanomagnetic solid acid catalyst for the synthesis of new functionalized bis‐coumarin derivatives under microwave irradiations in green conditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhila Zare‐Akbari
- Department of Chemistry, Tabriz BranchIslamic Azad University Tabriz Iran
| | - Siavoush Dastmalchi
- Biotechnology Research CenterTabriz University of Medical Sciences Tabriz Iran
- School of PharmacyTabriz University of Medical Sciences Tabriz Iran
- Faculty of PharmacyNear East University Nicosia North Cyprus Turkey
| | - Ladan Edjlali
- Department of Chemistry, Tabriz BranchIslamic Azad University Tabriz Iran
| | - Leila Dinparast
- Biotechnology Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Moosa Es'haghi
- Department of Chemistry, Tabriz BranchIslamic Azad University Tabriz Iran
| |
Collapse
|
30
|
Kazemi M. Based on MFe2O4 (M=Co, Cu, and Ni): Magnetically recoverable nanocatalysts in synthesis of heterocyclic structural scaffolds. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1723109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mosstafa Kazemi
- Chemistry Department, Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
31
|
Samy F, Shebl M. Synthesis, spectroscopic, biological, and theoretical studies of new complexes from ( E)‐3‐(2‐(5, 6‐ diphenyl‐1,2,4‐ triazin‐3‐ yl)hydrazono)butan‐2‐ one oxime. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5502] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fatma Samy
- Department of Chemistry, Faculty of EducationAin Shams University Roxy Cairo 11341 Egypt
| | - Magdy Shebl
- Department of Chemistry, Faculty of EducationAin Shams University Roxy Cairo 11341 Egypt
| |
Collapse
|
32
|
Abu‐Dief AM, El‐Sagher HM, Shehata MR. Fabrication, spectroscopic characterization, calf thymus DNA binding investigation, antioxidant and anticancer activities of some antibiotic azomethine Cu(II), Pd(II), Zn(II) and Cr(III) complexes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4943] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ahmed M. Abu‐Dief
- Chemistry Department, Faculty of ScienceSohag University 82524 Egypt
| | | | | |
Collapse
|
33
|
Arjmand F, Afsan Z, Roisnel T. Design, synthesis and characterization of novel chromone based-copper(ii) antitumor agents with N, N-donor ligands: comparative DNA/RNA binding profile and cytotoxicity. RSC Adv 2018; 8:37375-37390. [PMID: 35557803 PMCID: PMC9089433 DOI: 10.1039/c8ra06722h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/23/2018] [Indexed: 01/05/2023] Open
Abstract
A series of new chromone based-Cu(ii) complexes 1-3 derived from bioactive pharmacophore, 3-formylchromone and N,N-donor ligands viz., 1,10-phenanthroline, 2,2'-bipyridine and 1R,2R-DACH were synthesized as potential antitumor agents and thoroughly characterized by UV-vis, FT-IR, EPR, ESI-MS and elemental analysis. Single X-crystal diffraction studies of complex 2 revealed triclinic P1̄ space group with square pyramidal geometry around the Cu(ii) center. Comparative in vitro binding studies with ct-DNA and tRNA were carried out using absorption and emission titration experiments which revealed intercalative mode of binding with higher binding propensity of complexes 1-3 towards tRNA as compared to ct-DNA. Additionally, complex 1 exhibited high binding affinity among all the three complexes due to the involvement of phen co-ligands via π-stacking interactions in between nucleic acid base pairs. Furthermore, Hirshfeld surface analysis was carried out for complex 2 to investigate various intra and intermolecular non-covalent interactions (H-bonding, C-H⋯π etc.) accountable for stabilization of crystal lattice. The cleavage activity of complex 1 was performed by gel electrophoretic assay with pBR322 DNA and tRNA which revealed efficient DNA/tRNA cleaving ability of complex, suggesting tRNA cleavage both concentration and time dependent. Furthermore, in vitro cytotoxic activity of complexes 1-3 on a selected panel of human cancer cell lines was performed which revealed that all three complexes exhibited remarkably good cytotoxic activity with GI50 value < 10 μg mL-1 (<20 μM).
Collapse
Affiliation(s)
- Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India +91 5712703893
| | - Zeenat Afsan
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India +91 5712703893
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1 Campus de Beaulieu Bâtiment 10B, Bureau 15335042 Rennes France
| |
Collapse
|