1
|
Routabi P, Mehrabi M, Adibi H, Mehrabi M, Khodarahmi R. Design and evaluation of curcumin-derived aldopentose compounds: Unlocking their antidiabetic potential through integrative in vitro, in vivo, and in silico studies on carbohydrate-degrading enzymes. J Nutr Biochem 2025; 141:109897. [PMID: 40086674 DOI: 10.1016/j.jnutbio.2025.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Natural polyphenol compounds such as curcumin can inhibit carbohydrate-hydrolyzing enzymes, which may offer an alternative to expensive and potentially side-effect-inducing α-glucosidase inhibitors like acarbose. Hence, this study carried out the synthesis of curcumin aldopentose derivatives, examining their capacity to inhibit the α-glucosidase and α-amylase enzymes with the aim to alleviate hyperglycemia. Initially, the aldopentose derivatives from curcumin were synthesized and confirmed by spectroscopic methods such as MS, 13CNMR, 1HNMR, and FTIR. Afterward, we investigated the inhibitory effects of all derivatives on the α-amylase and α-glucosidase enzymes spectroscopically and determined their inhibition mechanism. We assessed the antioxidant activity and the stability of the synthetic derivatives in the simulated intestinal environment. Finally, we measured the postprandial blood glucose level after administering saturated starch in vivo. The modified compounds showed improved inhibitory effects compared to curcumin alone, with compound C3 demonstrating particularly strong enzyme inhibition. However, when compared with acarbose, a known commercial antidiabetic drug, the synthetic compounds showed lower inhibitory activity against both enzymes, resulting in fewer side effects related to undigested polysaccharides in the gut. Molecular docking studies show introducing a pentose moiety to the curcumin backbone enhanced docking affinities toward both enzymes and subsequently altered the associated IC50 and Ki values. Overall, compound C3 has the potential to be an inhibitor of carbohydrate-degrading enzymes and can effectively reduce glucose absorption in vivo. Given its antioxidant capabilities and reasonable stability, the compound in question shows promises as a potent derivative for the development of new anti-hyperglycemic drugs in future research endeavours.
Collapse
Affiliation(s)
- Pedram Routabi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Maryam Mehrabi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Nilai, Negeri Sembilan, Malaysia
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
de Campos LJ, Seleem MA, Feng J, Pires de Oliveira KM, de Andrade Dos Santos JV, Hayer S, Clayton JB, Kathi S, Fisher DJ, Ouellette SP, Conda-Sheridan M. Design, Biological Evaluation, and Computer-Aided Analysis of Dihydrothiazepines as Selective Antichlamydial Agents. J Med Chem 2023; 66:2116-2142. [PMID: 36696579 PMCID: PMC10056257 DOI: 10.1021/acs.jmedchem.2c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chlamydia trachomatis (CT) causes the most prevalent sexually transmitted bacterial disease in the United States. The lack of drug selectivity is one of the main challenges of the current antichlamydial pharmacotherapy. The metabolic needs of CT are controlled, among others, by cylindrical proteases and their chaperones (e.g., ClpX). It has been shown that dihydrothiazepines can disrupt CT-ClpXP. Based on this precedent, we synthesized a dihydrothiazepine library and characterized its antichlamydial activity using a modified semi-high-throughput screening assay. Then, we demonstrated their ability to inhibit ClpX ATPase activity in vitro, supporting ClpX as a target. Further, our lead compound displayed a promising selectivity profile against CT, acceptable cytotoxicity, no mutagenic potential, and good in vitro stability. A two-dimensional quantitative structure-activity relationship (2D QSAR) model was generated as a support tool in the identification of more potent antichlamydial molecules. This study suggests dihydrothiazepines are a promising starting point for the development of new and selective antichlamydial drugs.
Collapse
Affiliation(s)
- Luana Janaína de Campos
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mohamed A Seleem
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jiachen Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Kelly Mari Pires de Oliveira
- Faculty of Biological and Environmental Science, Federal University of Grande Dourados, Dourados, MS 79804-970, Brazil
| | | | - Shivdeep Hayer
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, United States
| | - Jonathan B Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, United States
- Department of Food Science and Technology, University of Nebraska─Lincoln, Lincoln, Nebraska 68588, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Nebraska Food for Health Center, University of Nebraska─Lincoln, Lincoln, Nebraska 68508, United States
| | - Sharvath Kathi
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Derek J Fisher
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Scot P Ouellette
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
4
|
Khodarahmi R. Meet Our Editorial Board Member. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/157340131704210322110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Das S. Annulations involving 2-arylidene-1,3-indanediones: stereoselective synthesis of spiro- and fused scaffolds. NEW J CHEM 2020. [DOI: 10.1039/d0nj03968c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stereoselective annulations of 2-arylidene-1,3-indanediones towards spiro-carbocycles as well as spiro/fused heterocycles based on various cycloadditions and tandem annulations are described.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry
- Rishi Bankim Chandra College for Women
- India
| |
Collapse
|