1
|
Shao W, Liu L, Gu J, Yang Y, Wu Y, Zhang Z, Xu Q, Wang Y, Shen Y, Gu L, Cheng Y, Zhang H. Spotlight on mechanism of sudden unexpected death in epilepsy in Dravet syndrome. Transl Psychiatry 2025; 15:84. [PMID: 40097380 PMCID: PMC11914262 DOI: 10.1038/s41398-025-03304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Dravet syndrome (DS) is a severe and catastrophic epilepsy with childhood onset. The incidence and prevalence of sudden unexpected death in epilepsy (SUDEP) are significantly higher in DS patients than in general epileptic populations. Although extensive research conducted, the underlying mechanisms of SUDEP occurring in DS patients remain unclear. This review focuses on the link between DS and SUDEP and analyzes the potential pathogenesis. We summarize the genetic basis of DS and SUDEP and elucidate the pathophysiological mechanisms of SUDEP in DS. Furthermore, given the drug-resistant nature of this disorder, the pharmacological approach has limited efficacy and often causes side effects, therefore, the non-pharmacological approaches and precise treatment can reduce the risk of SUDEP in this condition, open a new window to cure this disease, and provide a widened landscape of treatment options for patients.
Collapse
Affiliation(s)
- WeiHui Shao
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - JiaXuan Gu
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China
| | - LeYuan Gu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuan Cheng
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| | - HongHai Zhang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Esmel-Vilomara R, Turón-Viñas E, Pujol-Sanjuan M, Giorgi S, Pérez-Fernández M, Pérez-Restrepo A, Aibar JÁ, Boronat S. Cardiac Implications in Dravet Syndrome: Can Electrocardiogram and Echocardiography Detect Hidden Risks? Pediatr Neurol 2025; 164:53-57. [PMID: 39862709 DOI: 10.1016/j.pediatrneurol.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy associated with loss-of-function variants in the SCN1A gene. Although predominantly expressed in the central nervous system, SCN1A is also expressed in the heart, suggesting a potential link between neuronal and cardiac channelopathies. Additionally, DS carries a high risk of sudden unexpected death in epilepsy (SUDEP). This study investigates electrocardiographic (EKG) and echocardiographic findings in patients with DS to assess potential cardiac risks. METHODS This prospective study recruited 34 patients with DS with confirmed SCN1A pathogenic variants during the 2024 family meeting of the Dravet Syndrome Foundation Spain. Participants underwent standard 12-lead EKG, high-lead EKG for Brugada pattern detection, and a standing test to evaluate QT interval response. When available, echocardiogram data were collected. QTc and P wave dispersion were calculated. To establish a basis for comparison, cases were matched with age- and sex-matched epileptic patients without DS. RESULTS No significant EKG abnormalities suggesting long QT syndrome or Brugada syndrome were detected. However, QT and P wave dispersion, previously reported as markers of autonomic dysfunction associated with arrhythmias and SUDEP risk, were elevated. Echocardiograms in 21 patients showed normal cardiac structure, even in those on fenfluramine. CONCLUSIONS Although no significant EKG or echocardiographic abnormalities were identified, elevated QTc and P wave dispersion, along with the elevated risk of SUDEP and past reports of arrhythmias, suggest the need for continued cardiac surveillance. Further studies are essential to explore the predictive value of QTc and P wave dispersion in assessing SUDEP and arrhythmia risk, and to identify other potential cardiac markers.
Collapse
Affiliation(s)
- Roger Esmel-Vilomara
- Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Pediatric Cardiology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Pediatrics Research Group, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain.
| | - Eulàlia Turón-Viñas
- Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Pediatrics Research Group, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Pediatric Neurology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marta Pujol-Sanjuan
- Pediatrics Research Group, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - María Pérez-Fernández
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Escola Universitària d'Infermeria EUI Sant Pau, Barcelona, Spain
| | - Alejandra Pérez-Restrepo
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Escola Universitària d'Infermeria EUI Sant Pau, Barcelona, Spain
| | | | - Susana Boronat
- Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Pediatrics Research Group, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Pediatric Neurology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
3
|
Verrier RL, Schachter SC. The Epileptic Heart Syndrome: Epidemiology, pathophysiology and clinical detection. Epilepsy Behav Rep 2024; 27:100696. [PMID: 39184194 PMCID: PMC11342885 DOI: 10.1016/j.ebr.2024.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Population studies report elevated incidence of cardiovascular events in patients with chronic epilepsy. Multiple pathophysiologic processes have been implicated, including accelerated atherosclerosis, myocardial infarction, altered autonomic tone, heart failure, atrial and ventricular arrhythmias, and hyperlipidemia. These deleterious influences on the cardiovascular system have been attributed to seizure-induced surges in catecholamines and hypoxemic damage to the heart and coronary vasculature. Certain antiseizure medications can accelerate heart disease through enzyme-inducing increases in plasma lipids and/or increasing risk for life-threatening ventricular arrhythmias as a result of sodium channel blockade. In this review, we propose that this suite of pathophysiologic processes constitutes "The Epileptic Heart Syndrome." We further propose that this condition can be diagnosed using standard electrocardiography, echocardiography, and lipid panels. The ultimate goal of this syndromic approach is to evaluate cardiac risk in patients with chronic epilepsy and to promote improved diagnostic strategies to reduce premature cardiac death.
Collapse
Affiliation(s)
- Richard L. Verrier
- Departments of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Steven C. Schachter
- Departments of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, United States
- Department of Neurology, Massachusetts General Hospital, 125 Nashua Street, Suite #324, Boston, MA 02114, United States
| |
Collapse
|
4
|
King DR, Demirtas M, Tarasov M, Struckman HL, Meng X, Nassal D, Moise N, Miller A, Min D, Soltisz AM, Anne MNK, Alves Dias PA, Wagnon JL, Weinberg SH, Hund TJ, Veeraraghavan R, Radwański PB. Cardiac-Specific Deletion of Scn8a Mitigates Dravet Syndrome-Associated Sudden Death in Adults. JACC Clin Electrophysiol 2024; 10:829-842. [PMID: 38430092 PMCID: PMC11285447 DOI: 10.1016/j.jacep.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Sudden unexpected death in epilepsy (SUDEP) is a fatal complication experienced by otherwise healthy epilepsy patients. Dravet syndrome (DS) is an inherited epileptic disorder resulting from loss of function of the voltage-gated sodium channel, NaV 1.1, and is associated with particularly high SUDEP risk. Evidence is mounting that NaVs abundant in the brain also occur in the heart, suggesting that the very molecular mechanisms underlying epilepsy could also precipitate cardiac arrhythmias and sudden death. Despite marked reduction of NaV 1.1 functional expression in DS, pathogenic late sodium current (INa,L) is paradoxically increased in DS hearts. However, the mechanisms by which DS directly impacts the heart to promote sudden death remain unclear. OBJECTIVES In this study, the authors sought to provide evidence implicating remodeling of Na+ - and Ca2+ -handling machinery, including NaV 1.6 and Na+/Ca2+exchanger (NCX) within transverse (T)-tubules in DS-associated arrhythmias. METHODS The authors undertook scanning ion conductance microscopy (SICM)-guided patch clamp, super-resolution microscopy, confocal Ca2+ imaging, and in vivo electrocardiography studies in Scn1a haploinsufficient murine model of DS. RESULTS DS promotes INa,L in T-tubular nanodomains, but not in other subcellular regions. Consistent with increased NaV activity in these regions, super-resolution microscopy revealed increased NaV 1.6 density near Ca2+release channels, the ryanodine receptors (RyR2) and NCX in DS relative to WT hearts. The resulting INa,L in these regions promoted aberrant Ca2+ release, leading to ventricular arrhythmias in vivo. Cardiac-specific deletion of NaV 1.6 protects adult DS mice from increased T-tubular late NaV activity and the resulting arrhythmias, as well as sudden death. CONCLUSIONS These data demonstrate that NaV 1.6 undergoes remodeling within T-tubules of adult DS hearts serving as a substrate for Ca2+ -mediated cardiac arrhythmias and may be a druggable target for the prevention of SUDEP in adult DS subjects.
Collapse
Affiliation(s)
- D Ryan King
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Mustafa Demirtas
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Mikhail Tarasov
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Heather L Struckman
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xiaolei Meng
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Drew Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Nicolae Moise
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Alec Miller
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Dennison Min
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Andrew M Soltisz
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Midhun N K Anne
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Patrícia A Alves Dias
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského Hradec Králové, Czech Republic
| | - Jacy L Wagnon
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Seth H Weinberg
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Rengasayee Veeraraghavan
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Przemysław B Radwański
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
5
|
Fan HC, Yang MT, Lin LC, Chiang KL, Chen CM. Clinical and Genetic Features of Dravet Syndrome: A Prime Example of the Role of Precision Medicine in Genetic Epilepsy. Int J Mol Sci 2023; 25:31. [PMID: 38203200 PMCID: PMC10779156 DOI: 10.3390/ijms25010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Dravet syndrome (DS), also known as severe myoclonic epilepsy of infancy, is a rare and drug-resistant form of developmental and epileptic encephalopathies, which is both debilitating and challenging to manage, typically arising during the first year of life, with seizures often triggered by fever, infections, or vaccinations. It is characterized by frequent and prolonged seizures, developmental delays, and various other neurological and behavioral impairments. Most cases result from pathogenic mutations in the sodium voltage-gated channel alpha subunit 1 (SCN1A) gene, which encodes a critical voltage-gated sodium channel subunit involved in neuronal excitability. Precision medicine offers significant potential for improving DS diagnosis and treatment. Early genetic testing enables timely and accurate diagnosis. Advances in our understanding of DS's underlying genetic mechanisms and neurobiology have enabled the development of targeted therapies, such as gene therapy, offering more effective and less invasive treatment options for patients with DS. Targeted and gene therapies provide hope for more effective and personalized treatments. However, research into novel approaches remains in its early stages, and their clinical application remains to be seen. This review addresses the current understanding of clinical DS features, genetic involvement in DS development, and outcomes of novel DS therapies.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan;
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Tao Yang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
| | - Lung-Chang Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuo-Liang Chiang
- Department of Pediatric Neurology, Kuang-Tien General Hospital, Taichung 433, Taiwan;
- Department of Nutrition, Hungkuang University, Taichung 433, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Ryan JM, Wagner KT, Yerram S, Concannon C, Lin JX, Rooney P, Hanrahan B, Titoff V, Connolly NL, Cranmer R, DeMaria N, Xia X, Mykins B, Erickson S, Couderc JP, Schifitto G, Hughes I, Wang D, Erba G, Auerbach DS. Heart rate and autonomic biomarkers distinguish convulsive epileptic vs. functional or dissociative seizures. Seizure 2023; 111:178-186. [PMID: 37660533 DOI: 10.1016/j.seizure.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE 20-40% of individuals whose seizures are not controlled by anti-seizure medications exhibit manifestations comparable to epileptic seizures (ES), but there are no EEG correlates. These events are called functional or dissociative seizures (FDS). Due to limited access to EEG-monitoring and inconclusive results, we aimed to develop an alternative diagnostic tool that distinguishes ES vs. FDS. We evaluated the temporal evolution of ECG-based measures of autonomic function (heart rate variability, HRV) to determine whether they distinguish ES vs. FDS. METHODS The prospective study includes patients admitted to the University of Rochester Epilepsy Monitoring Unit. Participants are 18-65 years old, without therapies or co-morbidities associated with altered autonomics. A habitual ES or FDS is recorded during admission. HRV analysis is performed to evaluate the temporal changes in autonomic function during the peri‑ictal period (150-minutes each pre-/post-ictal). We determined if autonomic measures distinguish ES vs. FDS. RESULTS The study includes 53 ES and 46 FDS. Temporal evolution of HR and autonomics significantly differ surrounding ES vs. FDS. The pre-to-post-ictal change (delta) in HR differs surrounding ES vs. FDS, stratified for convulsive and non-convulsive events. Post-ictal HR, total autonomic (SDNN & Total Power), vagal (RMSSD & HF), and baroreflex (LF) function differ for convulsive ES vs. convulsive FDS. HR distinguishes non-convulsive ES vs. non-convulsive FDS with ROC>0.7, sensitivity>70%, but specificity<50%. HR-delta and post-ictal HR, SDNN, RMSSD, LF, HF, and Total Power each distinguish convulsive ES vs. convulsive FDS (ROC, 0.83-0.98). Models with HR-delta and post-ictal HR provide the highest diagnostic accuracy for convulsive ES vs. convulsive FDS: 92% sensitivity, 94% specificity, ROC 0.99). SIGNIFICANCE HR and HRV measures accurately distinguish convulsive, but not non-convulsive, events (ES vs. FDS). Results establish the framework for future studies to apply this diagnostic tool to more heterogeneous populations, and on out-of-hospital recordings, particularly for populations without access to epilepsy monitoring units.
Collapse
Affiliation(s)
- Justin M Ryan
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Kyle T Wagner
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Sushma Yerram
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Cathleen Concannon
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Jennifer X Lin
- School of Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Patrick Rooney
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Brian Hanrahan
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Victoria Titoff
- Department of Neurology-Epilepsy, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Noreen L Connolly
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Ramona Cranmer
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Natalia DeMaria
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaojuan Xia
- Clinical Cardiology Research Center Medicine-Cardiology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Betty Mykins
- Clinical Cardiology Research Center Medicine-Cardiology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Steven Erickson
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Jean-Philippe Couderc
- Clinical Cardiology Research Center Medicine-Cardiology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Inna Hughes
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Dongliang Wang
- Department of Public Health, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Giuseppe Erba
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
7
|
Singh V, Ryan JM, Auerbach DS. It is premature for a unified hypothesis of sudden unexpected death in epilepsy: A great amount of research is still needed to understand the multisystem cascade. Epilepsia 2023; 64:2006-2010. [PMID: 37129136 DOI: 10.1111/epi.17636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Justin M Ryan
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
8
|
Ma R, Duan Y, Zhang L, Qi X, Zhang L, Pan S, Gao L, Wang C, Wang Y. SCN1A-Related Epilepsy: Novel Mutations and Rare Phenotypes. Front Mol Neurosci 2022; 15:826183. [PMID: 35663268 PMCID: PMC9162153 DOI: 10.3389/fnmol.2022.826183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesTo expand the genotypes and phenotypes of sodium voltage-gated channel alpha subunit 1 (SCN1A)-related epilepsy.MethodsWe retrospectively collected the clinical and genetic information of 22 epilepsy patients (10 males, 12 females; mean: 9.2 ± 3.9 years; 3.9–20.3 years) carrying 22 variants of SCN1A. SCN1A mutations were identified by next-generation sequencing.ResultsTwenty-two variants were identified, among which 12 have not yet been reported. The median age at seizure onset was 6 months. Sixteen patients were diagnosed with Dravet syndrome (DS), two with genetic epilepsy with febrile seizures plus [one evolved into benign epilepsy with centrotemporal spikes (BECTS)], one with focal epilepsy, one with atypical childhood epilepsy with centrotemporal spikes (ABECTS) and two with unclassified epilepsy. Fourteen patients showed a global developmental delay/intellectual disability (GDD/ID). Slow background activities were observed in one patient and epileptiform discharges were observed in 11 patients during the interictal phase.SignificanceThis study enriches the genotypes and phenotypes of SCN1A-related epilepsy. The clinical characteristics of patients with 12 previously unreported variants were described.
Collapse
|
9
|
Abnormal heart rate variability during non-REM sleep and postictal generalized EEG suppression in focal epilepsy. Clin Neurophysiol 2022; 140:40-44. [DOI: 10.1016/j.clinph.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022]
|
10
|
Perulli M, Battista A, Sivo S, Turrini I, Musto E, Quintiliani M, Gambardella ML, Contaldo I, Veredice C, Mercuri EM, Lanza GA, Dravet C, Delogu AB, Battaglia DI. Heart rate variability alterations in Dravet Syndrome: The role of status epilepticus and a possible association with mortality risk. Seizure 2021; 94:129-135. [PMID: 34896816 DOI: 10.1016/j.seizure.2021.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Preliminary data suggest that patients with Dravet Syndrome (DS) have a reduced heart rate variability (HRV). This seems particularly evident in patients who experienced sudden unexpected death in epilepsy (SUDEP). This study aims at confirming these findings in a larger cohort and at defining clinical, genetic or electroencephalographic predictors of HRV impairment in DS patients. METHODS DS patients followed at our Institution performed a 24h-ECG Holter to derive HRV parameters. We used as control population patients with epilepsy (PWEs) and healthy controls (HCs). In DS patients, we assessed the impact of different clinical, neurophysiological and genetic features on HRV alterations through multiple linear regression. After a mean follow-up of 7.4 ± 3.2 years since the HRV assessment, all DS patients were contacted to record death or life-threatening events. RESULTS 56 DS patients had a significantly reduced HRV compared to both HCs and PWEs. A recent history of status epilepticus (SE) was the only significant predictor of lower HRV in the multivariate analysis. At follow-up, only one patient died; her HRV was lower than that of all the controls and was in the low range for DS patients. CONCLUSION We describe for the first time an association between SE and HRV alterations in DS. Further studies on other SCN1A-related phenotypes and other epilepsies with frequent SE will help clarify this finding. Compared to the literature, our cohort showed better HRV and lower mortality. Although limited, this observation reinforces the role of HRV as a biomarker for mortality risk in DS.
Collapse
Affiliation(s)
- Marco Perulli
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Battista
- Pediatrics, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Sivo
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ida Turrini
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elisa Musto
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Quintiliani
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Luigia Gambardella
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilaria Contaldo
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Veredice
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eugenio Maria Mercuri
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Antonio Lanza
- Cardiology, Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze cardiovascolari e pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Charlotte Dravet
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angelica Bibiana Delogu
- Pediatrics, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenica Immacolata Battaglia
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
11
|
Berg AT, Coffman K, Gaebler-Spira D. Dysautonomia and functional impairment in rare developmental and epileptic encephalopathies: the other nervous system. Dev Med Child Neurol 2021; 63:1433-1440. [PMID: 34247387 DOI: 10.1111/dmcn.14990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 12/27/2022]
Abstract
AIM To determine whether functional impairments and autonomic symptoms are correlated in young people with developmental and epileptic encephalopathies (DEEs). METHOD Cross-sectional, online surveys (2018-2020) of parents recruited from family groups obtained information on several aspects of children's conditions including functional abilities (mobility, hand use, eating, and communication), 18 autonomic symptoms in six groups (cardiac, respiratory, sweating, temperature, gastrointestinal, and other), and parental stress. Bivariate and multivariable logistic regression analyses examined associations of dysautonomias with functional impairment, adjusted for type of DEE and age. RESULTS Of 313 participants with full information on function and dysautonomias, 156 (50%) were females. The median age was 8 years (interquartile range 4-12y); 255 (81%) participants had symptoms in at least one autonomic symptom group; 283 (90%) had impairment in at least one functional domain. The number of functional impairment domains and of autonomic symptom groups varied significantly across DEE groups (both p<0.001). The number of functional impairment domains and of autonomic symptom groups were correlated (Spearman's r=0.35, p<0.001) on bivariate and multivariable analysis adjusted for DEE group and age. Parental stress was also independently correlated with dysautonomias (p<0.001). INTERPRETATION Parent-reported dysautonomias are common in children with DEEs. They correlate with extent of functional impairment and may contribute to caregiver stress. What this paper adds Dysautonomic symptoms are common in young people with developmental and epileptic encephalopathies (DEEs). Burden of dysautonomias is strongly correlated with burden of functional impairments. Aspects of dysautonomic function may provide biomarkers of DEE disease severity.
Collapse
Affiliation(s)
- Anne T Berg
- Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Keith Coffman
- Division of Neurology, Department of Pediatrics, Children's Mercy, Kansas City, MO, USA
| | - Deborah Gaebler-Spira
- Shirley Ryan Ability Lab, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Northwestern Feinberg School of Medicine, Chicago, IL, USA.,Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Verrier RL, Pang TD, Nearing BD, Schachter SC. Epileptic heart: A clinical syndromic approach. Epilepsia 2021; 62:1780-1789. [PMID: 34236079 DOI: 10.1111/epi.16966] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Prevention of premature death in patients with chronic epilepsy remains a major challenge. Multiple pathophysiologic factors have been implicated, with intense investigation of cardiorespiratory mechanisms. Up to four in five patients with chronic epilepsy exhibit cardiovascular comorbidities. These findings led us to propose the concept of an "epileptic heart," defined as "a heart and coronary vasculature damaged by chronic epilepsy as a result of repeated surges in catecholamines and hypoxemia leading to electrical and mechanical dysfunction." Among the most prominent changes documented in the literature are high incidence of myocardial infarction and arrhythmia, altered autonomic tone, diastolic dysfunction, hyperlipidemia, and accelerated atherosclerosis. This suite of pathologic changes prompted us to propose for the first time in this review a syndromic approach for improved clinical detection of the epileptic heart condition. In this review, we discuss the key pathophysiologic mechanisms underlying the candidate criteria along with standard and novel techniques that permit evaluation of each of these factors. Specifically, we present evidence of the utility of standard 12-lead, ambulatory, and multiday patch-based electrocardiograms, along with measures of cardiac electrical instability, including T-wave alternans, heart rate variability to detect altered autonomic tone, echocardiography to detect diastolic dysfunction, and plasma biomarkers for assessing hyperlipidemia and accelerated atherosclerosis. Ultimately, the proposed clinical syndromic approach is intended to improve monitoring and evaluation of cardiac risk in patients with chronic epilepsy to foster improved therapeutic strategies to reduce premature cardiac death.
Collapse
Affiliation(s)
- Richard L Verrier
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Trudy D Pang
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Bruce D Nearing
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Steven C Schachter
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Consortia for Improving Medicine with Innovation and Technology, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Identification and successful management of near-lethal ventricular tachycardia in 2q24 deletion-associated developmental and epileptic encephalopathy. Seizure 2021; 91:146-149. [PMID: 34161902 DOI: 10.1016/j.seizure.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022] Open
|
14
|
Abstract
PURPOSE OF REVIEW Epilepsy is associated with autonomic dysfunction. Here, we provide an up-to-date review on measures of interictal autonomic function, focusing on heart rate variability (HRV), baroreflex sensitivity (BRS) and electrodermal activity (EDA). RECENT FINDINGS Resting HRV, BRS and EDA are altered in patients with epilepsy compared with healthy controls. A larger body of work is available for HRV compared with BRS and EDA, and points to interictal HRV derangements across a wide range of epilepsies, including focal, generalized, and combined generalized and focal epilepsies. HRV alterations are most pronounced in temporal lobe epilepsy, Dravet syndrome and drug-resistant and chronic epilepsies. There are conflicting data on the effect of antiseizure medications on measures of interictal autonomic function. However, carbamazepine has been associated with decreased HRV. Epilepsy surgery and vagus nerve stimulation do not appear to have substantial impact on measures of interictal autonomic function but well designed studies are lacking. SUMMARY Patients with epilepsy, particularly those with longstanding uncontrolled seizures, have measurable alterations of resting autonomic function. These alterations may be relevant to the increased risk of premature mortality in epilepsy, including sudden unexpected death in epilepsy, which warrants investigation in future research.
Collapse
|
15
|
Sahai N, Bard AM, Devinsky O, Kalume F. Disordered autonomic function during exposure to moderate heat or exercise in a mouse model of Dravet syndrome. Neurobiol Dis 2020; 147:105154. [PMID: 33144172 DOI: 10.1016/j.nbd.2020.105154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine autonomic regulation of core body temperature, heart rate (HR), and breathing rate (BR) in response to moderately elevated ambient temperature or moderate physical exercise in a mouse model of Dravet syndrome (DS). METHODS We studied video-EEG, ECG, respiration, and temperature in mice with global heterozygous Scn1a knockout (KO) (DS mice), interneuron specific Scn1a KO, and wildtype (WT) mice during exposure to increased environmental temperature and moderate treadmill exercise. RESULTS Core body temperatures of WT and DS mice were similar during baseline. After 15 mins of heat exposure, the peak value was lower in DS than WT mice. In the following mins of heat exposure, the temperature slowly returned close to baseline level in WT, whereas it remained elevated in DS mice. KO of Scn1a in GABAergic neurons caused similar thermoregulatory deficits in mice. During exercise, the HR increase was less prominent in DS than WT mice. After exercise, the HR was significantly more suppressed in DS. The heart rate variability (HRV) was lower in DS than WT mice during baseline and higher in DS during exercise-recovery periods. SIGNIFICANCE We found novel abnormalities that expand the spectrum of interictal, ictal, and postictal autonomic dysregulation in DS mice. During mild heat stress, there was a significantly blunted correction of body temperature, and a less suppression of both HR and respiration rate in DS than WT mice. These effects were seen in mice with selective KO of Scn1A in GABAergic neurons. During exercise stress, there was diminished increase in HR, followed by an exaggerated HR suppression and HRV elevation during recovery in DS mice compared to controls. These findings suggest that different environmental stressors can uncover distinct autonomic disturbances in DS mice. Interneurons play an important role in thermoregulation. Understanding the spectrum and mechanisms of autonomic disorders in DS may help develop more effective strategies to prevent seizures and SUDEP.
Collapse
Affiliation(s)
- Nikhil Sahai
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Angela M Bard
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Franck Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Shmuely S, Surges R, Helling RM, Gunning WB, Brilstra EH, Verhoeven JS, Cross JH, Sisodiya SM, Tan HL, Sander JW, Thijs RD. Cardiac arrhythmias in Dravet syndrome: an observational multicenter study. Ann Clin Transl Neurol 2020; 7:462-473. [PMID: 32207228 PMCID: PMC7187713 DOI: 10.1002/acn3.51017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 11/11/2022] Open
Abstract
Objectives We ascertained the prevalence of ictal arrhythmias to explain the high rate of sudden unexpected death in epilepsy (SUDEP) in Dravet syndrome (DS). Methods We selected cases with clinical DS, ≥6 years, SCN1A mutation, and ≥1 seizure/week. Home‐based ECG recordings were performed for 20 days continuously. Cases were matched for age and sex to two epilepsy controls with no DS and ≥1 major motor seizure during video‐EEG. We determined the prevalence of peri‐ictal asystole, bradycardia, QTc changes, and effects of convulsive seizures (CS) on heart rate, heart rate variability (HRV), and PR/QRS. Generalized estimating equations were used to account for multiple seizures within subjects, seizure type, and sleep/wakefulness. Results We included 59 cases. Ictal recordings were obtained in 45 cases and compared to 90 controls. We analyzed 547 seizures in DS (300 CS) and 169 in controls (120 CS). No asystole occurred. Postictal bradycardia was more common in controls (n = 11, 6.5%) than cases (n = 4, 0.7%; P = 0.002). Peri‐ictal QTc‐lengthening (≥60ms) occurred more frequently in DS (n = 64, 12%) than controls (n = 8, 4.7%, P = 0.048); pathologically prolonged QTc was rare (once in each group). In DS, interictal HRV was lower compared to controls (RMSSD P = 0.029); peri‐ictal values did not differ between the groups. Prolonged QRS/PR was rare and more common in controls (QRS: one vs. none; PR: three vs. one). Interpretation We did not identify major arrhythmias in DS which can directly explain high SUDEP rates. Peri‐ictal QTc‐lengthening was, however, more common in DS. This may reflect unstable repolarization and an increased propensity for arrhythmias.
Collapse
Affiliation(s)
- Sharon Shmuely
- Stichting Epilepsie Instellingen Nederland - SEIN, Achterweg 5, 2103 SW Heemstede, Dokter Denekampweg 20, 8025 BV, Zwolle, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Centre for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | - Robert M Helling
- Stichting Epilepsie Instellingen Nederland - SEIN, Achterweg 5, 2103 SW Heemstede, Dokter Denekampweg 20, 8025 BV, Zwolle, The Netherlands
| | - W Boudewijn Gunning
- Stichting Epilepsie Instellingen Nederland - SEIN, Achterweg 5, 2103 SW Heemstede, Dokter Denekampweg 20, 8025 BV, Zwolle, The Netherlands
| | - Eva H Brilstra
- Department of Medical Genetics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Judith S Verhoeven
- Academic Centre for Epileptology Kempenhaeghe, 5590AB Heeze, Heeze, The Netherlands
| | - J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health (ICH), 30 Guilford St, London, WC1N 1EH, UK
| | - Sanjay M Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Bucks, SL9 0RJ, UK
| | - Hanno L Tan
- Heart Centre, Department of Experimental and Clinical Cardiology, Amsterdam University Medical Centres, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Netherlands Heart Institute, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland - SEIN, Achterweg 5, 2103 SW Heemstede, Dokter Denekampweg 20, 8025 BV, Zwolle, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Bucks, SL9 0RJ, UK
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland - SEIN, Achterweg 5, 2103 SW Heemstede, Dokter Denekampweg 20, 8025 BV, Zwolle, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
17
|
Ufongene C, El Atrache R, Loddenkemper T, Meisel C. Electrocardiographic changes associated with epilepsy beyond heart rate and their utilization in future seizure detection and forecasting methods. Clin Neurophysiol 2020; 131:866-879. [PMID: 32066106 DOI: 10.1016/j.clinph.2020.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/22/2022]
Abstract
The ability to assess seizure risk may help provide timely warnings and more personalized treatment plans for people with epilepsy (PWE). ECG changes are commonly observed in epilepsy which make ECG a promising candidate to monitor seizure risk. Most ECG research in this domain has focused on heart rate-related changes. However, several studies have identified a range of other peri-ictal ECG parameter changes that may potentially prove useful for seizure detection and forecasting. Here, we offer a systematic review of ECG changes in epilepsy outside of heart rate. We performed the systematic literature review according to PRISMA guidelines using key words related to ECG, SUDEP and epilepsy. We identified and screened 502 abstracts, read 110 full papers, and included 24 papers in the final review. Our results suggest that PWE may be more prone to cardiac conduction abnormalities than healthy controls. During interictal periods, PWE were more likely to have abnormal QTc intervals, ST segment abnormalities, elevated T Waves, early repolarization (ER), increased P Wave dispersion and PR intervals when compared to controls. Apart from these baseline abnormalities, changes during the pre-ictal and ictal states have been reported, with arrhythmias, QTc prolongation and ST segment changes being the most common. A better understanding of these state-dependent changes may afford less-cumbersome and less-stigmatizing epilepsy monitoring tools in the future.
Collapse
|
18
|
Scheffer IE, Nabbout R. SCN1A‐related phenotypes: Epilepsy and beyond. Epilepsia 2019; 60 Suppl 3:S17-S24. [DOI: 10.1111/epi.16386] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ingrid E. Scheffer
- Departments of Medicine and Paediatrics Austin Health and Royal Children’s Hospital Florey and Murdoch Children’s Research Institute The University of Melbourne Melbourne VIC Australia
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies Department of Paediatric Neurology Necker Enfants Malades Hospital Imagine Institute U1163 Paris Descartes University Paris France
| |
Collapse
|
19
|
DeGiorgio CM, Curtis A, Hertling D, Moseley BD. Sudden unexpected death in epilepsy: Risk factors, biomarkers, and prevention. Acta Neurol Scand 2019; 139:220-230. [PMID: 30443951 DOI: 10.1111/ane.13049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is one of the most important direct epilepsy-related causes of death, with an incidence in adults of 1.2 per 1000 person-years. Generalized tonic-clonic seizures have consistently emerged as the leading risk factor for SUDEP, particularly when such seizures are uncontrolled. High seizure burden, lack of antiepileptic drug (AED) treatment, polytherapy, intellectual disability, and prone position at the time of death are other key risk factors. Unfortunately, despite advances in treatment, overall mortality rates in epilepsy are rising. It is imperative that we learn more about SUDEP so that effective prevention strategies can be implemented. To help identify persons at greater risk of SUDEP and in need of closer monitoring, biomarkers are needed. Candidate biomarkers include electrocardiographic, electroencephalographic, and imaging abnormalities observed more frequently in those who have died suddenly and unexpectedly. As our knowledge of the pathophysiologic mechanisms behind SUDEP has increased, various preventative measures have been proposed. These include lattice pillows, postictal oxygen therapy, selective serotonin reuptake inhibitors, and inhibitors of opiate and adenosine receptors. Unfortunately, no randomized clinical trials are available to definitively conclude these measures are effective. Rather, gaining the best control of seizures possible (with AEDs, devices, and resective surgery) still remains the intervention with the best evidence to reduce the risk of SUDEP. In this evidence-based review, we explore the incidence of SUDEP and review the risk factors, biomarkers, and latest prevention strategies.
Collapse
Affiliation(s)
| | - Ashley Curtis
- Undergraduate Interdepartmental Program for Neuroscience, UCLA Los Angeles California
| | - Dieter Hertling
- Undergraduate Interdepartmental Program for Neuroscience, UCLA Los Angeles California
| | - Brian D. Moseley
- Department of Neurology and Rehabilitation Medicine University of Cincinnati Cincinnati Ohio
| |
Collapse
|
20
|
Lyu SY, Nam SO, Lee YJ, Kim G, Kim YA, Kong J, Ko A, Kim YM, Yeon GM. Longitudinal change of cardiac electrical and autonomic function and potential risk factors in children with dravet syndrome. Epilepsy Res 2019; 152:11-17. [PMID: 30870727 DOI: 10.1016/j.eplepsyres.2019.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE This study aimed to investigate cardiac electrical and autonomic function, the longitudinal changes, and the associated risk factors in children with Dravet syndrome (DS). METHODS Twenty-four children with DS (11 boys, 13 girls; mean age, 7.2 ± 2.9 years) and 21 control subjects (9 boys, 12 girls; mean age, 8.2 ± 3.0 years) were enrolled in this study. P dispersion, QTc and QTc dispersion, and heart rate variability (HRV) were evaluated using standard electrocardiography and 24-hr Holter monitoring at the initial and follow-up study of the 6-12 months intervals. RESULTS The DS group had significantly higher P dispersion (p = 0.017), QT and QTc dispersion values (p < 0.001 for two parameters) than the control group. Most HRV parameters, such as SDNN (p < 0.001), SDANN5 (p < 0.001), SDANN-index (p = 0.001), and RMSSD (p = 0.006) were all significantly lower in the DS group than in the control group. The mean values of initial QTc, QTc dispersion, and HRV parameters showed significantly increase (QTc and QTc dispersion) and decrease (HRV) in the follow-up study (mean duration: 1.2 ± 0.5 years) in 13 DS children. ± On multivariate regression analysis, epilepsy duration had an independently significant effect for the longitudinal change of QTc, QTc dispersion, and HRV. CONCLUSIONS DS children had significant different values of cardiac electrical and autonomic function compared with control group. Particularly, longer duration of epilepsy was significantly negative effect on the longitudinal change of cardiac autonomic function.
Collapse
Affiliation(s)
- Soo Young Lyu
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Sang Ook Nam
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yun-Jin Lee
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| | - Geena Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Young A Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Juhyun Kong
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Ara Ko
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Young Mi Kim
- Department of Pediatrics, Pusan National University Hospital, Busan, Republic of Korea
| | - Gyu Min Yeon
- Department of Pediatrics, Kosin University Gospel Hospital, Kosin University, Busan, Republic of Korea
| |
Collapse
|
21
|
Autonomic aspects of sudden unexpected death in epilepsy (SUDEP). Clin Auton Res 2018; 29:151-160. [DOI: 10.1007/s10286-018-0576-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022]
|
22
|
Myers KA, Sivathamboo S, Perucca P. Heart rate variability measurement in epilepsy: How can we move from research to clinical practice? Epilepsia 2018; 59:2169-2178. [PMID: 30345509 DOI: 10.1111/epi.14587] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022]
Abstract
Our objective was to critically evaluate the literature surrounding heart rate variability (HRV) in people with epilepsy and to make recommendations as to how future research could be directed to facilitate and accelerate integration into clinical practice. We reviewed relevant HRV publications including those involving human subjects with seizures. HRV has been studied in patients with epilepsy for more than 30 years and, overall, patients with epilepsy display altered interictal HRV, suggesting a shift in autonomic balance toward sympathetic dominance. This derangement appears more severe in those with temporal lobe epilepsy and drug-resistant epilepsy. Normal diurnal variation in HRV is also disturbed in at least some people with epilepsy, but this aspect has received less study. Some therapeutic interventions, including vagus nerve stimulation and antiepileptic medications, may partially normalize altered HRV, but studies in this area are sometimes contradictory. During seizures, the changes in HRV may be complex, but the general trend is toward a further increase in sympathetic overactivity. Research in HRV in people with epilepsy has been limited by inconsistent experimental protocols and studies that are often underpowered. HRV measurement has the potential to aid clinical epilepsy management in several possible ways. HRV may be useful in predicting which patients are likely to benefit from surgical interventions such as vagus nerve stimulation and focal cerebral resection. As well, HRV could eventually have utility as a biomarker of risk for sudden unexpected death in epilepsy (SUDEP). However, at present, the inconsistent measurement protocols used in research are hindering translation into clinical practice. A minimum protocol for HRV evaluation, to be used in all studies involving epilepsy patients, is necessary to eventually allow HRV to become a useful tool for clinicians. We propose a straightforward protocol, involving 5-minute measurements of root mean square of successive differences in wakefulness and light sleep.
Collapse
Affiliation(s)
- Kenneth A Myers
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Child Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Shobi Sivathamboo
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Kim Y, Bravo E, Thirnbeck CK, Smith-Mellecker LA, Kim SH, Gehlbach BK, Laux LC, Zhou X, Nordli DR, Richerson GB. Severe peri-ictal respiratory dysfunction is common in Dravet syndrome. J Clin Invest 2018; 128:1141-1153. [PMID: 29329111 DOI: 10.1172/jci94999] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/04/2018] [Indexed: 11/17/2022] Open
Abstract
Dravet syndrome (DS) is a severe childhood-onset epilepsy commonly due to mutations of the sodium channel gene SCN1A. Patients with DS have a high risk of sudden unexplained death in epilepsy (SUDEP), widely believed to be due to cardiac mechanisms. Here we show that patients with DS commonly have peri-ictal respiratory dysfunction. One patient had severe and prolonged postictal hypoventilation during video EEG monitoring and died later of SUDEP. Mice with an Scn1aR1407X/+ loss-of-function mutation were monitored and died after spontaneous and heat-induced seizures due to central apnea followed by progressive bradycardia. Death could be prevented with mechanical ventilation after seizures were induced by hyperthermia or maximal electroshock. Muscarinic receptor antagonists did not prevent bradycardia or death when given at doses selective for peripheral parasympathetic blockade, whereas apnea, bradycardia, and death were prevented by the same drugs given at doses high enough to cross the blood-brain barrier. When given via intracerebroventricular infusion at a very low dose, a muscarinic receptor antagonist prevented apnea, bradycardia, and death. We conclude that SUDEP in patients with DS can result from primary central apnea, which can cause bradycardia, presumably via a direct effect of hypoxemia on cardiac muscle.
Collapse
Affiliation(s)
- YuJaung Kim
- Department of Neurology and.,Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - Se Hee Kim
- Division of Pediatric Neurology, Northwestern University, Chicago, Illinois, USA
| | | | - Linda C Laux
- Division of Pediatric Neurology, Northwestern University, Chicago, Illinois, USA
| | | | - Douglas R Nordli
- Division of Pediatric Neurology, Northwestern University, Chicago, Illinois, USA
| | - George B Richerson
- Department of Neurology and.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA.,Neurology Service, Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Büren C, Kamp MA, Munoz-Bendix C, Steiger HJ, Windolf J, Dibué-Adjei M. Can the combination of hyperthermia, seizures and ion channel dysfunction cause fatal post-ictal cerebral edema in patients with SCN1A mutations? EPILEPSY & BEHAVIOR CASE REPORTS 2017; 9:29-32. [PMID: 29692967 PMCID: PMC5913039 DOI: 10.1016/j.ebcr.2017.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 10/31/2022]
Abstract
A 21-year-old male with an SCN1A mutation died of cerebral herniation 3 h after a seizure occurring during physical activity. Cases of fatal cerebral edema in patients with SCN1A mutations after fever and status epilepticus have been recently reported raising the question whether sodium channel dysfunction may contribute to cerebral edema and thereby contribute to the increased premature mortality in Dravet Syndrome. We report on our patient and discuss whether the combination of hyperthermia and ion channel dysfunction may not only trigger seizures but also a fatal pathophysiological cascade of cerebral edema and herniation leading to cardiorespiratory collapse.
Collapse
Affiliation(s)
- Carina Büren
- Department for Trauma- and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Marcel Alexander Kamp
- Department for Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Christopher Munoz-Bendix
- Department for Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department for Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Joachim Windolf
- Department for Trauma- and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Maxine Dibué-Adjei
- Department for Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany.,LivaNova Deutschland GmbH (a LivaNova PLC-owned subsidiary), Lindberghstr 25, D-80939 Munich, Germany
| |
Collapse
|
25
|
Bagnall RD, Crompton DE, Semsarian C. Genetic Basis of Sudden Unexpected Death in Epilepsy. Front Neurol 2017; 8:348. [PMID: 28775708 PMCID: PMC5517398 DOI: 10.3389/fneur.2017.00348] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
People with epilepsy are at heightened risk of sudden death compared to the general population. The leading cause of epilepsy-related premature mortality is sudden unexpected death in epilepsy (SUDEP). Postmortem investigation of people with SUDEP, including histological and toxicological analysis, does not reveal a cause of death, and the mechanisms of SUDEP remain largely unresolved. In this review we present the possible mechanisms underlying SUDEP, including respiratory dysfunction, cardiac arrhythmia and postictal generalized electroencephlogram suppression. Emerging studies in humans and animal models suggest there may be an underlying genetic basis to SUDEP in some cases. We will highlight a mounting body of evidence for the involvement of genetic risk factors in SUDEP, with a particular focus on the role of cardiac arrhythmia genes in SUDEP.
Collapse
Affiliation(s)
- Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Douglas E Crompton
- Department of Neurology, Northern Health, Melbourne, VIC, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
26
|
Shmuely S, Sisodiya SM, Gunning WB, Sander JW, Thijs RD. Mortality in Dravet syndrome: A review. Epilepsy Behav 2016; 64:69-74. [PMID: 27732919 DOI: 10.1016/j.yebeh.2016.09.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Premature mortality is a major issue in Dravet syndrome (DS). To improve understanding of DS premature mortality, we conducted a comprehensive literature search with a particular emphasis on SUDEP. METHODS We searched PubMed, Embase, Web of Science, Cochrane, CENTRAL, CINAHL, PsycINFO, Academic Search Premier, and ScienceDirect on the following terms: "Dravet syndrome", "severe myoclonic epilepsy", "SMEI", "mortality", "survivors", "prognosis", and "death". DS cases or cohorts studies reporting mortality were included. RESULTS The search yielded 676 articles and 86 meeting abstracts. After removing duplicates and screening titles and abstracts, full text of 73 articles was reviewed. Only 28 articles and six meeting abstracts met inclusion criteria. Five articles and four meeting abstracts were excluded, as the case(s) were also described elsewhere. After checking the references, five additional studies were included. The 30 items reported 177 unique cases. Sudden unexpected death in epilepsy was the likely cause in nearly half of the cases (n=87, 49%), followed by status epilepticus (n=56, 32%). Drowning or accidental death was reported in 14 cases (8%), infections in 9 (5%), other causes in six (3%), and unknown in five (3%). Age at death was reported for 142 of the 177 cases (80%), with a mean age of 8.7±9.8years (SD); 73% died before the age of 10years. DISCUSSION Dravet syndrome is characterized by high epilepsy-related premature mortality and a marked young age at death. Sudden unexpected death in epilepsy is the leading reported cause of death in DS, accounting for nearly half of all deaths. The cause of this excess mortality remains elusive but may be explained by epilepsy severity, as well as genetic susceptibility to SUDEP.
Collapse
Affiliation(s)
- Sharon Shmuely
- Stichting Epilepsie Instellingen Nederland - SEIN, Heemstede & Zwolle, The Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Epilepsy Society, Bucks SL9 0RJ, UK
| | - Sanjay M Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Epilepsy Society, Bucks SL9 0RJ, UK
| | - W Boudewijn Gunning
- Stichting Epilepsie Instellingen Nederland - SEIN, Heemstede & Zwolle, The Netherlands; Department of Genetics, Centre for Molecular Medicine, University Medical Centre Utrecht, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland - SEIN, Heemstede & Zwolle, The Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Epilepsy Society, Bucks SL9 0RJ, UK
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland - SEIN, Heemstede & Zwolle, The Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Epilepsy Society, Bucks SL9 0RJ, UK; Department of Neurology, LUMC Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
27
|
The heart of epilepsy: Current views and future concepts. Seizure 2016; 44:176-183. [PMID: 27843098 DOI: 10.1016/j.seizure.2016.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular (CV) comorbidities are common in people with epilepsy. Several mechanisms explain why these conditions tend to co-exist including causal associations, shared risk factors and those resulting from epilepsy or its treatment. Various arrhythmias occurring during and after seizures have been described. Ictal asystole is the most common cause. The converse phenomenon, arrhythmias causing seizures, appears extremely rare and has only been reported in children following cardioinihibitory syncope. Arrhythmias in epilepsy may not only result from seizure activity but also from a shared genetic susceptibility. Various cardiac and epilepsy genes could be implicated but firm evidence is still lacking. Several antiepileptic drugs (AEDs) triggering conduction abnormalities can also explain the co-existence of arrhythmias in epilepsy. Epidemiological studies have consistently shown that people with epilepsy have a higher prevalence of structural cardiac disease and a poorer CV risk profile than those without epilepsy. Shared CV risk factors, genetics and etiological factors can account for a significant part of the relationship between epilepsy and structural cardiac disease. Seizure activity may cause transient myocardial ischaemia and the Takotsubo syndrome. Additionally, certain AEDs may themselves negatively affect CV risk profile in epilepsy. Here we discuss the fascinating borderland of epilepsy and cardiovascular conditions. The review focuses on epidemiology, clinical presentations and possible mechanisms for shared pathophysiology. It concludes with a discussion of future developments and a call for validated screening instruments and guidelines aiding the early identification and treatment of CV comorbidity in epilepsy.
Collapse
|
28
|
Devinsky O, Hesdorffer DC, Thurman DJ, Lhatoo S, Richerson G. Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention. Lancet Neurol 2016; 15:1075-88. [DOI: 10.1016/s1474-4422(16)30158-2] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/24/2022]
|
29
|
Goldman AM, Behr ER, Semsarian C, Bagnall RD, Sisodiya S, Cooper PN. Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention. Epilepsia 2016; 57 Suppl 1:17-25. [PMID: 26749013 DOI: 10.1111/epi.13232] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Abstract
Epidemiologic studies clearly document the public health burden of sudden unexpected death in epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in humans and in model systems have facilitated our current molecular understanding of SUDEP. Many discoveries have been informed by progress in the field of sudden cardiac death and sudden infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and prevention rests in international, collaborative, and transdisciplinary dialogue in human and experimental translational research of sudden death.
Collapse
Affiliation(s)
- Alica M Goldman
- Department of Neurology, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Elijah R Behr
- Cardiac Research Centre, ICCS, St George's University of London, London, United Kingdom
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sanjay Sisodiya
- Institute of Neurology, University College London, London, United Kingdom
| | - Paul N Cooper
- Department of Neurology, Greater Manchester Neurosciences Centre, Salford, United Kingdom.,University of Manchester, Manchester, United Kingdom
| |
Collapse
|
30
|
Gencpinar P, Kocabas A, Duman Ö, Dündar NO, Haspolat S, Kardelen F. Cardiac Autonomic Dysfunction in Patients With Infantile Spasm and the Effect of Adrenocorticotropic Hormone Treatment. J Child Neurol 2016; 31:134-7. [PMID: 25953826 DOI: 10.1177/0883073815583998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 04/01/2015] [Indexed: 11/16/2022]
Abstract
Infantile spasm is an age-dependent epileptic-encephalopathy syndrome. Cardiac autonomic function is frequently altered in epilepsy. In this study, we examined heart rate variability in patients with infantile spasm before and after treatment. Nineteen patients with infantile spasm and 13 healthy comparisons were enrolled in the study. Cardiac rhythm was recorded with a Holter device for 24 hours before adrenocorticotropic hormone (ACTH) (Synacthen depot) and B6 vitamin administration and 1 month after treatment. Heart rate variability analysis found lower heart rate variability parameters in patients with infantile spasm at the onset of the syndrome, prior to treatment with ACTH. The time domain parameters of heart rate variability values showed a statistically significant increase following ACTH treatment. Our data suggest that patients with infantile spasm exhibit lower heart rate variability parameters, and the treatment of spasms with ACTH and B6 together diminished the autonomic dysfunction in our cohort.
Collapse
Affiliation(s)
- Pinar Gencpinar
- Department of Pediatric Neurology, Akdeniz University Hospital, Antalya, Turkey
| | - Abdullah Kocabas
- Department of Pediatric Cardiology, Ankara Children's Hematology and Oncology Research and Training Hospital, Ankara, Turkey
| | - Özgür Duman
- Department of Pediatric Neurology, Akdeniz University Hospital, Antalya, Turkey
| | - Nihal Olgaç Dündar
- Department of Pediatric Neurology, Katip Çelebi University Hospital, İzmir, Turkey
| | - Senay Haspolat
- Department of Pediatric Neurology, Akdeniz University Hospital, Antalya, Turkey
| | - Fırat Kardelen
- Department of Pediatric Cardiology, Akdeniz University Hospital, Antalya, Turkey
| |
Collapse
|
31
|
Jaffer F, Avbersek A, Vavassori R, Fons C, Campistol J, Stagnaro M, De Grandis E, Veneselli E, Rosewich H, Gianotta M, Zucca C, Ragona F, Granata T, Nardocci N, Mikati M, Helseth AR, Boelman C, Minassian BA, Johns S, Garry SI, Scheffer IE, Gourfinkel-An I, Carrilho I, Aylett SE, Parton M, Hanna MG, Houlden H, Neville B, Kurian MA, Novy J, Sander JW, Lambiase PD, Behr ER, Schyns T, Arzimanoglou A, Cross JH, Kaski JP, Sisodiya SM. Faulty cardiac repolarization reserve in alternating hemiplegia of childhood broadens the phenotype. Brain 2015; 138:2859-74. [PMID: 26297560 PMCID: PMC4671482 DOI: 10.1093/brain/awv243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/30/2015] [Indexed: 12/29/2022] Open
Abstract
Alternating hemiplegia of childhood is a rare disorder caused by de novo mutations in the ATP1A3 gene, expressed in neurons and cardiomyocytes. As affected individuals may survive into adulthood, we use the term 'alternating hemiplegia'. The disorder is characterized by early-onset, recurrent, often alternating, hemiplegic episodes; seizures and non-paroxysmal neurological features also occur. Dysautonomia may occur during hemiplegia or in isolation. Premature mortality can occur in this patient group and is not fully explained. Preventable cardiorespiratory arrest from underlying cardiac dysrhythmia may be a cause. We analysed ECG recordings of 52 patients with alternating hemiplegia from nine countries: all had whole-exome, whole-genome, or direct Sanger sequencing of ATP1A3. Data on autonomic dysfunction, cardiac symptoms, medication, and family history of cardiac disease or sudden death were collected. All had 12-lead electrocardiogram recordings available for cardiac axis, cardiac interval, repolarization pattern, and J-point analysis. Where available, historical and prolonged single-lead electrocardiogram recordings during electrocardiogram-videotelemetry were analysed. Half the cohort (26/52) had resting 12-lead electrocardiogram abnormalities: 25/26 had repolarization (T wave) abnormalities. These abnormalities were significantly more common in people with alternating hemiplegia than in an age-matched disease control group of 52 people with epilepsy. The average corrected QT interval was significantly shorter in people with alternating hemiplegia than in the disease control group. J wave or J-point changes were seen in six people with alternating hemiplegia. Over half the affected cohort (28/52) had intraventricular conduction delay, or incomplete right bundle branch block, a much higher proportion than in the normal population or disease control cohort (P = 0.0164). Abnormalities in alternating hemiplegia were more common in those ≥16 years old, compared with those <16 (P = 0.0095), even with a specific mutation (p.D801N; P = 0.045). Dynamic, beat-to-beat or electrocardiogram-to-electrocardiogram, changes were noted, suggesting the prevalence of abnormalities was underestimated. Electrocardiogram changes occurred independently of seizures or plegic episodes. Electrocardiogram abnormalities are common in alternating hemiplegia, have characteristics reflecting those of inherited cardiac channelopathies and most likely amount to impaired repolarization reserve. The dynamic electrocardiogram and neurological features point to periodic systemic decompensation in ATP1A3-expressing organs. Cardiac dysfunction may account for some of the unexplained premature mortality of alternating hemiplegia. Systematic cardiac investigation is warranted in alternating hemiplegia of childhood, as cardiac arrhythmic morbidity and mortality are potentially preventable.
Collapse
Affiliation(s)
- Fatima Jaffer
- 1 MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Andreja Avbersek
- 3 NIHR UCLH Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK 4 Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Rosaria Vavassori
- 5 A.I.S.EA Onlus, Via Sernovella, 37 - Verderio Superiore, 23878 Lecco, Italy
| | - Carmen Fons
- 6 Paediatric Neurology Department, Hospital Sant Joan de Déu, P° de Sant Joan de Déu, 2 08950 Esplugues de Llobregat, Barcelona University, Barcelona, Spain
| | - Jaume Campistol
- 6 Paediatric Neurology Department, Hospital Sant Joan de Déu, P° de Sant Joan de Déu, 2 08950 Esplugues de Llobregat, Barcelona University, Barcelona, Spain
| | - Michela Stagnaro
- 7 Child Neuropsychiatry Unit, Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, Istituto Giannina Gaslini, Largo Gaslini 5, 26148, University of Genoa, Genoa, Italy
| | - Elisa De Grandis
- 7 Child Neuropsychiatry Unit, Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, Istituto Giannina Gaslini, Largo Gaslini 5, 26148, University of Genoa, Genoa, Italy
| | - Edvige Veneselli
- 7 Child Neuropsychiatry Unit, Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, Istituto Giannina Gaslini, Largo Gaslini 5, 26148, University of Genoa, Genoa, Italy
| | - Hendrik Rosewich
- 8 University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Georg August University, Robert Koch Strasse 40, 37099 Göttingen, Germany
| | - Melania Gianotta
- 9 Child Neurology Unit IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 3, 40139 Bologna, Italy
| | - Claudio Zucca
- 10 Clinical Neurophysiology Unit, IRCCS "E. Medea", Via Don L. Monza 20, 23842 Bosisio Parini (LC), Italy
| | - Francesca Ragona
- 11 Department of Pediatric Neuroscience, IRCCS Foundation Neurological Institute C. Besta, Via Celoria 11, 20133 Milano, Italy
| | - Tiziana Granata
- 11 Department of Pediatric Neuroscience, IRCCS Foundation Neurological Institute C. Besta, Via Celoria 11, 20133 Milano, Italy
| | - Nardo Nardocci
- 11 Department of Pediatric Neuroscience, IRCCS Foundation Neurological Institute C. Besta, Via Celoria 11, 20133 Milano, Italy
| | - Mohamed Mikati
- 12 Division of Paediatric Neurology, Duke University, T0913J Children Health Centre, Duke University Medical Centre, Durham, USA
| | - Ashley R Helseth
- 12 Division of Paediatric Neurology, Duke University, T0913J Children Health Centre, Duke University Medical Centre, Durham, USA
| | - Cyrus Boelman
- 13 Division of Neurology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, 555 University Avenue, Toronto, Ontario, Canada, M5G 1X8
| | - Berge A Minassian
- 13 Division of Neurology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, 555 University Avenue, Toronto, Ontario, Canada, M5G 1X8
| | - Sophia Johns
- 14 Inherited Cardiovascular Diseases Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, and Institute of Cardiovascular Science, University College London, London, WC1N 3JH, UK
| | - Sarah I Garry
- 15 Florey Institute of Neurosciences and Mental Health, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Ingrid E Scheffer
- 15 Florey Institute of Neurosciences and Mental Health, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Isabelle Gourfinkel-An
- 16 Centre de reference epilepsies rares et Sclérose tubéreuse de Bourneville (site Parisien adolescents-adultes), Hôpital Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital 75651 Paris cedex 13, France
| | - Ines Carrilho
- 17 Neuropediatric Department Centro Hospitalar do Porto, Rua da Boavista, 8274050-111, Porto, Portugal
| | - Sarah E Aylett
- 18 Clinical Neurosciences, Developmental Neuroscience Programme, UCL Institute of Child Health, & Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Matthew Parton
- 1 MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Michael G Hanna
- 1 MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Brian Neville
- 18 Clinical Neurosciences, Developmental Neuroscience Programme, UCL Institute of Child Health, & Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Manju A Kurian
- 19 Molecular Neurosciences, Developmental Neurosciences Programme, UCL Institute of Child Health and Department of Neurology, Great Ormond Street Hospital, London, London, WC1N 3JH, UK
| | - Jan Novy
- 3 NIHR UCLH Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK 4 Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Josemir W Sander
- 3 NIHR UCLH Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK 4 Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Pier D Lambiase
- 20 Department of Cardiac Electrophysiology, The Heart Hospital, Institute of Cardiovascular Science, University College London, 16-18 Westmoreland St, London W1G 8PH, UK
| | - Elijah R Behr
- 21 Cardiac and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Tsveta Schyns
- 22 European Network for Research on Alternating Hemiplegia, ENRAH, Brussels, Belgium
| | - Alexis Arzimanoglou
- 23 Epilepsy, Sleep and Paediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), and DYCOG team, Lyon Neuroscience Research Centre (CRNL), INSERM U1028; CNRS UMR 5292, Lyon, France
| | - J Helen Cross
- 18 Clinical Neurosciences, Developmental Neuroscience Programme, UCL Institute of Child Health, & Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK 24 Young Epilepsy, St. Piers Lane, Lingfield, Surrey RH7 6PW, UK
| | - Juan P Kaski
- 14 Inherited Cardiovascular Diseases Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, and Institute of Cardiovascular Science, University College London, London, WC1N 3JH, UK
| | - Sanjay M Sisodiya
- 3 NIHR UCLH Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK 4 Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Human and experimental research has identified cardioautonomic and respiratory dysfunction as a frequent accompaniment in human and animal model events of sudden unexpected death in epilepsy (SUDEP). This review aims to provide an overview of the scientific evidence behind the currently accepted risk factors and working hypotheses regarding SUDEP pathophysiology. RECENT FINDINGS Epidemiological analysis of public health burden of SUDEP has shown that it rates second only to stroke in the years of potential life lost. Clinical and experimental studies uncovered the dynamic cardiorespiratory dysfunction interictally and imminently to SUDEP, and model systems have facilitated discoveries in SUDEP mechanistic understanding and application of pilot therapeutic interventions. Pilot molecular profiling of human SUDEP has uncovered complex genomic structure in the candidate gene network. SUMMARY Extensive clinical and experimental work has established a rationale for the conceptual thinking about SUDEP mechanisms. The application of the global molecular profiling will be invaluable in unraveling the individually unique genomic complexities and interactions that underlie the physiological signature of each patient. At the same time, sophisticated model systems will be critical in the iterative translation of human genetics, physiology, pharmacological interventions, and in testing preventive interventions.
Collapse
Affiliation(s)
- Alica M Goldman
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
33
|
|
34
|
Genomic biomarkers of SUDEP in brain and heart. Epilepsy Behav 2014; 38:172-9. [PMID: 24139807 PMCID: PMC3989471 DOI: 10.1016/j.yebeh.2013.09.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 01/22/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality, but how to predict which patients are at risk and how to prevent it remain uncertain. The underlying pathomechanisms of SUDEP are still largely unknown, but the general consensus is that seizures somehow disrupt normal cardiac or respiratory physiology leading to death. However, the proportion of SUDEP cases exhibiting cardiac or respiratory dysfunction as a critical factor in the terminal cascade of events remains unresolved. Although many general risk factors for SUDEP have been identified, the development of reliable patient-specific biomarkers for SUDEP is needed to provide more accurate risk prediction and personalized patient management strategies. Studies in animal models and patient groups have revealed at least nine different brain-heart genes that may contribute to a genetic susceptibility for SUDEP, making them potentially useful as genomic biomarkers. This review summarizes data on the relationship between these neurocardiac genes and SUDEP, discussing their brain-heart expression patterns and genotype-phenotype correlations in mouse models and people with epilepsy. These neurocardiac genes represent good first candidates for evaluation as genomic biomarkers of SUDEP in future studies. The development of validated reliable genomic biomarkers for SUDEP has the potential to transform the clinical treatment of epilepsy by pinpointing patients at risk of SUDEP and allowing optimized, genotype-guided therapeutic and prevention strategies.
Collapse
|
35
|
Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome. PLoS One 2013; 8:e77843. [PMID: 24155976 PMCID: PMC3796479 DOI: 10.1371/journal.pone.0077843] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/04/2013] [Indexed: 12/04/2022] Open
Abstract
Objective Dravet syndrome is a severe form of intractable pediatric epilepsy with a high incidence of SUDEP: Sudden Unexpected Death in epilepsy. Cardiac arrhythmias are a proposed cause for some cases of SUDEP, yet the susceptibility and potential mechanism of arrhythmogenesis in Dravet syndrome remain unknown. The majority of Dravet syndrome patients have denovo mutations in SCN1A, resulting in haploinsufficiency. We propose that, in addition to neuronal hyperexcitability, SCN1A haploinsufficiency alters cardiac electrical function and produces arrhythmias, providing a potential mechanism for SUDEP. Methods Postnatal day 15-21 heterozygous SCN1A-R1407X knock-in mice, expressing a human Dravet syndrome mutation, were used to investigate a possible cardiac phenotype. A combination of single cell electrophysiology and invivo electrocardiogram (ECG) recordings were performed. Results We observed a 2-fold increase in both transient and persistent Na+ current density in isolated Dravet syndrome ventricular myocytes that resulted from increased activity of a tetrodotoxin-resistant Na+ current, likely Nav1.5. Dravet syndrome myocytes exhibited increased excitability, action potential duration prolongation, and triggered activity. Continuous radiotelemetric ECG recordings showed QT prolongation, ventricular ectopic foci, idioventricular rhythms, beat-to-beat variability, ventricular fibrillation, and focal bradycardia. Spontaneous deaths were recorded in 2 DS mice, and a third became moribund and required euthanasia. Interpretation These data from single cell and whole animal experiments suggest that altered cardiac electrical function in Dravet syndrome may contribute to the susceptibility for arrhythmogenesis and SUDEP. These mechanistic insights may lead to critical risk assessment and intervention in human patients.
Collapse
|