1
|
Derdelinckx J, Nkansah I, Ooms N, Van Bruggen L, Emonds MP, Daniëls L, Reynders T, Willekens B, Cras P, Berneman ZN, Cools N. HLA Class II Genotype Does Not Affect the Myelin Responsiveness of Multiple Sclerosis Patients. Cells 2020; 9:cells9122703. [PMID: 33348629 PMCID: PMC7766454 DOI: 10.3390/cells9122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
Background: When aiming to restore myelin tolerance using antigen-specific treatment approaches in MS, the wide variety of myelin-derived antigens towards which immune responses are targeted in multiple sclerosis (MS) patients needs to be taken into account. Uncertainty remains as to whether the myelin reactivity pattern of a specific MS patient can be predicted based upon the human leukocyte antigen (HLA) class II haplotype of the patient. Methods: In this study, we analyzed the reactivity towards myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP) and proteolipid protein (PLP) peptides using direct interferon (IFN)-γ enzyme-linked immune absorbent spot (ELISPOT). Next, the HLA class II haplotype profile was determined by next-generation sequencing. In doing so, we aimed to evaluate the possible association between the precursor frequency of myelin-reactive T cells and the HLA haplotype. Results: Reactivity towards any of the analyzed peptides could be demonstrated in 65.0% (13/20) of MS patients and in 60.0% (6/10) of healthy controls. At least one of the MS risk alleles HLA-DRB1*15:01, HLA-DQA1*01:02 and HLA-DQB1*06:02 was found in 70.0% (14/20) of patients and in 20.0% (2/10) of healthy controls. No difference in the presence of a myelin-specific response, nor in the frequency of myelin peptide-reactive precursor cells could be detected among carriers and non-carriers of these risk alleles. Conclusion: No association between HLA haplotype and myelin reactivity profile was present in our study population. This complicates the development of antigen-specific treatment approaches and implies the need for multi-epitope targeting in an HLA-unrestricted manner to fully address the wide variation in myelin responses and HLA profiles in a heterogeneous group of MS patients.
Collapse
Affiliation(s)
- Judith Derdelinckx
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
- Division of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium; (T.R.); (P.C.)
- Correspondence: ; Tel.: +32-3-821-3584; Fax: +32-3-825-1148
| | - Irene Nkansah
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
| | - Naomi Ooms
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
| | - Laura Van Bruggen
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
| | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, 2650 Mechelen, Belgium; (M.-P.E.); (L.D.)
| | - Liesbeth Daniëls
- Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, 2650 Mechelen, Belgium; (M.-P.E.); (L.D.)
| | - Tatjana Reynders
- Division of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium; (T.R.); (P.C.)
| | - Barbara Willekens
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
- Division of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium; (T.R.); (P.C.)
| | - Patrick Cras
- Division of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium; (T.R.); (P.C.)
- Born Bunge Institute, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Zwi N. Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
2
|
Deeba E, Koptides D, Lambrianides A, Pantzaris M, Krashias G, Christodoulou C. Complete sequence analysis of human toll-like receptor 3 gene in natural killer cells of multiple sclerosis patients. Mult Scler Relat Disord 2019; 33:100-106. [PMID: 31177052 DOI: 10.1016/j.msard.2019.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) where both environmental and genetic risk factors play a role. Among the environmental risk factors, EBV and HSV infections have been suggested as strong candidates contributing to MS pathology/progression. Viral recognition and control is largely tasked to the NK cells via TLR recognition and various cytotoxic and immunoregulatory functions. The present work aimed to characterize NK cells isolated from MS patients for genetic polymorphisms in the gene encoding for TLR3, as TLR3 in NK cells is important in herpesvirus recognition. METHODS Highly purified NK cells isolated from peripheral blood of MS patients (n = 27) and healthy controls (n = 30) were used to sequence all five exons of the TLR3 gene using sanger sequencing. Alignment of the obtained sequences with the wild-type TLR3 sequence was used to identify genetic polymorphisms within the TLR3 gene. RESULTS The alignment identified multiple substitution mutations across the five exons of the TLR3 gene (rs116729895, rs3775296, rs377529, rs3775290, rs3775291, rs376735334 and rs73873710). A significant difference was observed in the allele distribution of rs3775291 (Leu412Phe) between MS patients and HC, whereby the minor allele was detected in 38.9% of MS patients versus 11% of HC (Fisher's exact test, p = 0.021). CONCLUSION There appears to be a possible association between the TLR3 missense mutation rs3775291 and multiple sclerosis, which might be attributed to changes in the TLR3 functional properties.
Collapse
Affiliation(s)
- Elie Deeba
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Dana Koptides
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anastasia Lambrianides
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Pantzaris
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George Krashias
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | - Christina Christodoulou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
4
|
Steele NZR, Carr JS, Bonham LW, Geier EG, Damotte V, Miller ZA, Desikan RS, Boehme KL, Mukherjee S, Crane PK, Kauwe JSK, Kramer JH, Miller BL, Coppola G, Hollenbach JA, Huang Y, Yokoyama JS. Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: A case-control study. PLoS Med 2017; 14:e1002272. [PMID: 28350795 PMCID: PMC5369701 DOI: 10.1371/journal.pmed.1002272] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Alzheimer disease (AD) is a progressive disorder that affects cognitive function. There is increasing support for the role of neuroinflammation and aberrant immune regulation in the pathophysiology of AD. The immunoregulatory human leukocyte antigen (HLA) complex has been linked to susceptibility for a number of neurodegenerative diseases, including AD; however, studies to date have failed to consistently identify a risk HLA haplotype for AD. Contributing to this difficulty are the complex genetic organization of the HLA region, differences in sequencing and allelic imputation methods, and diversity across ethnic populations. METHODS AND FINDINGS Building on prior work linking the HLA to AD, we used a robust imputation method on two separate case-control cohorts to examine the relationship between HLA haplotypes and AD risk in 309 individuals (191 AD, 118 cognitively normal [CN] controls) from the San Francisco-based University of California, San Francisco (UCSF) Memory and Aging Center (collected between 1999-2015) and 11,381 individuals (5,728 AD, 5,653 CN controls) from the Alzheimer's Disease Genetics Consortium (ADGC), a National Institute on Aging (NIA)-funded national data repository (reflecting samples collected between 1984-2012). We also examined cerebrospinal fluid (CSF) biomarker measures for patients seen between 2005-2007 and longitudinal cognitive data from the Alzheimer's Disease Neuroimaging Initiative (n = 346, mean follow-up 3.15 ± 2.04 y in AD individuals) to assess the clinical relevance of identified risk haplotypes. The strongest association with AD risk occurred with major histocompatibility complex (MHC) haplotype A*03:01~B*07:02~DRB1*15:01~DQA1*01:02~DQB1*06:02 (p = 9.6 x 10-4, odds ratio [OR] [95% confidence interval] = 1.21 [1.08-1.37]) in the combined UCSF + ADGC cohort. Secondary analysis suggested that this effect may be driven primarily by individuals who are negative for the established AD genetic risk factor, apolipoprotein E (APOE) ɛ4. Separate analyses of class I and II haplotypes further supported the role of class I haplotype A*03:01~B*07:02 (p = 0.03, OR = 1.11 [1.01-1.23]) and class II haplotype DRB1*15:01- DQA1*01:02- DQB1*06:02 (DR15) (p = 0.03, OR = 1.08 [1.01-1.15]) as risk factors for AD. We followed up these findings in the clinical dataset representing the spectrum of cognitively normal controls, individuals with mild cognitive impairment, and individuals with AD to assess their relevance to disease. Carrying A*03:01~B*07:02 was associated with higher CSF amyloid levels (p = 0.03, β ± standard error = 47.19 ± 21.78). We also found a dose-dependent association between the DR15 haplotype and greater rates of cognitive decline (greater impairment on the 11-item Alzheimer's Disease Assessment Scale cognitive subscale [ADAS11] over time [p = 0.03, β ± standard error = 0.7 ± 0.3]; worse forgetting score on the Rey Auditory Verbal Learning Test (RAVLT) over time [p = 0.02, β ± standard error = -0.2 ± 0.06]). In a subset of the same cohort, dose of DR15 was also associated with higher baseline levels of chemokine CC-4, a biomarker of inflammation (p = 0.005, β ± standard error = 0.08 ± 0.03). The main study limitations are that the results represent only individuals of European-ancestry and clinically diagnosed individuals, and that our study used imputed genotypes for a subset of HLA genes. CONCLUSIONS We provide evidence that variation in the HLA locus-including risk haplotype DR15-contributes to AD risk. DR15 has also been associated with multiple sclerosis, and its component alleles have been implicated in Parkinson disease and narcolepsy. Our findings thus raise the possibility that DR15-associated mechanisms may contribute to pan-neuronal disease vulnerability.
Collapse
Affiliation(s)
- Natasha Z. R. Steele
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jessie S. Carr
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Luke W. Bonham
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ethan G. Geier
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Vincent Damotte
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Zachary A. Miller
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Rahul S. Desikan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, United States of America
| | - Kevin L. Boehme
- Brigham Young University, Provo, Utah, United States of America
| | - Shubhabrata Mukherjee
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Paul K. Crane
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | | | - Joel H. Kramer
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Bruce L. Miller
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Giovanni Coppola
- Departments of Neurology and Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Yadong Huang
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Jennifer S. Yokoyama
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|