1
|
Savaliya BF, Kim S, Veltman T, Trott DJ. Comparison of the in vitro antibiofilm activities of otic cleansers against canine otitis externa pathogens. Vet Dermatol 2025; 36:148-158. [PMID: 39976169 PMCID: PMC11885093 DOI: 10.1111/vde.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/27/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Biofilm production by canine otitis externa (COE) pathogens and resistance development to multiple antimicrobials are commonly reported problems in veterinary practice. The use of adjuvants to disrupt biofilms may be a viable adjunctive therapy. HYPOTHESIS/OBJECTIVES To compare the in vitro antibiofilm activity against COE pathogens of three otic cleansers: PHMB-EDTA (poly [hexamethylene] biguanide hydrochloride and disodium edetate), N-acetylcysteine (NAC) and Triz-EDTA. ANIMALS/ISOLATES Thirty isolates of each species, including Staphylococcus pseudintermedius, Pseudomonas aeruginosa, Streptococcus canis, Proteus mirabilis, Escherichia coli, and Malassezia pachydermatis, were collected from COE cases and stored at -80°C until tested. METHODS AND MATERIALS Biofilm production was determined by Congo-red agar and microtitre plate-assay methods. Ten of the best biofilm-producing isolates per species were selected to determine minimum biofilm eradication concentration (MBEC) values. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined to compare MBEC/MIC and MBEC/MBC. RESULTS PHMB-EDTA possessed antibiofilm activity at low concentrations (MBEC range 3.9/2.3-500/300 μg/mL) against all tested COE pathogens. NAC demonstrated antibiofilm activity for all tested bacterial COE pathogens (MBEC range 4,925-19,700 μg/mL); however, most M. pachydermatis isolates exhibited MBEC values >20,000 μg/mL. Triz/EDTA at the highest concentration tested (3,025/19,520 μg/mL) did not demonstrate antibiofilm activity against most COE pathogens except for S. canis (94.5/610 μg/mL). CONCLUSIONS AND CLINICAL RELEVANCE PHMB-EDTA had intrinsic antibiofilm activity at low concentrations against all COE pathogens. Therefore, it is likely to be a very effective adjuvant when used in conjunction with other antimicrobials for the treatment of COE caused by biofilm-producing pathogens.
Collapse
Affiliation(s)
- Bhumika F. Savaliya
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| | - Sorae Kim
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| | - Tania Veltman
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| |
Collapse
|
2
|
Manzanelli FA, Clemente CM, Campagno LP, Beltramo DM, Robledo SM, Ravetti S, Garro AG. Sodium ibuprofenate: antibacterial activities and potential β-lactamase inhibition in critical Gram-negative bacteria. Future Microbiol 2025; 20:395-407. [PMID: 40059403 PMCID: PMC11980465 DOI: 10.1080/17460913.2025.2475639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025] Open
Abstract
AIMS To evaluate the antibacterial and antibiofilm activities of sodium ibuprofenate (NaI) and its hypertonic variant (NaIHS) against multidrug-resistant Gram-negative bacteria (MDR-GNB) and explore their potential to inhibit β-lactamase enzymes. METHODS Antibacterial activity was assessed using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill assays. Antibiofilm activity was evaluated by measuring bacterial viability and biomass reduction in preformed biofilms. Scanning electron microscopy (SEM) was used to observe membrane effects. Molecular docking and molecular dynamics simulations were conducted to analyze the binding affinity of ibuprofen to the active sites of β-lactamases (CTX-M-15, KPC-2, OXA-23). RESULTS NaI exhibited bactericidal activity at concentrations of 25-75 mm, with Acinetobacter baumannii being the most susceptible. NaCl (≥0.5 M) enhanced bactericidal efficacy and lowered MBCs. Time-kill assays indicated rapid bacterial eradication within 2 hours, with NaIHS achieving similar results at lower concentrations. SEM confirmed membrane disruption. Both formulations reduced bacterial viability in biofilms, with NaIHS showing greater efficiency. In silico studies suggest ibuprofen may inhibit β-lactamases, with enhanced interactions in saline environments. CONCLUSION Sodium ibuprofenate, particularly in its hypertonic form, demonstrates strong antibacterial, antibiofilm, and potential β-lactamase inhibitory activity, making it a promising candidate for treating MDR-GNB infections.
Collapse
Affiliation(s)
- Franco A. Manzanelli
- Centro de Investigaciones y Transferencia de Villa María (CIT VM), Villa María, Argentina
| | - Camila M. Clemente
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad de Buenos Aires, Argentina
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Luciana P. Campagno
- Facultad de Ciencias Químicas,Universidad Nacional de Córdoba, UNITEFA, CONICET, Córdoba, Argentina
| | - Dante M. Beltramo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sara M. Robledo
- PECET-Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Soledad Ravetti
- Centro de Investigaciones y Transferencia de Villa María (CIT VM), Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Ariel G. Garro
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Villa María, Argentina
- Ministerio de Producción, Ciencia e Innovación Tecnológica de la Provincia de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Rosdee S, Wisessombat S, Tayeh M, Malakul R, Phanaksri T, Sianglum W. Antibacterial activity of the endophytic fungal extracts and synergistic effects of combinations of ethylenediaminetetraacetic acid (EDTA) against Pseudomonas aeruginosa and Escherichia coli. PeerJ 2025; 13:e19074. [PMID: 40061225 PMCID: PMC11890036 DOI: 10.7717/peerj.19074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/10/2025] [Indexed: 05/13/2025] Open
Abstract
The growing threat of antibiotic resistance in bacteria is a critical public health concern. Combining natural compounds with antimicrobial agents is an alternative approach to improve the antibacterial efficacy and safety of these agents. The strategy is to restore the effectiveness of existing antibiotics while minimizing the required concentrations of antibiotics or antimicrobial agents. This study aimed to isolate the endophytic fungi from medicinal plants, including Lantana camara, Orthosiphon aristatus, Mansonia gagei, Terminalia bellirica, Oroxylum indicum, Elaeagnus latifolia, Talinum paniculatum, and Capsicum annuum, and evaluate the combined antibacterial efficacy with selected antibiotics or ethylenediaminetetraacetic acid (EDTA) against Pseudomonas aeruginosa. The antimicrobial activity of the extracts was assessed using agar well diffusion and broth microdilution methods. The minimum inhibitory concentration (MIC) values of the extracts were 32-64 µg/mL against Escherichia coli, and 512-2,048 µg/mL against P. aeruginosa, respectively. Time-kill assays demonstrated the bacteriostatic effect of the extracts. The checkerboard microbroth dilution method was performed to determine the synergistic effect between endophytic fungal extracts and antibiotics or EDTA. The synergistic effect was observed in the extractions of endophytic fungi isolated from M. gagei, T. bellirica, O. indicum, E. latifolia, T. paniculatum, and C. annuum combined with EDTA against P. aeruginosa. Combinations of endophytic fungi with EDTA, which exhibited a synergistic effect, demonstrated bactericidal action against Gram-negative bacteria. The present study suggests that combining endophytic fungal extracts and EDTA could be an essential strategy for combating pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Sirirak Rosdee
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sueptrakool Wisessombat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Malatee Tayeh
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Ramitanun Malakul
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Teva Phanaksri
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Wipawadee Sianglum
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
4
|
Leitão MM, Gonçalves ASC, Moreira J, Fernandes C, Borges F, Simões M, Borges A. Unravelling the potential of natural chelating agents in the control of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Eur J Med Chem 2025; 283:117163. [PMID: 39700872 DOI: 10.1016/j.ejmech.2024.117163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Iron is essential for the formation, maturation and dispersal of bacterial biofilms, playing a crucial role in the physiological and metabolic functions of bacteria as well as in the regulation of virulence. Limited availability of iron can impair the formation of robust biofilms by altering cellular motility, hydrophobicity and protein composition of the bacterial surface. In this study, the antibiofilm activity of two natural iron chelating agents, kojic acid (5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) and maltol (3-hydroxy-2-methyl-4-pyrone), were investigated against Staphylococcus aureus and Pseudomonas aeruginosa. In addition, the ability of these 2-hydroxy-4-pyrone derivatives in preventing and eradicating S. aureus and P. aeruginosa biofilms through the enhancement of the efficacy of two antibiotics (tobramycin and ciprofloxacin) was explored. The iron binding capacity of the kojic acid and maltol was confirmed by their affinity for iron (III) which was found to be about 90 %, comparable to the regular chelating agent ethylenediaminetetraacetic acid (EDTA, 89 %). The antibiofilm efficacy of 2-hydroxy-4-pyrone derivatives, alone and in combination with antibiotics, was evaluated by measuring the total biomass, metabolic activity, and culturability of biofilm cells. Furthermore, their impact on the membrane integrity of S. aureus biofilm cells was investigated using flow cytometry and epifluorescence microscopy with propidium iodide staining. It was also examined the ability of 2-hydroxy-4-pyrone derivatives and 2-hydroxy-4-pyrone derivate-antibiotic dual-combinations in inhibiting the production of virulence factors (total proteases, lipases, gelatinases and siderophores) by S. aureus. Regarding biofilm formation, the results showed that 2-hydroxy-4-pyrone derivatives alone reduced the metabolic activity of S. aureus biofilm cells by over 40 %. When combined with tobramycin, a 2-log (CFU cm-2) reduction in S. aureus biofilm cells was observed. Moreover, the combination of maltol and kojic acid with ciprofloxacin prevented P. aeruginosa biomass production by 60 %, compared to 36 % with ciprofloxacin alone. In pre-established S. aureus and P. aeruginosa biofilms, selected compounds reduced the metabolic activity by over 75 %, and a 3-log (CFU cm-2) reduction in the culturability of biofilm cells was noted when kojic acid and maltol were combined with antibiotics. Moreover, 2-hydroxy-4-pyrone derivatives alone and in combination with tobramycin, damaged the cell membranes of pre-established biofilms and completely inhibited total proteases production. Despite the increasing of reactive oxygen species production caused by the cellular treatment of maltol, both 2-hydroxy-4-pyrone derivatives showed good safe profile when tested in human hepatocarcinoma (HepG2) cells. The pre-treatment of HepG2 cells with both compounds was crucial to prevent the cellular damage caused by iron (III). This study demonstrates for the first time that the selected 2-hydroxy-4-pyrone derivatives significantly enhance the antibiofilm activity of tested antibiotics against S. aureus and P. aeruginosa, highlighting their potential as antibiotic adjuvants in preventing and eradicating biofilm-related infections.
Collapse
Affiliation(s)
- Miguel M Leitão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007 Porto, Portugal
| | - Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - Joana Moreira
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007 Porto, Portugal
| | - Carlos Fernandes
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007 Porto, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQ-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQ-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal.
| |
Collapse
|
5
|
Furujo T, Ito N, Harada K, Sakata I, Osaki T. In Vitro Efficacy of Photodynamic Antimicrobial Chemotherapy with TONS504 Using Blue Light Against Pseudomonas aeruginosa. Yonago Acta Med 2024; 67:284-292. [PMID: 39583761 PMCID: PMC11584238 DOI: 10.33160/yam.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/28/2024] [Indexed: 11/26/2024]
Abstract
Background Pseudomonas aeruginosa is an important causative agent of bacterial keratitis. This study investigates the antibacterial effect of photodynamic antimicrobial chemotherapy (PACT) with the chlorin derivative TONS504 (TONS504-PACT) and a blue light-emitting diode (LED) on P. aeruginosa in vitro. It also explores the synergistic effects of combining TONS504-PACT with EDTA, and compares the antibacterial effects of TONS504-PACT using blue light with those of previously reported red light. Methods To evaluate the antibacterial effects of TONS504-PACT using blue light on P. aeruginosa, PACT with TONS504 (0-100 mg/L) was applied using a 405 nm LED at 0-30 J/cm2 to P. aeruginosa (107-8 CFU/mL). The antibacterial effects were assessed by calculating the survival fraction. Subsequently, to compare the effects of TONS504-PACT using blue light with those of using red light, PACT with TONS504 (10 or 100 mg/L) was conducted using a 405 or 660 nm LED at 30 J/cm2 and evaluated in the same manner. Finally, to investigate the synergistic antibacterial effects of TONS504-PACT with EDTA, PACT with TONS504 (0-100 mg/L) was applied using a 405 nm LED at 5 J/cm2, both with and without EDTA (0.015 M), and its antibacterial effects were similarly assessed. Results TONS504-PACT using blue light decreased the survival of P. aeruginosa, depending on the light intensity. The greatest antibacterial effect was observed at 10 mg/L and 30 J/cm2, showing a survival fraction of 3.5 × 10-5. TONS504-PACT demonstrated a significantly greater antibacterial effect using blue light than that demonstrated using red light at 10 mg/L, though not at 100 mg/L. The combination of TONS504-PACT using blue light with EDTA significantly enhanced antibacterial effects at all concentrations. Conclusion These findings confirm the effectiveness of TONS504-PACT using blue light against P. aeruginosa and suggest its potential as a treatment for bacterial keratitis.
Collapse
Affiliation(s)
- Tomoya Furujo
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori 680-8553, Japan
| | - Norihiko Ito
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori 680-8553, Japan
| | - Kazuki Harada
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori 680-8553, Japan
| | | | - Tomohiro Osaki
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
6
|
Nouir S, Laouani A, Loghmari A, Bouassida K, Slim R, Bouhajeb R, Hasni Y, Saguem K, Ouni B, Zaïri A. HPLC-DAD Analysis and Investigation of Biological Properties of the Leaves of Globularia alypum (L.), Infusion Extract. Pharmaceuticals (Basel) 2023; 16:1726. [PMID: 38139852 PMCID: PMC10748358 DOI: 10.3390/ph16121726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Globularia alypum L. (GA) belonging to the Globulariaceae family is a Mediterranean plant which is widely used in traditional Tunisian medicine. The aim of this study was to investigate the phytochemical composition, antioxidant, anti-arthritic, antiproliferative, antibacterial and antibiofilm potential of aqueous GA leaf extracts (AGAL). Quantitative analyses of the different constituents of extracts were evaluated by high-performance liquid chromatography with photodiode-array detection (HPLC-DAD). Spectrophotometric methods and chemical tests were used for antioxidant and anti-arthritic activities. The antiproliferative study was evaluated using colorectal cancer SW620 cells, while the antibacterial assessment and analysis of the antibiofilm effects were determined by the microdilution method and the crystal violet assay, respectively. AGAL extracts presented several components, mainly Nepetin-7-Glucoside and trans-ferrulic acid. The results showed that they had an important antioxidant (IC50 = 0.34; 0.38 and 1.20 mg/mL) and anti-arthritic (IC50 = 2.94 mg/mL) properties, and these effects are displayed in a dose-dependent manner. In addition, this extract demonstrated significant antiproliferative (IC50 = 50 µg/mL), antibacterial (MIC = 6.25 mg/mL and MBC = 6.25 mg/mL), and antibiofilm (59.70% at 25 mg/mL) properties especially against S. aureus. The results achieved confirm the important role of this plant as a source of therapeutic activities.
Collapse
Affiliation(s)
- Sahar Nouir
- Laboratory of Biochemistry, Faculty of Medicine of Sousse, University of Sousse, Sousse 4023, Tunisia;
| | - Aicha Laouani
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12/ES02), Faculty of Medicine of Sousse, University of Sousse, Sousse 4023, Tunisia; (A.L.); (K.S.)
- USCR Analytical Platform UHPLC-MS & Research in Medicine and Biology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4023, Tunisia
| | - Ahmed Loghmari
- Urology Department, Sahloul Hospital, Sousse 4054, Tunisia; (A.L.); (K.B.)
| | | | - Raoudha Slim
- Laboratory of Bioactive Natural Substances and Biotechnology Research, Faculty of Dental Medicine of Monastir, University of Monastir, Sousse 4023, Tunisia; (R.S.); (B.O.)
| | - Rim Bouhajeb
- Department of Pharmacology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4023, Tunisia;
| | - Yosra Hasni
- Department of Endocrinology, Farhat Hached Hospital of Sousse, Sousse 4000, Tunisia;
| | - Khaled Saguem
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12/ES02), Faculty of Medicine of Sousse, University of Sousse, Sousse 4023, Tunisia; (A.L.); (K.S.)
- USCR Analytical Platform UHPLC-MS & Research in Medicine and Biology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4023, Tunisia
| | - Bouraoui Ouni
- Laboratory of Bioactive Natural Substances and Biotechnology Research, Faculty of Dental Medicine of Monastir, University of Monastir, Sousse 4023, Tunisia; (R.S.); (B.O.)
| | - Amira Zaïri
- Laboratory of Biochemistry, Faculty of Medicine of Sousse, University of Sousse, Sousse 4023, Tunisia;
| |
Collapse
|
7
|
Paterson JR, Wadsworth JM, Hu P, Sharples GJ. A critical role for iron and zinc homeostatic systems in the evolutionary adaptation of Escherichia coli to metal restriction. Microb Genom 2023; 9:001153. [PMID: 38054971 PMCID: PMC10763504 DOI: 10.1099/mgen.0.001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023] Open
Abstract
Host nutritional immunity utilizes metal deprivation to help prevent microbial infection. To investigate bacterial adaptation to such restrictive conditions, we conducted experimental evolution with two metal sequestering agents. Ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine pentamethylene phosphonic acid (DTPMP) were selected as ligands because they differentially affect cellular levels of iron, manganese and zinc in Escherichia coli. Mutants of E. coli strain BW25113 were isolated after cultivation at sub-minimum inhibitory concentration (MIC) chelant levels and genetic changes potentially responsible for tolerance were identified by whole-genome sequencing. In EDTA-selected strains, mutations in the promoter region of yeiR resulted in elevated gene expression. The yeiR product, a zinc-specific metallochaperone, was confirmed to be primarily responsible for EDTA resistance. Similarly, in two of the DTPMP-selected strains, a promoter mutation increased expression of the fepA-entD operon, which encodes components of the ferric-enterobactin uptake pathway. However, in this case improved DTPMP tolerance was only detectable following overexpression of FepA or EntD in trans. Additional mutations in the cadC gene product, an acid-response regulator, preserved the neutrality of the growth medium by constitutively activating expression of the cadAB regulon. This study uncovers specific resistance mechanisms for zinc and iron starvation that could emerge by selection against host nutritional immunity or competition with heterologous metallophores. It also provides insight into the specific metals affected by these two widely used chelators critical for their antibacterial mode of action.
Collapse
Affiliation(s)
| | | | - Ping Hu
- Procter and Gamble, Mason Business Center, Cincinnati, Ohio 45040, USA
| | | |
Collapse
|
8
|
Zhou G, Wang YS, Peng H, Li SJ, Sun TL, Shi QS, Garcia-Ojalvo J, Xie XB. Proteomic signatures of synergistic interactions in antimicrobials. J Proteomics 2023; 270:104743. [PMID: 36210012 DOI: 10.1016/j.jprot.2022.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
Mounting evidence has shown that antimicrobial agents can interfere synergistically with bacterial viability and proliferation when acting together at both the planktonic and biofilm levels without clear underlying molecular mechanisms. Here, multiplexed proteomics by iTRAQ was used to study the interplay between two biocides, the isothiazolone 1,2-benzisothiazolin-3-one (BIT) and the chelating agent disodium ethylenediaminetetraacetic acid (EDTA-2Na), employing the Citrobacter werkmanii as a model system. We first confirmed that these two biocides act synergistically on this bacterial species and then extracted the proteomic profiles of C. werkmanii cells in the presence of BIT, EDTA-2Na, and their combinations. In particular, we identified 43 core proteins that are differentially expressed in all three conditions simultaneously. Meanwhile, we found that these core proteins are consistently up-regulated when these two biocides are present, but not for single biocides, where we found a balanced mix of up- and down-regulation. Meanwhile, most of the deletion mutants of the core DEPs exhibited biofilm growth inhibition under joint biocide action, while their response was very heterogenous, with respect to the wild-type strain. Together, our results show that while BIT and EDTA-2Na act on multiple protein targets, they interact synergistically at the protein level in a very consistent manner. SIGNIFICANCE: Our preliminary experiments have demonstrated that a combination of 1,2-benzisothiazolin-3-one (BIT) and EDTA-2Na shows higher inhibitory effects on planktonic growth and biofilm formation in both C. werkmanii and Staphylococcus aureus than when these two biocides act alone. However, the mechanistic basis of such synergistic interaction is still unknown. Therefore, the key proteins involved in the above-mentioned enhanced antimicrobial synergy were elucidated using multiplexed proteomics analysis by isobaric tags for relative and absolute quantification (iTRAQ). Our results reveal that the joint action of BIT and EDTA-2Na induces consistent protein expression alteration in a set of core proteins of C. werkmanii, which underlies a strong synergistic antimicrobial effect, which increase our understanding of the action modes of BIT and EDTA-2Na as well as their combinations.
Collapse
Affiliation(s)
- Gang Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Dr. Aiguader 88, Barcelona, 08003, Spain.
| | - Ying-Si Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Hong Peng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Su-Juan Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Ting-Li Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Qing-Shan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China.
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Dr. Aiguader 88, Barcelona, 08003, Spain.
| | - Xiao-Bao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China.
| |
Collapse
|
9
|
Ye Y, He J, Wang H, Li W, Wang Q, Luo C, Tang X, Chen X, Jin X, Yao K, Zhou M. Cell Wall Destruction and Internal Cascade Synergistic Antifungal Strategy for Fungal Keratitis. ACS NANO 2022; 16:18729-18745. [PMID: 36278973 DOI: 10.1021/acsnano.2c07444] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fungal keratitis is one of the most common blindness-causing diseases, but clinical antifungal treatment remains a challenge. The fungal cell wall and biofilm matrix which severely confine the drug preparation are the critical obstructive factors to therapeutic effects. Herein, we report ethylenediaminetetraacetic acid (EDTA) modified AgCu2O nanoparticles (AgCuE NPs) to disrupt the cell wall and then eradicate C. albicans through the internal cascade synergistic effects of ion-released chemotherapy, chemodynamic therapy, photodynamic therapy, and mild photothermal therapy. AgCuE NPs exhibited excellent antifungal activity both in preventing biofilm formation and in destroying mature biofilms. Furthermore, AgCuE NP based gel formulations were topically applied to kill fungi, reduce inflammation, and promote wound healing, using optical coherence tomography and photoacoustic imaging to monitor nanogel retention and therapeutic effects on the infected murine cornea model. The AgCuE NP gel showed good biosafety and no obvious ophthalmic and systemic side effects. This study suggests that the AgCuE NP gel is an effective and safe antifungal strategy for fungal keratitis with a favorable prognosis and potential for clinical translation.
Collapse
Affiliation(s)
- Yang Ye
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Jian He
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Hanle Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Wenbo Li
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Qingya Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Chenqi Luo
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Xiajing Tang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, People's Republic of China
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
10
|
Hale SJM, Wagner Mackenzie B, Lux CA, Biswas K, Kim R, Douglas RG. Topical Antibiofilm Agents With Potential Utility in the Treatment of Chronic Rhinosinusitis: A Narrative Review. Front Pharmacol 2022; 13:840323. [PMID: 35770097 PMCID: PMC9234399 DOI: 10.3389/fphar.2022.840323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The role of bacterial biofilms in chronic and recalcitrant diseases is widely appreciated, and the treatment of biofilm infection is an increasingly important area of research. Chronic rhinosinusitis (CRS) is a complex disease associated with sinonasal dysbiosis and the presence of bacterial biofilms. While most biofilm-related diseases are associated with highly persistent but relatively less severe inflammation, the presence of biofilms in CRS is associated with greater severity of inflammation and recalcitrance despite appropriate treatment. Oral antibiotics are commonly used to treat CRS but they are often ineffective, due to poor penetration of the sinonasal mucosa and the inherently antibiotic resistant nature of bacteria in biofilms. Topical non-antibiotic antibiofilm agents may prove more effective, but few such agents are available for sinonasal application. We review compounds with antibiofilm activity that may be useful for treating biofilm-associated CRS, including halogen-based compounds, quaternary ammonium compounds and derivatives, biguanides, antimicrobial peptides, chelating agents and natural products. These include preparations that are currently available and those still in development. For each compound, antibiofilm efficacy, mechanism of action, and toxicity as it relates to sinonasal application are summarised. We highlight the antibiofilm agents that we believe hold the greatest promise for the treatment of biofilm-associated CRS in order to inform future research on the management of this difficult condition.
Collapse
Affiliation(s)
- Samuel J M Hale
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Brett Wagner Mackenzie
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christian A Lux
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kristi Biswas
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Raymond Kim
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard G Douglas
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
12
|
EDTA and Taurolidine Affect Pseudomonas aeruginosa Virulence In Vitro-Impairment of Secretory Profile and Biofilm Production onto Peritoneal Dialysis Catheters. Microbiol Spectr 2021; 9:e0104721. [PMID: 34787464 PMCID: PMC8597648 DOI: 10.1128/spectrum.01047-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peritoneal catheter-associated biofilm infection is reported to be the main cause of refractory peritonitis in peritoneal dialysis patients. The application of antimicrobial lock therapy, based on results on central venous catheters, may be a promising option for treatment of biofilm-harboring peritoneal catheters. This study investigated the effects of two lock solutions, EDTA and taurolidine, on an in vitro model of Pseudomonas aeruginosa biofilm-related peritoneal catheter infection. Silicone peritoneal catheters were incubated for 24 h with a bioluminescent strain of P. aeruginosa. Then, serial dilutions of taurolidine and/or EDTA were applied (for 24 h) once or twice onto the contaminated catheters, and P. aeruginosa viability/persistence were evaluated in real time up to 120 h using a Fluoroskan reader. On selected supernatants, high-performance liquid chromatography mass spectrometry (HPLC-MS) analysis was performed to measure the production of autoinducers (AI), phenazines, and pyocyianines. Taurolidine alone or in combination with EDTA caused a significant decrease of bacterial load and biofilm persistence on the contaminated catheters. The treatment did not lead to the sterilization of the devices, yet it resulted in a substantial destructuration of the catheter-associated P. aeruginosa biofilm. HPLC-MS analysis showed that the treatment of biofilm-harboring catheters with taurolidine and EDTA also affected the secretory activity of the pathogen. EDTA and taurolidine affect P. aeruginosa biofilm produced on peritoneal catheters and profoundly compromise the microbial secretory profile. Future studies are needed to establish whether such lock solutions can be used to render peritoneal catheter-related infections more susceptible to antibiotic treatment. IMPORTANCE An in vitro model allows studies on the mechanisms by which the lock solutions exert their antimicrobial effects on catheter-associated biofilm, thus providing a better understanding of the management of devise-associated infections.
Collapse
|
13
|
AB569, a Novel, Topical Bactericidal Gel Formulation, Kills Pseudomonas aeruginosa and Promotes Wound Healing in a Murine Model of Burn Wound Infection. Infect Immun 2021; 89:e0033621. [PMID: 34424744 PMCID: PMC8519293 DOI: 10.1128/iai.00336-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cutaneous thermal injuries from burns/explosives are a major cause of morbidity and mortality and represent a monumental burden on our current health care system. Injury severity is predominantly due to potentially lethal sepsis caused by multidrug-resistant (MDR) bacteria such as Pseudomonas aeruginosa (MDR-PA). Thus, there is a critical need to develop novel and effective antimicrobials for the (i) prevention, (ii) treatment, and (iii) healing of such wounds that are complicated by MDR-P. aeruginosa and other bacterial infections. AB569 is a novel bactericidal tandem consisting of acidified NaNO2 (A-NO2-) and Na2-EDTA. Here, we first show that AB569 acts synergistically to kill all human burn wound strains of P. aeruginosa in vitro. This was found to be due, in part, to the generation of A-NO2--mediated nitric oxide (NO) formation coupled with the metal chelating properties of Na2-EDTA. Using a murine scald burn wound model of P. aeruginosa infection, an AB569-Solosite gel formulation eradicated all bacteria. Futher, we also demonstrate enhanced AB569-mediated wound healing by not only accelerating wound contraction, but also by reducing levels of the proinflammatory cytokines interleukin-6 (IL-6) and IL-1β while increasing the levels of anti-inflammatory cytokine, IL-10, and granulocyte-colony-stimulating factor (G-CSF). We also observed better epidermal restoration in AB569-treated wounds. Taken together, we conclude that this study provides solid foundational evidence that AB569 can be used topically to treat highly problematic dermal insults, including wound, burn, blast, and likely, diabetic infections in civilian and military populations, and help relieve the economical burden that MDR organisms have on the global health care system.
Collapse
|
14
|
Bobrov AG, Getnet D, Swierczewski B, Jacobs A, Medina-Rojas M, Tyner S, Watters C, Antonic V. Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military-relevant animal infection models. APMIS 2021; 130:436-457. [PMID: 34132418 DOI: 10.1111/apm.13119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/21/2021] [Indexed: 01/02/2023]
Abstract
Modern combat-related injuries are often associated with acute polytrauma. As a consequence of severe combat-related injuries, a dysregulated immune response results in serious infectious complications. The gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen that often causes life-threatening bloodstream, lung, bone, urinary tract, and wound infections following combat-related injuries. The rise in the number of multidrug-resistant P. aeruginosa strains has elevated its importance to civilian clinicians and military medicine. Development of novel therapeutics and treatment options for P. aeruginosa infections is urgently needed. During the process of drug discovery and therapeutic testing, in vivo testing in animal models is a critical step in the bench-to-bedside approach, and required for Food and Drug Administration approval. Here, we review current and past literature with a focus on combat injury-relevant animal models often used to understand infection development, the interplay between P. aeruginosa and the host, and evaluation of novel treatments. Specifically, this review focuses on the following animal infection models: wound, burn, bone, lung, urinary tract, foreign body, and sepsis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brett Swierczewski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anna Jacobs
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Maria Medina-Rojas
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Stuart Tyner
- US Army Medical Research and Development Command Military Infectious Diseases Research Program, Frederick, Maryland, USA
| | - Chase Watters
- Naval Medical Research Unit-3, Ghana Detachment, Accra, Ghana
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
15
|
Fu J, Zhang Y, Lin S, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Strategies for Interfering With Bacterial Early Stage Biofilms. Front Microbiol 2021; 12:675843. [PMID: 34168632 PMCID: PMC8217469 DOI: 10.3389/fmicb.2021.675843] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilm-related bacteria show high resistance to antimicrobial treatments, posing a remarkable challenge to human health. Given bacterial dormancy and high expression of efflux pumps, persistent infections caused by mature biofilms are not easy to treat, thereby driving researchers toward the discovery of many anti-biofilm molecules that can intervene in early stage biofilms formation to inhibit further development and maturity. Compared with mature biofilms, early stage biofilms have fragile structures, vigorous metabolisms, and early attached bacteria are higher susceptibility to antimicrobials. Thus, removing biofilms at the early stage has evident advantages. Many reviews on anti-biofilm compounds that prevent biofilms formation have already been done, but most of them are based on compound classifications to introduce anti-biofilm effects. This review discusses the inhibitory effects of anti-biofilm compounds on early stage biofilms formation from the perspective of the mechanisms of action, including hindering reversible adhesion, reducing extracellular polymeric substances production, interfering in the quorum sensing, and modifying cyclic di-GMP. This information can be exploited further to help researchers in designing new molecules with anti-biofilm activity.
Collapse
Affiliation(s)
- Jingyuan Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuning Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiqi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Vinuesa V, McConnell MJ. Recent Advances in Iron Chelation and Gallium-Based Therapies for Antibiotic Resistant Bacterial Infections. Int J Mol Sci 2021; 22:2876. [PMID: 33809032 PMCID: PMC8000330 DOI: 10.3390/ijms22062876] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Iron is essential for multiple bacterial processes and is thus required for host colonization and infection. The antimicrobial activity of multiple iron chelators and gallium-based therapies against different bacterial species has been characterized in preclinical studies. In this review, we provide a synthesis of studies characterizing the antimicrobial activity of the major classes of iron chelators (hydroxamates, aminocarboxylates and hydroxypyridinones) and gallium compounds. Special emphasis is placed on recent in-vitro and in-vivo studies with the novel iron chelator DIBI. Limitations associated with iron chelation and gallium-based therapies are presented, with emphasis on limitations of preclinical models, lack of understanding regarding mechanisms of action, and potential host toxicity. Collectively, these studies demonstrate potential for iron chelators and gallium to be used as antimicrobial agents, particularly in combination with existing antibiotics. Additional studies are needed in order to characterize the activity of these compounds under physiologic conditions and address potential limitations associated with their clinical use as antimicrobial agents.
Collapse
Affiliation(s)
| | - Michael J. McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| |
Collapse
|
17
|
Bogue AL, Panmanee W, McDaniel CT, Mortensen JE, Kamau E, Actis LA, Johannigman JA, Schurr MJ, Satish L, Kotagiri N, Hassett DJ. AB569, a non-toxic combination of acidified nitrite and EDTA, is effective at killing the notorious Iraq/Afghanistan combat wound pathogens, multi-drug resistant Acinetobacter baumannii and Acinetobacter spp. PLoS One 2021; 16:e0247513. [PMID: 33657146 PMCID: PMC7928478 DOI: 10.1371/journal.pone.0247513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
Multi-drug resistant (MDR) Acinetobacter baumannii (Ab) and Acinetobacter spp. present monumental global health challenges. These organisms represent model Gram-negative pathogens with known antibiotic resistance and biofilm-forming properties. Herein, a novel, nontoxic biocide, AB569, consisting of acidified nitrite (A-NO2-) and ethylenediaminetetraacetic acid (EDTA), demonstrated bactericidal activity against all Ab and Acinetobacter spp. strains, respectively. Average fractional inhibitory concentrations (FICs) of 0.25 mM EDTA plus 4 mM A-NO2- were observed across several clinical reference and multiple combat wound isolates from the Iraq/Afghanistan wars. Importantly, toxicity testing on human dermal fibroblasts (HDFa) revealed an upper toxicity limit of 3 mM EDTA plus 64 mM A-NO2-, and thus are in the therapeutic range for effective Ab and Acinetobacter spp. treatment. Following treatment of Ab strain ATCC 19606 with AB569, quantitative PCR analysis of selected genes products to be responsive to AB569 revealed up-regulation of iron regulated genes involved in siderophore production, siderophore biosynthesis non-ribosomal peptide synthetase module (SBNRPSM), and siderophore biosynthesis protein monooxygenase (SBPM) when compared to untreated organisms. Taken together, treating Ab infections with AB569 at inhibitory concentrations reveals the potential clinical application of preventing Ab from gaining an early growth advantage during infection followed by extensive bactericidal activity upon subsequent exposures.
Collapse
Affiliation(s)
- Amy L. Bogue
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Wright-Patterson Air Force Base, Dayton (Wright-Patterson Air Force Base), Dayton, OH, United States of America
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Cameron T. McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Joel E. Mortensen
- Diagnostic Infectious Disease Testing Laboratory and Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Edwin Kamau
- Walter Reed National Military Medical Center (WRNMMC), Bethesda, MD, United States of America
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Jay A. Johannigman
- U.S. Army Institute of Surgical Research, San Antonio, TX, United States of America
| | - Michael J. Schurr
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Denver, CO, United States of America
| | - Latha Satish
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- College of Pharmacy, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Nalinikanth Kotagiri
- Research Department, Shriners Hospitals for Children- Cincinnati, Cincinnati, OH, United States of America
| | - Daniel J. Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
18
|
Jiang Y, Geng M, Bai L. Targeting Biofilms Therapy: Current Research Strategies and Development Hurdles. Microorganisms 2020; 8:microorganisms8081222. [PMID: 32796745 PMCID: PMC7465149 DOI: 10.3390/microorganisms8081222] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023] Open
Abstract
Biofilms are aggregate of microorganisms in which cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS) and adhere to each other and/or to a surface. The development of biofilm affords pathogens significantly increased tolerances to antibiotics and antimicrobials. Up to 80% of human bacterial infections are biofilm-associated. Dispersal of biofilms can turn microbial cells into their more vulnerable planktonic phenotype and improve the therapeutic effect of antimicrobials. In this review, we focus on multiple therapeutic strategies that are currently being developed to target important structural and functional characteristics and drug resistance mechanisms of biofilms. We thoroughly discuss the current biofilm targeting strategies from four major aspects—targeting EPS, dispersal molecules, targeting quorum sensing, and targeting dormant cells. We explain each aspect with examples and discuss the main hurdles in the development of biofilm dispersal agents in order to provide a rationale for multi-targeted therapy strategies that target the complicated biofilms. Biofilm dispersal is a promising research direction to treat biofilm-associated infections in the future, and more in vivo experiments should be performed to ensure the efficacy of these therapeutic agents before being used in clinic.
Collapse
|
19
|
Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP. Proc Natl Acad Sci U S A 2020; 117:17211-17220. [PMID: 32611811 PMCID: PMC7382256 DOI: 10.1073/pnas.2001232117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cyclic diguanylate (c-di-GMP) regulates a wide range of bacterial cellular functions from biofilm formation to growth and survival. Based on the structural analysis of the complex of c-di-GMP with a bacterial effector protein followed by amino acid sequence optimization, we have developed a short peptide that binds c-di-GMP with nanomolar affinity and high specificity. This provides many opportunities for biotechnological and biomedical applications. In particular, we show that such an endogenously expressed peptide effectively reduces intracellular c-di-GMP and thereby inhibits and even disintegrates biofilms in Pseudomonas aeruginosa. The bacterial second messenger cyclic diguanylate (c-di-GMP) regulates a wide range of cellular functions from biofilm formation to growth and survival. Targeting a second-messenger network is challenging because the system involves a multitude of components with often overlapping functions. Here, we present a strategy to intercept c-di-GMP signaling pathways by directly targeting the second messenger. For this, we developed a c-di-GMP–sequestering peptide (CSP) that was derived from a CheY-like c-di-GMP effector protein. CSP binds c-di-GMP with submicromolar affinity. The elucidation of the CSP⋅c-di-GMP complex structure by NMR identified a linear c-di-GMP–binding motif, in which a self-intercalated c-di-GMP dimer is tightly bound by a network of H bonds and π-stacking interactions involving arginine and aromatic residues. Structure-based mutagenesis yielded a variant with considerably higher, low-nanomolar affinity, which subsequently was shortened to 19 residues with almost uncompromised affinity. We demonstrate that endogenously expressed CSP intercepts c-di-GMP signaling and effectively inhibits biofilm formation in Pseudomonas aeruginosa, the most widely used model for serious biofilm-associated medical implications.
Collapse
|
20
|
Sharma S, Sharma S, Singh PP, Khan IA. Potential Inhibitors Against NDM-1 Type Metallo-β-Lactamases: An Overview. Microb Drug Resist 2020; 26:1568-1588. [PMID: 32486911 DOI: 10.1089/mdr.2019.0315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new member of the class metallo-β-lactamase (MBL), New Delhi metallo-beta-lactamase 1 (NDM-1) has emerged recently as a leading threat to the treatment of infections that have spread in all major Gram-negative pathogens. The enzyme inactivates antibiotics of the carbapenem family, which are a mainstay for the treatment of antibiotic-resistant bacterial infections. This review provides information about NDM-1 spatial structure, potential features of the active site, and its mechanism of action. It also enlists the inhibitors/compounds/drugs against NDM-1 in various development phases. Understanding their mode of inhibition and the structure-activity relationship would be beneficial for development, synthesis, and even increasing biological efficacy of inhibitors, making them more promising drug candidates.
Collapse
Affiliation(s)
- Smriti Sharma
- Clinical Microbiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India.,Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Sumit Sharma
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India.,Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Parvinder Pal Singh
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India.,Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Inshad Ali Khan
- Clinical Microbiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India.,Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| |
Collapse
|
21
|
Maisetta G, Grassi L, Esin S, Kaya E, Morelli A, Puppi D, Piras M, Chiellini F, Pifferi M, Batoni G. Targeting Pseudomonas aeruginosa in the Sputum of Primary Ciliary Dyskinesia Patients with a Combinatorial Strategy Having Antibacterial and Anti-Virulence Potential. Int J Mol Sci 2019; 21:ijms21010069. [PMID: 31861859 PMCID: PMC6981532 DOI: 10.3390/ijms21010069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
In primary ciliary dyskinesia (PCD) patients, Pseudomonas aeruginosa is a major opportunistic pathogen, frequently involved in chronic infections of the lower airways. Infections by this bacterial species correlates with a worsening clinical prognosis and recalcitrance to currently available therapeutics. The antimicrobial peptide, lin-SB056-1, in combination with the cation chelator ethylenediaminetetraacetic acid (EDTA), was previously demonstrated to be bactericidal against P. aeruginosa in an artificial sputum medium. The purpose of this study was to validate the anti-P. aeruginosa activity of such a combination in PCD sputum and to evaluate the in vitro anti-virulence effects of EDTA. In combination with EDTA, lin-SB056-1 was able to significantly reduce the load of endogenous P. aeruginosa ex vivo in the sputum of PCD patients. In addition, EDTA markedly reduced the production of relevant bacterial virulence factors (e.g., pyocyanin, proteases, LasA) in vitro by two representative mucoid strains of P. aeruginosa isolated from the sputum of PCD patients. These results indicate that the lin-SB056-1/EDTA combination may exert a dual antimicrobial and anti-virulence action against P. aeruginosa, suggesting a therapeutic potential against chronic airway infections sustained by this bacterium.
Collapse
Affiliation(s)
- Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy; (L.G.); (S.E.); (E.K.); (G.B.)
- Correspondence: ; Tel.: +39-050-2213692; Fax: +39-050-2213711
| | - Lucia Grassi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy; (L.G.); (S.E.); (E.K.); (G.B.)
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy; (L.G.); (S.E.); (E.K.); (G.B.)
| | - Esingül Kaya
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy; (L.G.); (S.E.); (E.K.); (G.B.)
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.M.); (D.P.); (F.C.)
| | - Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.M.); (D.P.); (F.C.)
| | - Martina Piras
- Section of Pneumology and Allergology, Unit of Pediatrics, Pisa University Hospital, 56126 Pisa, Italy; (M.P.); (M.P.)
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.M.); (D.P.); (F.C.)
| | - Massimo Pifferi
- Section of Pneumology and Allergology, Unit of Pediatrics, Pisa University Hospital, 56126 Pisa, Italy; (M.P.); (M.P.)
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy; (L.G.); (S.E.); (E.K.); (G.B.)
| |
Collapse
|
22
|
Chan WY, Hickey EE, Page SW, Trott DJ, Hill PB. Biofilm production by pathogens associated with canine otitis externa, and the antibiofilm activity of ionophores and antimicrobial adjuvants. J Vet Pharmacol Ther 2019; 42:682-692. [PMID: 31503362 DOI: 10.1111/jvp.12811] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 11/27/2022]
Abstract
Otitis externa (OE) is a frequently reported disorder in dogs associated with secondary infections by Staphylococcus, Pseudomonas and yeast pathogens. The presence of biofilms may play an important role in the resistance of otic pathogens to antimicrobial agents. Biofilm production of twenty Staphylococcus pseudintermedius and twenty Pseudomonas aeruginosa canine otic isolates was determined quantitatively using a microtiter plate assay, and each isolate was classified as a strong, moderate, weak or nonbiofilm producer. Minimum biofilm eradication concentration (MBEC) of two ionophores (narasin and monensin) and three adjuvants (N-acetylcysteine (NAC), Tris-EDTA and disodium EDTA) were investigated spectrophotometrically (OD570nm ) and quantitatively (CFU/ml) against selected Staphylococcus and Pseudomonas biofilm cultures. Concurrently, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of planktonic cultures were assessed. 16/20 of the S. pseudintermedius clinical isolates were weak biofilm producers. 19/20 P. aeruginosa clinical isolates produced biofilms and were distributed almost equally as weak, moderate and strong biofilm producers. While significant antibiofilm activity was observed, no MBEC was achieved with narasin or monensin. The MBEC for NAC ranged from 5,000-10,000 µg/ml and from 20,000-80,000 µg/ml against S. pseudintermedius and P. aeruginosa, respectively. Tris-EDTA eradicated P. aeruginosa biofilms at concentrations ranging from 6,000/1,900 to 12,000/3,800 µg/ml. The MBEC was up to 16-fold and eightfold higher than the MIC/MBC of NAC and Tris-EDTA, respectively. Disodium EDTA reduced biofilm growth of both strains at concentrations of 470 µg/ml and higher. It can be concluded that biofilm production is common in pathogens associated with canine OE. NAC and Tris-EDTA are effective antibiofilm agents in vitro that could be considered for the treatment of biofilm-associated OE in dogs.
Collapse
Affiliation(s)
- Wei Yee Chan
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Elizabeth E Hickey
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | | | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Peter B Hill
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
23
|
Synergistic combinations of anthelmintic salicylanilides oxyclozanide, rafoxanide, and closantel with colistin eradicates multidrug-resistant colistin-resistant Gram-negative bacilli. J Antibiot (Tokyo) 2019; 72:605-616. [PMID: 31028351 DOI: 10.1038/s41429-019-0186-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Repurposing nonantibiotic drugs for antimicrobial therapy presents a viable approach to drug discovery. Development of therapeutic strategies that overcome existing resistance mechanisms is important especially against those bacterial infections in which treatment options are limited, such as against multidrug-resistant Gram-negative bacilli. Herein, we provide in vitro data that suggest the addition of anthelmintic salicylanilides, including oxyclozanide, rafoxanide, and closantel, in colistin therapy to treat multidrug-resistant colistin-susceptible but more importantly colistin-resistant Gram-negative bacilli. As a stand-alone agent, the three salicylanilides suffered from limited outer membrane permeation in Pseudomonas aeruginosa, with oxyclozanide also susceptible to efflux. Synergy was apparent for the combinations against multidrug-resistant clinical isolates of P. aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae. Susceptibility breakpoints for colistin, but also with polymyxin B, were reached upon addition of 1 µg ml-1 of the corresponding salicylanilide against colistin-resistant Gram-negative bacilli. Furthermore, enhanced bacterial killing was observed in all combinations. Our data corroborate the repositioning of the three salicylanilides as adjuvants to counter resistance to the antibiotic of last resort colistin. Our findings are timely and relevant since the global dissemination of plasmid-mediated colistin resistance had been realized.
Collapse
|
24
|
Coraça-Huber DC, Dichtl S, Steixner S, Nogler M, Weiss G. Iron chelation destabilizes bacterial biofilms and potentiates the antimicrobial activity of antibiotics against coagulase-negative Staphylococci. Pathog Dis 2019; 76:5026171. [PMID: 29860413 DOI: 10.1093/femspd/fty052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The ability of certain bacteria to form biofilms underlies their capacity to cause medical device-associated infections. Most bacteria need the metal iron for their proliferation but also to form biofilms. The aim of this in vitro study was to investigate whether iron restriction upon application of the iron chelator deferiprone (DFP) impacts on bacterial biofilm formation and whether such an intervention can exert synergistic effects towards the antibacterial activity of three antibiotic compounds against coagulase-negative staphylococci (CNS) residing on titanium plates. METHODS Bacteria were seeded on titanium discs and cultured to obtain biofilms. Biofilms were then exposed to DFP and/or antibiotic treatment with clindamycin, gentamycin or vancomycin. Fluorescence microscopy and scanning electron microscopy (SEM) were used for morphological analysis of the biofilms before and after treatment. RESULTS Whereas DFP alone had only a moderate inhibitory effect on biofilm growth, the combination of DFP with the respective antibiotics resulted in a significant decline of bacterial numbers by two to three logs as compared to the effect of antibiotics alone. Fluorescence staining and SEM demonstrated severe damage to even complete destruction of biofilms after combined treatment with DFP and antibiotics that was not the case upon sole treatment with antibiotics. CONCLUSION Iron chelation is able to potentiate the antibacterial activity of conventional antibiotics by destroying bacterial biofilms that recommends this combination as a promising strategy for the treatment of chronic device infections with biofilm producing CNS.
Collapse
Affiliation(s)
- Débora C Coraça-Huber
- Experimental Orthopedics, Department of Orthopedic Surgery, Medical University of Innsbruck, Innrain 36, 6020, Innsbruck, Austria
| | - Stefanie Dichtl
- Department of Internal Medicine II - Infectious Diseases, Immunology, Rheumatology and Pneumology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Stephan Steixner
- Experimental Orthopedics, Department of Orthopedic Surgery, Medical University of Innsbruck, Innrain 36, 6020, Innsbruck, Austria
| | - Michael Nogler
- Experimental Orthopedics, Department of Orthopedic Surgery, Medical University of Innsbruck, Innrain 36, 6020, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II - Infectious Diseases, Immunology, Rheumatology and Pneumology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
25
|
Fiolet AS, Jandot E, Doucey P, Crétet C, Brunel C, Pivot C, Ghigo JM, Beloin C, Lebeaux D, Pirot F. Long-term stability of gentamicin sulfate-ethylenediaminetetraacetic acid disodium salt (EDTA-Na 2) solution for catheter locks. J Pharm Anal 2019; 8:386-393. [PMID: 30595945 PMCID: PMC6308019 DOI: 10.1016/j.jpha.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/18/2023] Open
Abstract
A lock solution composed of gentamicin sulfate (5 mg/mL) and ethylenediaminetetraacetic acid disodium salt (EDTA-Na2, 30 mg/mL) could fully eradicate in vivo bacterial biofilms in totally implantable venous access ports (TIVAP). In this study, fabrication, conditioning and sterilization processes of antimicrobial lock solution (ALS) were detailed and completed by a stability study. Stability of ALS was conducted for 12 months in vial (25 °C ± 2 °C, 60% ± 5% relative humidity (RH), and at 40 °C ± 2 °C, RH 75% ± 5%) and for 24 h and 72 h in TIVAP (40 °C ± 2 °C, RH 75% ± 5%). A stability indicating HPLC assay with UV detection for simultaneous quantification of gentamicin sulfate and EDTA-Na2 was developed. ALS was assayed by ion-pairing high performance liquid chromatography (HPLC) needing gentamicin derivatization, EDTA-Na2 metallocomplexation of samples and gradient mobile phase. HPLC methods to separate four gentamicin components and EDTA-Na2 were validated. Efficiency of sterility procedure and conditioning of ALS was confirmed by bacterial endotoxins and sterility tests. Physicochemical stability of ALS was determined by visual inspection, osmolality, pH, and sub-visible particle counting. Results confirmed that the stability of ALS in vials was maintained for 12 months and 24 h and 72 h in TIVAP.
Collapse
Affiliation(s)
- Anne-Sophie Fiolet
- Service Pharmaceutique, Plateforme FRIPHARM, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France
| | - Elise Jandot
- Service Pharmaceutique, Plateforme FRIPHARM, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France
| | - Pauline Doucey
- Service Pharmaceutique, Plateforme FRIPHARM, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France
| | - Coralie Crétet
- Service Pharmaceutique, Plateforme FRIPHARM, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France
| | - Célia Brunel
- Service Pharmaceutique, Plateforme FRIPHARM, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France
| | - Christine Pivot
- Service Pharmaceutique, Plateforme FRIPHARM, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France
| | - Jean-Marc Ghigo
- Unité de Génétique des Biofilms, Département de Microbiologie, Institut Pasteur, 28 rue du docteur Roux, F-75724 Paris Cedex 15, France
| | - Christophe Beloin
- Unité de Génétique des Biofilms, Département de Microbiologie, Institut Pasteur, 28 rue du docteur Roux, F-75724 Paris Cedex 15, France
| | - David Lebeaux
- Unité de Génétique des Biofilms, Département de Microbiologie, Institut Pasteur, 28 rue du docteur Roux, F-75724 Paris Cedex 15, France.,Service de Microbiologie, Unité Mobile de Microbiologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015 Paris, France.,Université Paris Descartes, 12 rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France
| | - Fabrice Pirot
- Service Pharmaceutique, Plateforme FRIPHARM, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France.,Laboratoire de Recherche et Développement de Pharmacie Galénique Industrielle, UMR 5305, Plateforme FRIPHARM,F-69373, Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, avenue Rockefeller, F-69373 Lyon Cedex 08, France
| |
Collapse
|
26
|
Busanello FH, Petridis X, So MVR, Dijkstra RJB, Sharma PK, van der Sluis LWM. Chemical biofilm removal capacity of endodontic irrigants as a function of biofilm structure: optical coherence tomography, confocal microscopy and viscoelasticity determination as integrated assessment tools. Int Endod J 2018; 52:461-474. [DOI: 10.1111/iej.13027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Affiliation(s)
- F. H. Busanello
- Conservative Dentistry Department; School of Dentistry; Federal University of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - X. Petridis
- Department of Conservative Dentistry; Center for Dentistry and Oral Hygiene; Groningen The Netherlands
| | - M. V. R. So
- Conservative Dentistry Department; School of Dentistry; Federal University of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - R. J. B. Dijkstra
- Department of Conservative Dentistry; Center for Dentistry and Oral Hygiene; Groningen The Netherlands
| | - P. K. Sharma
- Department of Biomedical Engineering; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - L. W. M. van der Sluis
- Department of Conservative Dentistry; Center for Dentistry and Oral Hygiene; Groningen The Netherlands
| |
Collapse
|
27
|
Schnaars C, Kildahl-Andersen G, Prandina A, Popal R, Radix S, Le Borgne M, Gjøen T, Andresen AMS, Heikal A, Økstad OA, Fröhlich C, Samuelsen Ø, Lauksund S, Jordheim LP, Rongved P, Åstrand OAH. Synthesis and Preclinical Evaluation of TPA-Based Zinc Chelators as Metallo-β-lactamase Inhibitors. ACS Infect Dis 2018; 4:1407-1422. [PMID: 30022668 DOI: 10.1021/acsinfecdis.8b00137] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rise of antimicrobial resistance (AMR) worldwide and the increasing spread of multi-drug-resistant organisms expressing metallo-β-lactamases (MBL) require the development of efficient and clinically available MBL inhibitors. At present, no such inhibitor is available, and research is urgently needed to advance this field. We report herein the development, synthesis, and biological evaluation of chemical compounds based on the selective zinc chelator tris-picolylamine (TPA) that can restore the bactericidal activity of Meropenem (MEM) against Pseudomonas aeruginosa and Klebsiella pneumoniae expressing carbapenemases Verona integron-encoded metallo-β-lactamase (VIM-2) and New Delhi metallo-β-lactamase 1 (NDM-1), respectively. These adjuvants were prepared via standard chemical methods and evaluated in biological assays for potentiation of MEM against bacteria and toxicity (IC50) against HepG2 human liver carcinoma cells. One of the best compounds, 15, lowered the minimum inhibitory concentration (MIC) of MEM by a factor of 32-256 at 50 μM within all tested MBL-expressing clinical isolates and showed no activity toward serine carbapenemase expressing isolates. Biochemical assays with purified VIM-2 and NDM-1 and 15 resulted in inhibition kinetics with kinact/ KI of 12.5 min-1 mM-1 and 0.500 min-1 mM-1, respectively. The resistance frequency of 15 at 50 μM was in the range of 10-7 to 10-9. 15 showed good tolerance in HepG2 cells with an IC50 well above 100 μM, and an in vivo study in mice showed no acute toxic effects even at a dose of 128 mg/kg.
Collapse
Affiliation(s)
| | | | - Anthony Prandina
- Université de Lyon, Université Lyon 1, Faculté de
Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry,
SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, 69373 Lyon Cedex 8, France
| | | | - Sylvie Radix
- Université de Lyon, Université Lyon 1, Faculté de
Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry,
SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, 69373 Lyon Cedex 8, France
| | - Marc Le Borgne
- Université de Lyon, Université Lyon 1, Faculté de
Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry,
SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, 69373 Lyon Cedex 8, France
| | | | | | - Adam Heikal
- Centre for Integrative
Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Ole Andreas Økstad
- Centre for Integrative
Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Christopher Fröhlich
- Norwegian National
Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- NorStruct, Department of Chemistry, Faculty of Science and Technology,
SIVA Innovation Centre, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National
Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Pharmacy, UiT − The Arctic University of Norway, 9037 Tromsø, Norway
| | - Silje Lauksund
- Norwegian National
Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Lars Petter Jordheim
- Université Lyon, Université Claude Bernard Lyon 1, INSERM
1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche
en Cancérologie de Lyon, Lyon 69008, France
| | | | | |
Collapse
|
28
|
Blanchette KA, Wenke JC. Current therapies in treatment and prevention of fracture wound biofilms: why a multifaceted approach is essential for resolving persistent infections. J Bone Jt Infect 2018; 3:50-67. [PMID: 29761067 PMCID: PMC5949568 DOI: 10.7150/jbji.23423] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic orthopedic injuries, particularly extremity wounds, are a significant cause of morbidity. Despite prophylactic antibiotic treatment and surgical intervention, persistent infectious complications can and do occur. Persistent bacterial infections are often caused by biofilms, communities of antibiotic tolerant bacteria encased within a matrix. The structural and metabolic differences in this mode of growth make treatment difficult. Herein, we describe both established and novel, experimental treatments targeted at various stages of wound healing that are specifically aimed at reducing and eliminating biofilm bacteria. Importantly, the highly tolerant nature of these bacterial communities suggests that most singular approaches could be circumvented and a multifaceted, combinatorial approach will be the most effective strategy for treating these complicated infections.
Collapse
Affiliation(s)
| | - Joseph C Wenke
- US Army Institute of Surgical Research, Ft Sam Houston, TX
| |
Collapse
|
29
|
The Semi-Synthetic Peptide Lin-SB056-1 in Combination with EDTA Exerts Strong Antimicrobial and Antibiofilm Activity against Pseudomonas aeruginosa in Conditions Mimicking Cystic Fibrosis Sputum. Int J Mol Sci 2017; 18:ijms18091994. [PMID: 28926942 PMCID: PMC5618643 DOI: 10.3390/ijms18091994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 09/13/2017] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of chronic lung infections in cystic fibrosis (CF) patients. The ability of the bacterium to form biofilms and the presence of a thick and stagnant mucus in the airways of CF patients largely contribute to antibiotic therapy failure and demand for new antimicrobial agents able to act in the CF environment. The present study investigated the anti-P. aeruginosa activity of lin-SB056-1, a recently described semi-synthetic antimicrobial peptide, used alone and in combination with the cation chelator ethylenediaminetetraacetic acid (EDTA). Bactericidal assays were carried out in standard culture conditions and in an artificial sputum medium (ASM) closely resembling the CF environment. Peptide’s structure and interaction with large unilamellar vesicles in media with different ionic strengths were also investigated through infrared spectroscopy. Lin-SB056-1 demonstrated fast and strong bactericidal activity against both mucoid and non-mucoid strains of P. aeruginosa in planktonic form and, in combination with EDTA, caused significant reduction of the biomass of P. aeruginosa mature biofilms. In ASM, the peptide/EDTA combination exerted a strong bactericidal effect and inhibited the formation of biofilm-like structures of P. aeruginosa. Overall, the results obtained highlight the potential of the lin-SB056-1/EDTA combination for the treatment of P. aeruginosa lung infections in CF patients.
Collapse
|
30
|
Approaches to Dispersing Medical Biofilms. Microorganisms 2017; 5:microorganisms5020015. [PMID: 28368320 PMCID: PMC5488086 DOI: 10.3390/microorganisms5020015] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023] Open
Abstract
Biofilm-associated infections pose a complex problem to the medical community, in that residence within the protection of a biofilm affords pathogens greatly increased tolerances to antibiotics and antimicrobials, as well as protection from the host immune response. This results in highly recalcitrant, chronic infections and high rates of morbidity and mortality. Since as much as 80% of human bacterial infections are biofilm-associated, many researchers have begun investigating therapies that specifically target the biofilm architecture, thereby dispersing the microbial cells into their more vulnerable, planktonic mode of life. This review addresses the current state of research into medical biofilm dispersal. We focus on three major classes of dispersal agents: enzymes (including proteases, deoxyribonucleases, and glycoside hydrolases), antibiofilm peptides, and dispersal molecules (including dispersal signals, anti-matrix molecules, and sequestration molecules). Throughout our discussion, we provide detailed lists and summaries of some of the most prominent and extensively researched dispersal agents that have shown promise against the biofilms of clinically relevant pathogens, and we catalog which specific microorganisms they have been shown to be effective against. Lastly, we discuss some of the main hurdles to development of biofilm dispersal agents, and contemplate what needs to be done to overcome them.
Collapse
|