1
|
Enmozhi SK, Xavier I, Raaj T, Sarveswaran R, Blessings J, Kesavamoorthy Y, Vivek R, Raja K, Sebastine I, Jeffri A, Arockiasamy S, Joseph J, Rani A. Recuperative potential of Indian medicinal plant compounds- a tool to encumber henipaviruses: an in -silico study. In Silico Pharmacol 2024; 12:72. [PMID: 39099797 PMCID: PMC11294312 DOI: 10.1007/s40203-024-00236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Henipaviruses, highly fatal zoonotic viruses with mortality rates up to 100%, pose a significant threat to humans. Despite sporadic cases, including infections from Cedar, Langya, and Nipah Viruses, there are no established drugs or vaccines for treatment. This lack of specific medication led us to explore 57 non-toxic compounds from Indian Medicinal Plants, selected from 232 compounds, aiming to combat these viruses. Through in silico ADMET analyses, Three compounds-andrographolide, pterygospermin and Salidroside-stood out for their exceptional non-toxic properties. These compounds underwent in silico target prediction, molecular docking and dynamics with Cedar, Langya, and Nipah Virus proteins from the Protein Data Bank. Among them, Andrographolide displayed the most promising negative free energy scores and stability in Cedar Virus-Attachment G-Protein binding pockets. Pterygospermin and Salidroside showed efficacy against Langya and Nipah Virus target proteins throughout the simulation. These compounds not only exhibited antiviral properties but also demonstrated immunomodulatory, anti-inflammatory, and hepatoprotective effects by our in-silico studies. Their potential as treatments or preventive measures against henipaviral infections makes them promising candidates for further research and development. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00236-x.
Collapse
Affiliation(s)
- Sukanth Kumar Enmozhi
- Department of Anatomy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600 116 Tamil Nadu India
| | - Infant Xavier
- Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600 116 Tamil Nadu India
| | - Theepan Raaj
- Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600 116 Tamil Nadu India
| | - R Sarveswaran
- Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600 116 Tamil Nadu India
| | - Jeba Blessings
- Department of Bioinformatics, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600 116 Tamil Nadu India
| | - Yugesh Kesavamoorthy
- Department of Anatomy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600 116 Tamil Nadu India
| | - Rahul Vivek
- Department of Biochemistry, University of Wisconsin-Madison, WI, 53715 USA
| | - Kavitha Raja
- Department of Toxicology, Bioscience Research Foundation, Sengadu, Kandamangalam, 602 002 Tamil Nadu India
| | - Irudhayasamy Sebastine
- Formulation Research and Development, Maiva Pharma Pvt. Ltd, Krishnagiri, 635 126 Tamil Nadu India
| | - Antony Jeffri
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research- Guwahati, Guwahati, 781 101 Assam India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, (DU), Porur, Chennai, 600 116 Tamil Nadu India
| | - Jerrine Joseph
- Sathyabama Institute of Science and Technology, Chennai, 600 119 India
| | - Ananda Rani
- Department of Anatomy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600 116 Tamil Nadu India
| |
Collapse
|
2
|
Shu L, Fu H, Pi A, Feng Y, Dong H, Si C, Li S, Zhu F, Zheng P, Zhu Q. Protective effect of andrographolide against ulcerative colitis by activating Nrf2/HO-1 mediated antioxidant response. Front Pharmacol 2024; 15:1424219. [PMID: 39135804 PMCID: PMC11317410 DOI: 10.3389/fphar.2024.1424219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Ulcerative colitis (UC) is a recurring inflammatory bowel disease, in which oxidative stress plays a role in its progression, and regulation of the oxidative/antioxidative balance has been suggested as a potential target for the treatment of UC. The aim of this study was to evaluate the protective effect of andrographolide against UC and its potential antioxidant properties by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Dextran sulfate sodium (DSS) -induced UC mice and the LPS-induced HT29 inflammatory cell model were established to uncover the potential mechanisms of andrographolide. ML385, a Nrf2 inhibitor, was used in both models to assess whether andrographolide exerts a protective effect against UC through the Nrf2/HO-1 pathway. The in vivo experiment showed that andrographolide ameliorated the symptoms and histopathology of DSS-induced mice and restored the expressions of ZO-1, Occludin-1 and Claudin-1. Meanwhile, DSS-induced oxidative stress and inflammation were suppressed by andrographolide treatment, along with the upregulation of key proteins in the Nrf2/HO-1 pathway. In vitro experiments showed that andrographolide attenuated LPS-induced excessive generation of ROS in HT29 cells, reduced inflammatory factors, and upregulated the expression of proteins related to tight junctions and Nrf2/HO-1 pathway. In addition, ML385 abolished the beneficial effect of andrographolide. In conclusion, the protective effect of andrographolide against UC may involve the suppression of oxidative stress and inflammation via the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Long Shu
- Department of Clinical Nutrition, Zhejiang Hospital, Hangzhou, China
| | - Hangjie Fu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aiwen Pi
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuliang Feng
- Department of Digestion, Zhejiang Hospital, Hangzhou, China
| | - Hui Dong
- Department of Digestion, Zhejiang Hospital, Hangzhou, China
| | - Caijuan Si
- Department of Clinical Nutrition, Zhejiang Hospital, Hangzhou, China
| | - Songtao Li
- Department of Clinical Nutrition, Zhejiang Hospital, Hangzhou, China
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feiye Zhu
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peifen Zheng
- Department of Clinical Nutrition, Zhejiang Hospital, Hangzhou, China
- Department of Digestion, Zhejiang Hospital, Hangzhou, China
| | - Qin Zhu
- Department of Clinical Nutrition, Zhejiang Hospital, Hangzhou, China
- Department of Digestion, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
3
|
Mishra S, Garg P, Srivastava S, Srivastava P. Br - nanoconjugate enhances the antibacterial efficacy of nimboloide against Flavobacterium columnare infection in Labeo rohita: A nanoinformatics approach. Microb Pathog 2024; 189:106575. [PMID: 38423405 DOI: 10.1016/j.micpath.2024.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The bacterial pathogen, Flavobacterium columnare causes columnaris disease in Labeo rohita globally. Major effects of this bacterial infection include skin rashes and gill necrosis. Nimbolide, the key ingredient of the leaf extract of Azadirachta indica possesses anti-bacterial properties effective against many microorganisms. Nano-informatics plays a promising role in drug development and its delivery against infections caused by multi-drug-resistant bacteria. Currently, studies in the disciplines of dentistry, food safety, bacteriology, mycology, virology, and parasitology are being conducted to learn more about the wide anti-virulence activity of nimbolide. METHODS The toxicity of nimbolide was predicted to determine its dosage for treating bacterial infection in Labeo rohita. Further, comparative 3-D structure prediction and docking studies are done for nimbolide conjugated nanoparticles with several key target receptors to determine better natural ligands against columnaris disease. The nanoparticle conjugates are being designed using in-silico approaches to study molecular docking interactions with the target receptor. RESULTS Bromine conjugated nimbolide shows the best molecular interaction with the target receptors of selected species ie L rohita. Nimbolide comes under the class III level of toxic compound so, attempts are made to reduce the dosage of the compound without compromising its efficiency. Further, bromine is also used as a common surfactant and can eliminate heavy metals from wastewater. CONCLUSION The dosage of bromine-conjugated nimbolide can be reduced to a non-toxic level and thus the efficiency of the Nimbolide can be increased. Moreover, it can be used to synthesize nanoparticle composites which have potent antibacterial activity towards both gram-positive and gram-negative bacteria. This material also forms a good coating on the surface and kills both airborne and waterborne bacteria.
Collapse
Affiliation(s)
- Sanjana Mishra
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prekshi Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India.
| |
Collapse
|
4
|
Boora S, Yadav S, Soniya K, Kaushik S, Yadav JP, Seth M, Kaushik S. Monkeypox virus is nature's wake-up call: a bird's-eye view. Virusdisease 2023:1-13. [PMID: 37363364 PMCID: PMC10214339 DOI: 10.1007/s13337-023-00826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Several infections have emerged in humans, domestic animals, wildlife, and plant populations, causing a severe problem for humanity. Since the discovery of the Monkeypox virus (Mpox) in 1958 in Copenhagen, Denmark, it has resurfaced several times, producing severe infections in humans and resulting in a significant fatality rate. Mpox is an Orthopoxvirus of the Poxviridae family. This family contains various medically important viruses. The natural reservoir of Mpox is unknown yet. Mpox might be carried by African rodents and nonhuman primates (such as monkeys). The role of monkeys has been confirmed by its various outbreaks. The infection may be transferred from unidentified wild animals to monkeys, who can then spread it to humans by crossing species barriers. In close contact, human-to-human transmission is also possible. Mpox outbreaks have been documented regularly in Central and Western Africa, but recently in 2022, it has spread to over one hundred-six countries. There is no specific treatment for it, although the smallpox vaccine, antivirals, and vaccinia immune globulin help in the effective management of Mpox. In conclusion: Monkeypox poses a severe threat to public health due to the lack of specific vaccinations and effective antivirals. Surveillance studies in affected regions can assist in the early diagnosis of disease and help to control significant outbreaks. The present review provides information on epidemiology, clinical symptoms, risk factors, diagnosis, and preventive measures of Mpox.
Collapse
Affiliation(s)
- Sanjit Boora
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Suman Yadav
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Kumari Soniya
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Sulochana Kaushik
- Department of Genetics, Maharshi Dayanand University, Rohtak, Hr India
| | | | - Mihir Seth
- Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Hr India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
5
|
Gandhar JS, De UK, Kala A, Malik YS, Yadav S, Paul BR, Dixit SK, Sircar S, Chaudhary P, Patra MK, Gaur GK. Efficacy of Microencapsulated Probiotic as Adjunct Therapy on Resolution of Diarrhea, Copper-Zinc Homeostasis, Immunoglobulins, and Inflammatory Markers in Serum of Spontaneous Rotavirus-Infected Diarrhoetic Calves. Probiotics Antimicrob Proteins 2022; 14:1054-1066. [PMID: 34676503 DOI: 10.1007/s12602-021-09862-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/25/2022]
Abstract
The objective of this study was to assess the efficacy of a microencapsulated probiotic as an adjunct therapy in rotavirus-positive diarrhea of neonatal calves that received supportive treatment or supportive along with microencapsulated probiotic treatment, for 5 days. We examined whether microencapsulated Lactobacillus acidophilus NCDC15 probiotic treatment in rotavirus-infected diarrhoetic calves led to faster resolution of diarrhea, amelioration of zinc-copper imbalance, improved the immunoglobulin A and immunoglobulin G, and decreased the inflammatory markers in serum. Calves with rotavirus-positive diarrhea < 4-week age and fecal scores ≥ 2 were randomly assigned into two groups. The supportive along with microencapsulated probiotic treatment significantly (p < 0.05) increased zinc and immunoglobulin A concentrations and decreased copper, tumor necrosis factor-α, and nitric oxide level in serum on days 3 and 5 from pretreatment values; the immunoglobulin G concentration was elevated (p < 0.05) on day 5. The mean resolution time of abnormal fecal score was 5.3 and 3.3 days in supportive treatment and supportive along with microencapsulated probiotic groups, respectively, in log-rank Mantel-Cox test. The calves in the supportive along with microencapsulated probiotic treatment group had faster resolution of diarrhea than supportive treatment group in Dunn's multiple comparisons test. This study demonstrates that supportive treatment along with microencapsulated probiotic administered to naturally rotavirus-infected diarrhoetic calves at onset of diarrhea led to faster resolution of diarrhea, improved zinc and immunoglobulin levels, and decreased the inflammatory parameters in serum of rotavirus-infected diarrhoetic calves.
Collapse
Affiliation(s)
- Jitendra Singh Gandhar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Ujjwal Kumar De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India.
| | - Anju Kala
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Supriya Yadav
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Babul Rudra Paul
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Shivendra Kumar Dixit
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Pallab Chaudhary
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Manas Kumar Patra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| |
Collapse
|
6
|
Allegra A, Mirabile G, Ettari R, Pioggia G, Gangemi S. The Impact of Curcumin on Immune Response: An Immunomodulatory Strategy to Treat Sepsis. Int J Mol Sci 2022; 23:ijms232314710. [PMID: 36499036 PMCID: PMC9738113 DOI: 10.3390/ijms232314710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Primary and secondary immunodeficiencies cause an alteration in the immune response which can increase the rate of infectious diseases and worsened prognoses. They can also alter the immune response, thus, making the infection even worse. Curcumin is the most biologically active component of the turmeric root and appears to be an antimicrobial agent. Curcumin cooperates with various cells such as macrophages, dendritic cells, B, T, and natural killer cells to modify the body's defence capacity. Curcumin also inhibits inflammatory responses by suppressing different metabolic pathways, reduces the production of inflammatory cytokines, and increases the expression of anti-inflammatory cytokines. Curcumin may also affect oxidative stress and the non-coding genetic material. This review analyses the relationships between immunodeficiency and the onset of infectious diseases and discusses the effects of curcumin and its derivatives on the immune response. In addition, we analyse some of the preclinical and clinical studies that support its possible use in prophylaxis or in the treatment of infectious diseases. Lastly, we examine how nanotechnologies can enhance the clinical use of curcumin.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98100 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
7
|
Leon Juarez M, García-Cordero J, Comas-Garcia M, Barrón LC, González-Santamaría J, Shrivastava G. Editorial: Cellular, molecular and immunological aspects in arboviruses infection. Front Cell Infect Microbiol 2022; 12:973953. [PMID: 35909971 PMCID: PMC9331162 DOI: 10.3389/fcimb.2022.973953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Moises Leon Juarez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
- *Correspondence: Moises Leon Juarez,
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Mauricio Comas-Garcia
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Leticia Cedillo- Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - José González-Santamaría
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de salud, Panamá, Panama
| | - Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
8
|
Wylie MR, Merrell DS. The Antimicrobial Potential of the Neem Tree Azadirachta indica. Front Pharmacol 2022; 13:891535. [PMID: 35712721 PMCID: PMC9195866 DOI: 10.3389/fphar.2022.891535] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
Azadirachta indica (A. Juss), also known as the neem tree, has been used for millennia as a traditional remedy for a multitude of human ailments. Also recognized around the world as a broad-spectrum pesticide and fertilizer, neem has applications in agriculture and beyond. Currently, the extensive antimicrobial activities of A. indica are being explored through research in the fields of dentistry, food safety, bacteriology, mycology, virology, and parasitology. Herein, some of the most recent studies that demonstrate the potential of neem as a previously untapped source of novel therapeutics are summarized as they relate to the aforementioned research topics. Additionally, the capacity of neem extracts and compounds to act against drug-resistant and biofilm-forming organisms, both of which represent large groups of pathogens for which there are limited treatment options, are highlighted. Updated information on the phytochemistry and safety of neem-derived products are discussed as well. Although there is a growing body of exciting evidence that supports the use of A. indica as an antimicrobial, additional studies are clearly needed to determine the specific mechanisms of action, clinical efficacy, and in vivo safety of neem as a treatment for human pathogens of interest. Moreover, the various ongoing studies and the diverse properties of neem discussed herein may serve as a guide for the discovery of new antimicrobials that may exist in other herbal panaceas across the globe.
Collapse
Affiliation(s)
- Marina R Wylie
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
9
|
Alagarasu K, Patil P, Kaushik M, Chowdhury D, Joshi RK, Hegde HV, Kakade MB, Hoti SL, Cherian S, Parashar D. In Vitro Antiviral Activity of Potential Medicinal Plant Extracts Against Dengue and Chikungunya Viruses. Front Cell Infect Microbiol 2022; 12:866452. [PMID: 35463636 PMCID: PMC9021897 DOI: 10.3389/fcimb.2022.866452] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue and chikungunya are two important mosquito-borne infections which are known to occur extensively in tropical and subtropical areas. Presently, there is no treatment for these viral diseases. In vitro antiviral screening of 25 extracts prepared from the plants of Vitex negundo, Plumeria alba, Ancistrocladus heyneanus, Bacopa monnieri, Anacardium occidentale, Cucurbita maxima, Simarouba glauca, and Embelia ribes using different solvents and four purified compounds (anacardic acid, chloroquinone, glaucarubinone, and methyl gallate) were carried out for their anti-dengue virus (DENV) and anti-chikungunya virus (CHIKV) activities. Maximum nontoxic concentrations of the chloroform, methanol, ethyl acetate, petroleum ether, dichloromethane, and hydroalcoholic extracts of eight plants were used. The antiviral activity was assessed by focus-forming unit assay, quantitative real-time RT-PCR, and immunofluorescence assays. Extracts from Plumeria alba, Ancistrocladus heyneanus, Bacopa monnieri, and Cucurbita maxima showed both anti-DENV and CHIKV activity while extract from Vitex negundo showed only anti-DENV activity. Among the purified compounds, anacardic acid, chloroquinone and methyl gallate showed anti-dengue activity while only methyl gallate had anti-chikungunya activity. The present study had identified the plant extracts with anti-dengue and anti-chikungunya activities, and these extracts can be further characterized for finding effective phytopharmaceutical drugs against dengue and chikungunya.
Collapse
Affiliation(s)
- Kalichamy Alagarasu
- Dengue and Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, India
| | - Poonam Patil
- Dengue and Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, India
| | - Meenakshi Kaushik
- Department of Natural Product Chemistry, Indian Council of Medical Research (ICMR)-National Institute of Traditional Medicine, Belagavi, India
| | - Deepika Chowdhury
- Dengue and Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, India
| | - Rajesh K. Joshi
- Department of Natural Product Chemistry, Indian Council of Medical Research (ICMR)-National Institute of Traditional Medicine, Belagavi, India
| | - Harsha V. Hegde
- Department of Ethnomedicine, Indian Council of Medical Research (ICMR)-National Institute of Traditional Medicine, Belagavi, India
| | - Mahadeo B. Kakade
- Dengue and Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, India
| | - Sugeerappa Laxmanappa Hoti
- Ex-Director, Indian Council of Medical Research (ICMR)-National Institute of Traditional Medicine, Belagavi, India
| | - Sarah Cherian
- Dengue and Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, India
- *Correspondence: Sarah Cherian, ; Deepti Parashar,
| | - Deepti Parashar
- Dengue and Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, India
- *Correspondence: Sarah Cherian, ; Deepti Parashar,
| |
Collapse
|
10
|
Khuntia BK, Sharma V, Qazi S, Das S, Sharma S, Raza K, Sharma G. Ayurvedic Medicinal Plants Against COVID-19: An In Silico Analysis. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Even after one and a half years since the outbreak of COVID-19, its complete and effective control is still far from being achieved despite vaccination drives, symptomatic management with available drugs, and wider lockdowns. This has inspired researchers to screen potential phytochemicals from medicinal plants against SARS-CoV-2, adopting a bio-informatics approach. The current study aimed to assess anti-viral activity of the phytochemicals derived from Ayurvedic medicinal plants against SARS-CoV-2 drug targets [3-chymotrypsin-like protease (3CLpro) and RNA dependent RNA polymerase (RdRp)] using validated in silico methods.3D Structures of 196 phytochemicals from three Ayurvedic plants were retrieved from PubChem and KNApSAcK databases and screened for Absorption Distribution Metabolism Excretion and Toxicity(ADMET) to predict drug-likeness. The phytochemicals were subjected to molecular docking and only three showed promise: Acetovanillonewith a binding affinity of −4.7Kcal/mol with RdRp and −4.1 Kcal/mol with 3CL pro; myrtenol with equivalent values of −4.3 Kcal/mol with RdRP and −3.2 Kcal/mol with 3CLpro; and nimbochalcin with equivalent values of −5.0Kcal/mol with RdRp and −4.9 Kcal/mol with 3CLpro. Molecular dynamics simulation (50ns) analysis was made of 3CLpro and RdRp using Autodock Vina 1.1.2 software and VMD software. After ADMET analysis, 78 phytochemicals were found suitable for molecular docking. Three, namely acetovanillone, myrtenol and nimbochalcin from Picrorhiza kurroa, Azadirachta indica and Cyperus rotundus,respectively,exhibited good binding affinity with 3CLproand RdRp of SARS-CoV-2. Interaction analysis, molecular dynamics simulations and MM-PBSA calculations were executed for two complexes, acetovanillone_RdRp and myrtenol_3CL pro.Acetovanillone_RdRpcomplex did not display any structural change after MD simulation as compared to myrtenol_3CL pro. The overall stability of acetovanillone_6NUR was 154.7 kJ/mol, and for myrtenol_1UJ1 90.5 kJ/mol. In silico analysis revealed that acetovanillone ( Picrorhiza kurroa) and myrtenol ( Cyperus rotundus) possess anti SARS-CoV-2 activity. Further studies are needed to validate their efficacy in biological models.
Collapse
Affiliation(s)
- Bharat Krushna Khuntia
- Center for Integrative Medicine & Research (CIMR), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vandna Sharma
- Center for Integrative Medicine & Research (CIMR), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sahar Qazi
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Soumi Das
- ICMR-National Institute of Pathology, New Delhi, India
| | - Shruti Sharma
- ICMR-National Institute of Pathology, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Gautam Sharma
- Center for Integrative Medicine & Research (CIMR), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
11
|
Singh R, Goel S, Bourgeade P, Aleya L, Tewari D. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55925-55951. [PMID: 34491498 PMCID: PMC8422837 DOI: 10.1007/s11356-021-16280-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/27/2021] [Indexed: 05/08/2023]
Abstract
Coronavirus disease (COVID-19) has been declared as a pandemic by the World Health Organization with rapid spread across 216 countries. COVID-19 pandemic has left its imprints on various health systems globally and caused immense social and economic disruptions. The scientific community across the globe is in a quest for digging the effective treatment for COVID-19 and exploring potential leads from traditional systems of healthcare across the world too. Ayurveda (Indian traditional system of medicine) has a comprehensive aspect of immunity through Rasayana which is a rejuvenation therapy. Here we attempt to generate the potential leads based on the classical text from Ayurveda in general and Rasayana in particular to develop effective antiviral and/or immunomodulator for potential or adjunct therapy in SARS-CoV-2. The Rasayana acts not only by resisting body to restrain or withstand the strength, severity or progression of a disease but also by promoting power of the body to prevent the manifestation of a disease. These Rasayana herbs are common in practice as immunomodulator, antiviral and protectives. The studies on Rasayana can provide an insight into the future course of research for the plausible development of effective management of COVID-19 by the utilization and development of various traditional systems of healthcare. Keeping in view the current pandemic situation, there is an urgent need of developing potential medicines. This study proposes certain prominent medicinal plants which may be further studied for drug development process and also in clinical setup under repurposing of these herbs.
Collapse
Affiliation(s)
- Rajeshwari Singh
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Sumeet Goel
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Pascale Bourgeade
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
12
|
Singh SK, Rajoria K, Sharma S, Godatwar PK, Sharma S, Kotecha M, Agrawal SK, Sharma RP, Yadav S, Joshi R. An observational study on acceptability, palatability, and safety of Ayurveda immunity booster kit for the prevention of COVID-19 in frontline workers in Jaipur, India. Ayu 2021; 42:111-117. [PMID: 37303860 PMCID: PMC10251284 DOI: 10.4103/ayu.ayu_16_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 06/13/2023] Open
Abstract
Background National Institute of Ayurveda, Jaipur, India, had distributed Ayurveda immunity booster kit (AIBK) (prepared at own pharmacy and comprising Chyawanprasha - 300 g, Vyadhi Kshamatva Kwatha - 300 g, and Vyadhi Kshamatva capsule - 30 g) for 15 days among the health-care workers, sanitation workers, and security and police staff engaged in the containment zones for prevention of COVID-19. Aim The aim of present study was to explore the medication that may be effective in prevention of the COVID -19. Hence, this study was done to assess the compliance of these medicines and their effects in the prevention of COVID-19. Methods One thousand seven hundred and fourteen frontline workers were provided with the AIBK for 15 days from April 24, 2020, to June 27, 2020. Data of frontline workers who had participated in AIBK and completed the treatment regimen with 2 weeks of follow-up after treatment with complete available data for safety, palatability, efficacy, and compliance were included in the study. Any adverse event needing hospitalization or medication, drug compliance and palatability, and appearance of the symptoms of COVID-19 or testing positive for COVID-19 were the outcome measures. Results Out of 1714 participants, 1003 participants were found to be eligible for this analysis. The median age of these participants was 39 years (range, 19-70), and males accounted for 90.1% (904 of 1003). A total of 7.5% of participants (75 of 1003) reported having adverse events after taking the study treatment. None of the participants reported any serious adverse effects after the administration of the AIBK. The acceptability of the AIBK was as high as 97.4%. None of the participants reported positive for COVID-19 results or COVID-19 symptoms up to 2 weeks of follow-up after completion of the study treatment. Conclusion The acceptability of AIBK is good and indicates its role in the prevention of COVID-19-like illness, hence further randomized control trials or cohort studies can be done to assess the mechanism of action and efficacy of AIBK as the preventive strategy in COVID-19.
Collapse
Affiliation(s)
- Sarvesh Kumar Singh
- Department of Panchakarma, National Institute of Ayurveda, Jaipur, Rajasthan, India
| | - Kshipra Rajoria
- Department of Panchakarma, National Institute of Ayurveda, Jaipur, Rajasthan, India
| | - Sanjeev Sharma
- Department of Shalya, National Institute of Ayurveda, Jaipur, Rajasthan, India
| | - Pawan Kumar Godatwar
- Department of Rog Vikriti Vigyan, National Institute of Ayurveda, Jaipur, Rajasthan, India
| | - Suman Sharma
- Department of Shalya, National Institute of Ayurveda, Jaipur, Rajasthan, India
| | - Mita Kotecha
- Department of Dravyaguna, National Institute of Ayurveda, Jaipur, Rajasthan, India
| | | | | | - Shobhnath Yadav
- Department of Rasashastra, National Institute of Ayurveda, Jaipur, Rajasthan, India
| | - Ramkishor Joshi
- Department of Kayachikitsa, National Institute of Ayurveda, Jaipur, Rajasthan, India
| |
Collapse
|
13
|
In Vitro Antioxidant, Cytotoxic Activities, and Phenolic Profile of Senecio glaucus from Saudi Arabia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8875430. [PMID: 33163085 PMCID: PMC7604592 DOI: 10.1155/2020/8875430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 01/25/2023]
Abstract
Current treatments for complex diseases have remarkable side effects that negatively impact patients' quality of life. Thus, natural compounds with fewer side effects represent a promising source for safe drugs. The genus Senecio is widely used in folk medicine due to its various pharmacological properties. In the present study, the total phenolic content of Senecio glaucus, which is grown in Saudi Arabia, was assessed using the Folin-Ciocalteau colorimetric method. Scavenging DPPH and ABTS assays were utilized to determine the antioxidant properties of S. glaucus fractions, and MTT assay was used to screen the cytotoxic activity of S. glaucus against various cancer cells. In addition, HPLC-UV was utilized to detect the presence of two phenolic acids, namely, vanillic acid (VA) and gallic acid (GA). Among all fractions tested, S. glaucus chloroform fraction (SGCF) yielded the highest value (125.3 mg·GA/g) in terms of total phenolic content. SGCF also exhibited the highest scavenging activities (76.7 and 74.1%) on both DPPH and ABTS assays, respectively. Similarly, SGCF also possessed the most potent cytotoxic activity against the MCF-7 cell line, with an IC50 value of 41.8 μg/ml. The validated HPLC method confirmed the presence of VA (4.8 μg/mg DW) and GA (3.9 μg/mg DW) in SGCF. Overall, our data show that S. glaucus had antioxidant and cytotoxic properties. A developed validated HPLC method which could be helpful for quantifying phenolic compounds in S. glaucus was established.
Collapse
|
14
|
Saravanan KM, Zhang H, Senthil R, Vijayakumar KK, Sounderrajan V, Wei Y, Shakila H. Structural basis for the inhibition of SARS-CoV2 main protease by Indian medicinal plant-derived antiviral compounds. J Biomol Struct Dyn 2020; 40:1970-1978. [PMID: 33073712 PMCID: PMC7594188 DOI: 10.1080/07391102.2020.1834457] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel coronavirus (SARS-CoV2) has caused a major outbreak in humans around the globe, and it became a severe threat to human healthcare than all other infectious diseases. Researchers were urged to discover and test various approaches to control and prevent such a deadly disease. Considering the emergency and necessity, we screened reported antiviral compounds present in the traditional Indian medicinal plants for the inhibition of SARS-CoV2 main protease. In this study, we used molecular docking to screen 41 reported antiviral compounds that exist in Indian medicinal plants and shown amentoflavone from the plant Torreyanucifera with a higher docking score. Furthermore, we performed a 40 ns atomic molecular dynamics simulation and free binding energy calculations to explore the stability of the top five protein–ligand complexes. Through the article, we insist that the amentoflavone, hypericin and Torvoside H from the traditional Indian medicinal plants may be used as a potential inhibitor of SARS-CoV2 main protease and further biochemical experiments could shed light on understanding the mechanism of inhibition by these plant-derived antiviral compounds. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Konda Mani Saravanan
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, PR China
| | - Haiping Zhang
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, PR China
| | - Renganathan Senthil
- Department of Bioinformatics, Marudupandiyar College & Lysine Biotech Pvt Ltd, Thanjavur, Tamilnadu, India
| | - Kevin Kumar Vijayakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | | | - Yanjie Wei
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, PR China
| | - Harshavardhan Shakila
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, India
| |
Collapse
|
15
|
Getahun T, Sharma V, Gupta N. The genus
Laggera
(Asteraceae) – Ethnobotanical and Ethnopharmacological Information, Chemical Composition as well as Biological Activities of Its Essential Oils and Extracts: A Review. Chem Biodivers 2019; 16:e1900131. [DOI: 10.1002/cbdv.201900131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Tokuma Getahun
- School of Chemistry, Faculty of Basic Sciences Shoolini University, Bajhol, P.O. Sultanpur Solan – 173229 India
| | - Vinit Sharma
- School of Chemistry, Faculty of Basic Sciences Shoolini University, Bajhol, P.O. Sultanpur Solan – 173229 India
| | - Neeraj Gupta
- School of Chemistry, Faculty of Basic Sciences Shoolini University, Bajhol, P.O. Sultanpur Solan – 173229 India
| |
Collapse
|