1
|
El Messaoudi N, El Khomri M, El Mouden A, Bouich A, Jada A, Lacherai A, Iqbal HMN, Mulla SI, Kumar V, Américo-Pinheiro JHP. Regeneration and reusability of non-conventional low-cost adsorbents to remove dyes from wastewaters in multiple consecutive adsorption–desorption cycles: a review. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:11739-11756. [DOI: 10.1007/s13399-022-03604-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 12/17/2024]
|
2
|
de O Salomón YL, Georgin J, Franco DSP, Netto MS, Foletto EL, Piccilli DGA, Sellaoui L, Dotto GL. Transforming pods of the species Capparis flexuosa into effective biosorbent to remove blue methylene and bright blue in discontinuous and continuous systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8036-8049. [PMID: 33051842 DOI: 10.1007/s11356-020-11211-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
This study investigates, for the first time, the applicability of seed pods from Capparis flexuosa as an alternative biosorbent to remove methylene blue and bright blue from aqueous medium using continuous and batch systems. The biosorbent was characterized by different techniques, whose particles presented rough surface and large pores and functional groups existing on its surface. In the batch system, an adsorptive capacity of 96.40 mg g-1 and 80% of methylene blue removal was reached with 0.9 g L-1 of adsorbent at pH 10, whereas 109.7 mg g-1 and 83% of bright blue removal was observed using 0.8 g L-1 of adsorbent at pH 2.0. The Elovich model adjusted the experimental data satisfactorily for both dyes. Tóth model for the MB best described the equilibrium data, and the Langmuir model for the bright blue both favored by the increase of temperature and dyes' concentration. The maximum capacities obtained were 280.78 mg g-1 and 342.85 mg g-1 for methylene blue and bright blue, respectively. The thermodynamic parameters indicated spontaneous processes, with endothermic behavior for both dyes. The fixed adsorption experiments using Capparis flexuosa seed pods showed adsorptive capacities of 158.65 and 205.81 mg g-1 for the methylene blue and bright blue, respectively. The overall results indicated that the pods of the Capparis flexuosa could be an ecological, effective, and economical alternative in the removal of dyes for both continuous and batch systems.
Collapse
Affiliation(s)
- Yamil L de O Salomón
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Matias S Netto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Edson L Foletto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Daniel G A Piccilli
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Lotfi Sellaoui
- Laboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | - Guilherme L Dotto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
3
|
de O Salomón YL, Georgin J, Dos Reis GS, Lima ÉC, Oliveira MLS, Franco DSP, Netto MS, Allasia D, Dotto GL. Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33307-33320. [PMID: 32529627 DOI: 10.1007/s11356-020-09471-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Wastes from the Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds were studied as biosorbents for the removal of basic fuchsin from waters. Both biosorbents were prepared and characterized by different analytical methods. The characterization data showed that both materials were mainly composed of lignin, cellulose, and hemicellulose. Both biosorbents exhibited roughened surfaces and surface functional groups such as C-H, C=O, C=C, C-O, C-N, and OH bonds. Furthermore, the XRD pattern shows an amorphous phase with a wide peak from 10 to 30° due to the lignin. In terms of dosage and pH, the use of 1 g L-1 and 9.0, respectively, is recommended. The initial concentrations for the biosorption kinetics ranged from 50 to 500 mg L-1, where the Pacara ear and the Ironwood reached an adsorption capacity of 145.62 and 100.743 mg g-1 for the 500 mg L-1. The pseudo-second-order was found to be the proper model for describing biosorption of basic fuchsin onto Pacara Earpod tree and Ironwood, respectively. For the isotherm experiments, the maximum experimental biosorption capacity was found to be 166.858 and 110.317 mg g-1 for the Pacara Earpod and Ironwood for the initial concentration of 500 mg L-1 at 328 K. The Langmuir and the Tóth models were the best for representing the equilibrium curves for the basic fuchsin on the Pacara Earpod and the Ironwood, respectively. Maximum adsorption capacities of 177.084 mg g-1 and 136.526 mg g-1 were achieved for the Pacara Earpod tree and Ironwood, respectively. The biosorption process was spontaneous, endothermic, and favorable for both biosorbents. The biosorbents were also applied for coloration removal of simulated textile effluents, reaching 66% and 54% for the Pacara Earpod and Ironwood, respectively. For the final application, the materials were used in fixed-bed biosorption, with an initial concentration of 200 mg L-1, reaching breakthrough times of 710 and 415 min, leading to biosorption capacities of the column of 124.5 and 76.5 mg g-1, for the Pacara Earpod and Ironwood, respectively.
Collapse
Affiliation(s)
- Yamil L de O Salomón
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Glaydson Simões Dos Reis
- Graduate Program in Metallurgical, Mine, and Materials Engineering (PPGE3M), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Éder Claudio Lima
- Graduate Program in Metallurgical, Mine, and Materials Engineering (PPGE3M), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcos L S Oliveira
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, Barranquilla, 080002, Atlántico, Colombia.
- Faculdade Meridional IMED, 304, Passo Fundo, RS, 99070-220, Brazil.
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Matias Schadeck Netto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Daniel Allasia
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
4
|
Ahmed Eljiedi AA, Kamari A, Sunardi, Fatimah I. Lala clam (Orbicularia orbiculata) shell as an eco-friendly adsorbent for Cd(II), Cu(II) and Pb(II) ions. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1080/25765299.2019.1674046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Arwa Alseddig Ahmed Eljiedi
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - Azlan Kamari
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - Sunardi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat, South Kalimantan, Indonesia
| | - Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Qi J, Li Y, Majeed H, Goff HD, Rahman MRT, Zhong F. Adsorption mechanism modeling using lead (Pb) sorption data on modified rice bran-insoluble fiber as universal approach to assess other metals toxicity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1650764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jing Qi
- Department of Food Engineering, Guangxi University of Chinese Medicine, Nanning, 530200 China
| | - Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Hamid Majeed
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
- Department of Food Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - H. Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Md Ramim Tanver Rahman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
6
|
Pérez-Morales JM, Sánchez-Galván G, Olguín EJ. Continuous dye adsorption and desorption on an invasive macrophyte (Salvinia minima). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5955-5970. [PMID: 30613890 DOI: 10.1007/s11356-018-04097-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The continuous adsorption-desorption of methylene blue (MB) on an invasive macrophyte, Salvinia minima, was investigated in fixed-bed columns. The effects of bed depth (h) (9.30, 18.70, and 28 cm), inlet dye concentration (C0) (51 ± 1.20, 154 ± 2.00, and 250 ± 1.50 mg L-1), and flow rate (Q) (7 and 14 mL min-1) on dye removal and breakthrough curves were assessed. Thomas, modified dose-response (MDR) and bed depth service time (BDST) models were fitted to the experimental data. Desorption and regeneration studies were also performed. The breakthrough time was affected by h, C0, and Q. The dynamic bed capacity at the breakthrough point (qb) increased with increasing h but decreased with increasing C0 and Q. Dynamic bed capacities (qe) from 318 to 322 mg g-1 were achieved at h = 28 cm, C0 = 154 ± 2.0, or 250 ± 1.50 mg L-1, independently of the Q value. High MB removals were also observed (75-78%). FTIR analysis revealed that hydroxyl and carboxyl groups could be involved in dye adsorption. MDR and BDST models were both successfully used to predict the breakthrough curves of MB adsorption onto S. minima. A high regeneration efficiency (> 87%) was obtained after three adsorption-desorption cycles. These results confirm that the use of S. minima biomass could be a very efficient and eco-friendly alternative for MB adsorption in continuous mode.
Collapse
Affiliation(s)
- Juan M Pérez-Morales
- Biotechnological Management of Resources Network, Institute of Ecology, Carretera Antigua a Coatepec # 351, El Haya, Xalapa, 91070, Veracruz, Mexico
| | - Gloria Sánchez-Galván
- Biotechnological Management of Resources Network, Institute of Ecology, Carretera Antigua a Coatepec # 351, El Haya, Xalapa, 91070, Veracruz, Mexico.
| | - Eugenia J Olguín
- Biotechnological Management of Resources Network, Institute of Ecology, Carretera Antigua a Coatepec # 351, El Haya, Xalapa, 91070, Veracruz, Mexico
| |
Collapse
|
7
|
Surface Separation Equilibria and Dynamics of Cationic Dye Loaded onto Citric Acid and Sodium Hydroxide Treated Eggshells. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2019. [DOI: 10.1515/ijcre-2018-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis research enthusiastically highlights the bio-adsorption of methylene blue (MB) by local, poultry, NaOH and citric acid modified ubiquitous eggshell (LES, NLES, CLES, PES, NPES and CPES) adsorbents. The microstructures of these adsorbents indicated that they had some surface functional moieties that were responsible for the adsorption of MB. The Langmuir isotherm and PSO model best fit the experiment data. The largest Langmuir monolayer adsorption capacity${q_{max}}$, was 242.47 mg/g, with the largest MB initial concentration of 400 mg/L. This was a clear indication and a confirmation that MB adsorption by the powdered eggshells was chemisorptive. Moreover, the values of$F$, the thickness of the boundary layer/film were$\gt 0$, showing that the rate limiting step for the adsorption process was controlled by more than one diffusion mechanism. The values of$\Delta {G^\circ }$for the adsorption of MB by the adsorbents indicated that the adsorption reactions were all non-feasible and non-spontaneous. The values for$\Delta {S^\circ }$(J/K/mol) for LES, NLES and CPES for the uptake of MB showed decrease in the chaos or degree of randomness of the adsorption reactions, and the reverse was the case for PES, NPES and CLES for the uptake of MB, which showed increase in the chaos or degree of randomness of the adsorption. The adsorption of MB by LES, NLES and CPES gave$\Delta {H^\circ }$(kJ/mol) values which were indicative of endothermic nature of the adsorption systems, and the reverse was the case for the uptake of MB by PES, NPES and CLES, which was indicative of the exothermic nature of the adsorption systems.
Collapse
|
8
|
Omorogie MO, Agunbiade FO, Alfred MO, Olaniyi OT, Adewumi TA, Bayode AA, Ofomaja AE, Naidoo EB, Okoli CP, Adebayo TA, Unuabonah EI. The sequestral capture of fluoride, nitrate and phosphate by metal-doped and surfactant-modified hybrid clay materials. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0290-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|