1
|
Abolfazli S, Butler AE, Jamialahmadi T, Sahebkar A. A Golden Shield: The Protective Role of Curcumin against Liver Fibrosis. Curr Med Chem 2025; 32:1987-2004. [PMID: 37605399 DOI: 10.2174/0929867331666230821095329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023]
Abstract
Several chronic liver injuries can result in liver fibrosis, a wound-healing response defined by an excessive buildup of diffuse extracellular matrix (ECM). Liver fibrosis may progress to liver cirrhosis, liver failure, or hepatocellular carcinoma. Many cellular routes are implicated in the fibrosis process; however, hepatic stellate cells appear to be the main cell type involved. Curcumin, a polyphenolic substance extracted from the Curcuma longa plant, has a diversity of pharmacologic impacts, including anti- inflammatory, antioxidant, antiproliferative and antiangiogenic actions. The anti-fibrotic property of curcumin is less clear, but curcumin's ability to influence inflammatory cytokines, inflammatory pathways, the expression of pro-apoptotic (up-regulated) and anti- apoptotic (down-regulated) proteins, and its ability to lower oxidative stress likely underlie its anti-fibrotic properties. In this review, we investigate and analyze the impact of curcumin on several disorders that lead to liver fibrosis, and discuss the therapeutic applications of curcumin for these disorders.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland-Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Lucantoni F, Martínez-Cerezuela A, Gruevska A, Moragrega ÁB, Víctor VM, Esplugues JV, Blas-García A, Apostolova N. Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: are we there yet? J Pathol 2021; 254:216-228. [PMID: 33834482 DOI: 10.1002/path.5678] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023]
Abstract
Liver fibrosis (LF) occurs as a result of persistent liver injury and can be defined as a pathologic, chronic, wound-healing process in which functional parenchyma is progressively replaced by fibrotic tissue. As a phenomenon involved in the majority of chronic liver diseases, and therefore prevalent, it exerts a significant impact on public health. This impact becomes even more patent given the lack of a specific pharmacological therapy, with LF only being ameliorated or prevented through the use of agents that alleviate the underlying causes. Hepatic stellate cells (HSCs) are fundamental mediators of LF, which, activated in response to pro-fibrotic stimuli, transdifferentiate from a quiescent phenotype into myofibroblasts that deposit large amounts of fibrotic tissue and mediate pro-inflammatory effects. In recent years, much effort has been devoted to understanding the mechanisms through which HSCs are activated or inactivated. Using cell culture and/or different animal models, numerous studies have shown that autophagy is enhanced during the fibrogenic process and have provided specific evidence to pinpoint the fundamental role of autophagy in HSC activation. This effect involves - though may not be limited to - the autophagic degradation of lipid droplets. Several hepatoprotective agents have been shown to reverse the autophagic alteration present in LF, but clinical confirmation of these effects is pending. On the other hand, there is evidence that implicates autophagy in several anti-fibrotic mechanisms in HSCs that stimulate HSC cell cycle arrest and cell death or prevent the generation of pro-fibrotic mediators, including excess collagen accumulation. The objective of this review is to offer a comprehensive analysis of published evidence of the role of autophagy in HSC activation and to provide hints for possible therapeutic targets for the treatment and/or prevention of LF related to autophagy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Federico Lucantoni
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
| | | | - Aleksandra Gruevska
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
| | - Ángela B Moragrega
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
| | - Víctor M Víctor
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
| | - Ana Blas-García
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
| |
Collapse
|
3
|
Condrat CE, Barbu MG, Thompson DC, Dănilă CA, Boboc AE, Suciu N, Crețoiu D, Voinea SC. Roles and distribution of telocytes in tissue organization in health and disease. TISSUE BARRIERS IN DISEASE, INJURY AND REGENERATION 2021:1-41. [DOI: 10.1016/b978-0-12-818561-2.00001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Kong D, Zhang Z, Chen L, Huang W, Zhang F, Wang L, Wang Y, Cao P, Zheng S. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy. Redox Biol 2020; 36:101600. [PMID: 32526690 PMCID: PMC7287144 DOI: 10.1016/j.redox.2020.101600] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The massive production and activation of myofibroblasts (MFB) is key to the development of liver fibrosis. In many studies, it has been proven that hepatocytes are an important part of MFB, and can be transformed into MFB through epithelial-mesenchymal transition (EMT) during hepatic fibrogenesis. In our previous study, we confirmed that curcumin inhibited EMT procession and differentiation of hepatocytes into MFB. In addition, in previous studies, it has been shown that autophagy plays an important role in the regulation of cellular EMT procession. In the current study, we showed that curcumin inhibited TGF-β/Smad signaling transmission by activating autophagy, thereby inhibiting EMT. The mechanism of degradative polyubiquitylation of Smad2 and Smad3 is likely through inhibiting tetratricopeptide repeat domain 3 (TTC3) and by inducing ubiquitylation and proteasomal degradation of Smad ubiquitination regulatory factor 2 (SMURF2), which on account of the increase of autophagy in hepatocytes. Curcumin inhibits levels of reactive oxygen species (ROS) and oxidative stress in hepatocytes by activating PPAR-α, and regulates upstream signaling pathways of autophagy AMPK and PI3K/AKT/mTOR, leading to an increase of the autophagic flow in hepatocytes. In this study, we confirm that curcumin effectively reduced the occurrence of EMT in hepatocytes and inhibited production of the extracellular matrix (ECM) by activating autophagy, which provides a potential novel therapeutic strategy for hepatic fibrosis.
Collapse
Affiliation(s)
- Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liping Chen
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Weifang Huang
- Department of Pharmacology, School of Integral Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ling Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Wang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Peng Cao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Liang H, Li Z, Ren Z, Jia Q, Guo L, Li S, Zhang H, Hu S, Zhu D, Shen D, Yu Z, Cheng K. Light-triggered NO-releasing nanoparticles for treating mice with liver fibrosis. NANO RESEARCH 2020; 13:2197-2202. [DOI: 10.1007/s12274-020-2833-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 08/02/2024]
|
6
|
Eubanks HB, Lavoie EG, Goree J, Kamykowski JA, Gokden N, Fausther M, Dranoff JA. Reduction in SNAP-23 Alters Microfilament Organization in Myofibrobastic Hepatic Stellate Cells. Gene Expr 2020; 20:25-37. [PMID: 31757226 PMCID: PMC7284106 DOI: 10.3727/105221619x15742818049365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hepatic stellate cells (HSC) are critical effector cells of liver fibrosis. In the injured liver, HSC differentiate into a myofibrobastic phenotype. A critical feature distinguishing myofibroblastic from quiescent HSC is cytoskeletal reorganization. Soluble NSF attachment receptor (SNARE) proteins are important in trafficking of newly synthesized proteins to the plasma membrane for release into the extracellular environment. The goals of this project were to determine the expression of specific SNARE proteins in myofibroblastic HSC and to test whether their alteration changed the HSC phenotype in vitro and progression of liver fibrosis in vivo. We found that HSC lack the t-SNARE protein, SNAP-25, but express a homologous protein, SNAP-23. Downregulation of SNAP-23 in HSC induced reduction in polymerization and disorganization of the actin cytoskeleton associated with loss of cell movement. In contrast, reduction in SNAP-23 in mice by monogenic deletion delayed but did not prevent progression of liver fibrosis to cirrhosis. Taken together, these findings suggest that SNAP-23 is an important regular of actin dynamics in myofibroblastic HSC, but that the role of SNAP-23 in the progression of liver fibrosis in vivo is unclear.
Collapse
Affiliation(s)
- Haleigh B. Eubanks
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Elise G. Lavoie
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jessica Goree
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeffrey A. Kamykowski
- †Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neriman Gokden
- ‡Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michel Fausther
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jonathan A. Dranoff
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
7
|
Zadorozhna M, Di Gioia S, Conese M, Mangieri D. Neovascularization is a key feature of liver fibrosis progression: anti-angiogenesis as an innovative way of liver fibrosis treatment. Mol Biol Rep 2020; 47:2279-2288. [PMID: 32040707 DOI: 10.1007/s11033-020-05290-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis affects over 100 million people in the world; it represents a multifactorial, fibro-inflammatory disorder characterized by exacerbated production of extracellular matrix with consequent aberration of hepatic tissue. The aetiology of this disease is very complex and seems to involve a broad spectrum of factors including the lifestyle, environment factors, genes and epigenetic changes. More evidences indicate that angiogenesis, a process consisting in the formation of new blood vessels from pre-existing vessels, plays a crucial role in the progression of liver fibrosis. Central to the pathogenesis of liver fibrosis is the hepatic stellate cells (HSCs) which represent a crossroad among inflammation, fibrosis and angiogenesis. Quiescent HSCs can be stimulated by a host of growth factors, pro-inflammatory mediators produced by damaged resident liver cell types, as well as by hypoxia, contributing to neoangiogenesis, which in turn can be a bridge between acute and chronic inflammation. As matter of fact, studies demonstrated that neutralization of vascular endothelial growth factor as well as other proangiogenic agents can attenuate the progression of liver fibrosis. With this review, our intent is to discuss the cause and the role of angiogenesis in liver fibrosis focusing on the current knowledge about the impact of anti-angiogenetic therapies in this pathology.
Collapse
Affiliation(s)
- Mariia Zadorozhna
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Domenica Mangieri
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
8
|
Miguel V, Lamas S. Redox distress in organ fibrosis: The role of noncoding RNAs. OXIDATIVE STRESS 2020:779-820. [DOI: 10.1016/b978-0-12-818606-0.00037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Flood HM, Bolte C, Dasgupta N, Sharma A, Zhang Y, Gandhi CR, Kalin TV, Kalinichenko VV. The Forkhead box F1 transcription factor inhibits collagen deposition and accumulation of myofibroblasts during liver fibrosis. Biol Open 2019; 8:bio039800. [PMID: 30670377 PMCID: PMC6398469 DOI: 10.1242/bio.039800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatic fibrosis is the common end stage to a variety of chronic liver injuries and is characterized by an excessive deposition of extracellular matrix (ECM), which disrupts the liver architecture and impairs liver function. The fibrous lesions are produced by myofibroblasts, which differentiate from hepatic stellate cells (HSC). The myofibroblast's transcriptional networks remain poorly characterized. Previous studies have shown that the Forkhead box F1 (FOXF1) transcription factor is expressed in HSCs and stimulates their activation during acute liver injury; however, the role of FOXF1 in the progression of hepatic fibrosis is unknown. In the present study, we generated αSMACreER;Foxf1fl/fl mice to conditionally inactivate Foxf1 in myofibroblasts during carbon tetrachloride-mediated liver fibrosis. Foxf1 deletion increased collagen depositions and disrupted liver architecture. Timp2 expression was significantly increased in Foxf1-deficient mice while MMP9 activity was reduced. RNA sequencing of purified liver myofibroblasts demonstrated that FOXF1 inhibits expression of pro-fibrotic genes, Col1α2, Col5α2, and Mmp2 in fibrotic livers and binds to active repressors located in promotors and introns of these genes. Overexpression of FOXF1 inhibits Col1a2, Col5a2, and MMP2 in primary murine HSCs in vitro Altogether, FOXF1 prevents aberrant ECM depositions during hepatic fibrosis by repressing pro-fibrotic gene transcription in myofibroblasts and HSCs.
Collapse
Affiliation(s)
- Hannah M Flood
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Craig Bolte
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Nupur Dasgupta
- Division of Human Genetics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Akanksha Sharma
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Yufang Zhang
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Chandrashekhar R Gandhi
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Tanya V Kalin
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Vladimir V Kalinichenko
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| |
Collapse
|
10
|
Dattaroy D, Seth RK, Sarkar S, Kimono D, Albadrani M, Chandrashekaran V, Al Hasson F, Singh UP, Fan D, Nagarkatti M, Nagarkatti P, Diehl AM, Chatterjee S. Sparstolonin B (SsnB) attenuates liver fibrosis via a parallel conjugate pathway involving P53-P21 axis, TGF-beta signaling and focal adhesion that is TLR4 dependent. Eur J Pharmacol 2018; 841:33-48. [PMID: 30194936 PMCID: PMC7193950 DOI: 10.1016/j.ejphar.2018.08.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
Abstract
SsnB previously showed a promising role to lessen liver inflammation observed in a mouse model of NAFLD. Since NAFLD can progress to fibrosis, studies were designed to unravel its role in attenuating NAFLD associated fibrosis. Using both in vivo and in vitro approaches, the study probed the possible mechanisms that underlined the role of SsnB in mitigating fibrosis. Mechanistically, SsnB, a TLR4 antagonist, decreased TLR4-PI3k akt signaling by upregulating PTEN protein expression. It also decreased MDM2 protein activation and increased p53 and p21 gene and protein expression. SsnB also downregulated pro-fibrogenic hedgehog signaling pathway, inhibited hepatic stellate cell proliferation and induced apoptosis in hepatic stellate cells, a mechanism that was LPS dependent. Further, SsnB decreased fibrosis by antagonizing TLR4 induced TGFβ signaling pathway. Alternatively, SsnB augmented BAMBI (a TGFβ pseudo-receptor) expression in mice liver by inhibiting TLR4 signaling pathway and thus reduced TGFβ signaling, resulting in decreased hepatic stellate cell activation and extracellular matrix deposition. In vitro experiments on human hepatic stellate cell line showed that SsnB increased gene and protein expression of BAMBI. It also decreased nuclear co-localization of phospho SMAD2/3 and SMAD4 protein and thus attenuated TGFβ signaling in vitro. We also observed a significant decrease in phosphorylation of SMAD2/3 protein, decreased STAT3 activation, alteration of focal adhesion protein and stress fiber disassembly upon SsnB administration in hepatic stellate cells which further confirmed the antagonistic effect of SsnB on TLR4-induced fibrogenesis.
Collapse
Affiliation(s)
- Diptadip Dattaroy
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Ratanesh Kumar Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Sutapa Sarkar
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Diana Kimono
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Muayad Albadrani
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Varun Chandrashekaran
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Firas Al Hasson
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Udai P. Singh
- Department of Pathology Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, USC, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, United States
| | - Prakash Nagarkatti
- Department of Pathology Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, United States
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham 27707, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
11
|
Liu J, Yang P, Zuo G, He S, Tan W, Zhang X, Su C, Zhao L, Wei L, Chen Y, Ruan X, Chen Y. Long-chain fatty acid activates hepatocytes through CD36 mediated oxidative stress. Lipids Health Dis 2018; 17:153. [PMID: 30016988 PMCID: PMC6050651 DOI: 10.1186/s12944-018-0790-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that activated hepatocytes are involved in the deposition of the excess extracellular matrix during liver fibrosis via the epithelial to mesenchymal transition. Lipid accumulation in hepatocytes are implicated in the pathogenesis of chronic liver injury. CD36 is known to mediate long-chain fatty acid (LCFA) uptake and lipid metabolism. However, it is unclear whether LCFA directly promotes hepatocyte activation and the involved mechanisms have not been fully clarified. METHODS Mice were fed with a high fat diet (HFD) and normal hepatocyte cells (Chang liver cells) were treated with palmitic acid (PA) in vivo and in vitro. Real-time polymerase chain reaction (RT-PCR) and western blotting were used to examine the gene and protein expression of molecules involved in hepatic fibrogenesis and hepatocyte activation. CD36 was knocked down by transfecting CD36 siRNA into hepatocyte cells. Hydrogen peroxide (H2O2) and reactive oxygen species (ROS) levels were detected using commercial kits. RESULTS HFD induced a profibrogenic response and up-regulated CD36 expression in vivo. Analogously, PA increased lipid accumulation and induced human hepatocyte activation in vitro, which was also accompanied by increased CD36 expression. Interestingly, knockdown of CD36 resulted in a reduction of hepatocyte lipid deposition and decreased expression of Acta2 (34% decrease), Vimentin (29% decrease), Desmin (60% decrease), and TGF-β signaling pathway related genes. In addition, HFD and PA increased the production of H2O2 in vivo (48% increase) and in vitro (385% increase), and the antioxidant, NAC, ameliorated PA-induced hepatocyte activation. Furthermore, silencing of CD36 in vitro markedly attenuated PA-induced oxidative stress (H2O2: 41% decrease; ROS: 39% decrease), and the anti-activation effects of CD36 knockdown could be abolished by pretreatment with H2O2. CONCLUSIONS Our study demonstrated that LCFA facilitates hepatocyte activation by up-regulating oxidative stress through CD36, which could be an important mechanism in the development of hepatic fibrosis.
Collapse
Affiliation(s)
- Jun Liu
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.,Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ping Yang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Guoqing Zuo
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Song He
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Wei Tan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Zhang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Chunxiao Su
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Lei Zhao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Li Wei
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yao Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiongzhong Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.,John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, NW3 2PF, London, UK.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Zhejiang University, Hangzhou, 310058, China
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Abstract
Extracellular adenosine nucleoside is a potent, endogenous mediator that signals through specific G protein-coupled receptors, and exerts pleiotropic effects on liver physiology, in health and disease. Particularly, adenosinergic or adenosine-mediated signaling pathways impact the progression of hepatic fibrosis, a common feature of chronic liver diseases, through regulation of matrix deposition by liver myofibroblasts. This review examines the current lines of evidence on adenosinergic regulation of liver fibrosis and myofibroblasts, identifies unanswered research questions, and proposes important future areas of investigation.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|
13
|
Test of Antifibrotic Drugs in a Cellular Model of Fibrosis Based on Muscle-Derived Fibroblasts from Duchenne Muscular Dystrophy Patients. Methods Mol Biol 2018; 1687:205-217. [PMID: 29067666 DOI: 10.1007/978-1-4939-7374-3_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An in vitro model of muscle fibrosis, based on the use of primary human fibroblasts isolated from muscle biopsies of patients affected by Duchenne muscular dystrophies (DMD) and cultivated in monolayer and 3D conditions, is used to test the potential antifibrotic activity of pirfenidone (PFD). This in vitro model may be usefully also to evaluate the toxicity and efficacy of other candidate molecules for the treatment of fibrosis. The drug toxicity is evaluated using a colorimetric assay based on the conversion of tetrazolium salt (MTT) to insoluble formazan, while the effect of the drug on cell proliferation is measured with the bromodeoxyuridine incorporation assay. The efficacy of the drug is evaluated in fibroblast monolayers by quantitating synthesis and deposition of intracellular collagen with a spectrophotometric picrosirius red-based assay, and by quantitating cell migration using a "scratch" assay. The efficacy of PFD as antifibrotic drug is also evaluated in a 3D fibroblast model by measuring diameters and number of nodules.
Collapse
|
14
|
Fausther M, Lavoie EG, Goree JR, Dranoff JA. An Elf2-like transcription factor acts as repressor of the mouse ecto-5'-nucleotidase gene expression in hepatic myofibroblasts. Purinergic Signal 2017; 13:417-428. [PMID: 28667437 PMCID: PMC5714833 DOI: 10.1007/s11302-017-9570-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 05/12/2017] [Indexed: 01/20/2023] Open
Abstract
Hepatic fibrosis represents a pathological wound healing and tissue repair process triggered in response to chronic liver injury. A heterogeneous population of activated non-parenchymal liver cells, known as liver myofibroblasts, functions as the effector cells in hepatic fibrosis. Upon activation, liver myofibroblasts become fibrogenic, acquiring contractile properties and increasing collagen production capacity, while developing enhanced sensitivity to endogenous molecules and factors released in the local microenvironment. Hepatic extracellular adenosine is a bioactive small molecule, increasingly recognized as an important regulator of liver myofibroblast functions, and an important mediator in the pathogenesis of liver fibrosis overall. Remarkably, ecto-5'-nucleotidase/Nt5e/Cd73 enzyme, which accounts for the dominant adenosine-generating activity in the extracellular medium, is expressed by activated liver myofibroblasts. However, the molecular signals regulating Nt5e gene expression in liver myofibroblasts remain poorly understood. Here, we show that activated mouse liver myofibroblasts express Nt5e gene products and characterize the putative Nt5e minimal promoter in the mouse species. We describe the existence of an enhancer sequence upstream of the mouse Nt5e minimal promoter and establish that the mouse Nt5e minimal promoter transcriptional activity is negatively regulated by an Elf2-like Ets-related transcription factor in activated mouse liver myofibroblasts.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA.
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA.
| | - Elise G Lavoie
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA
| | - Jessica R Goree
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA
| | - Jonathan A Dranoff
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA
| |
Collapse
|
15
|
Guest RV, Boulter L, Dwyer BJ, Forbes SJ. Understanding liver regeneration to bring new insights to the mechanisms driving cholangiocarcinoma. NPJ Regen Med 2017; 2:13. [PMID: 29302349 PMCID: PMC5677951 DOI: 10.1038/s41536-017-0018-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/22/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer frequently arises in epithelial tissues subjected to repeated cycles of injury and repair. Improving our understanding of tissue regeneration is, therefore, likely to reveal novel processes with inherent potential for aberration that can lead to carcinoma. These highly conserved regenerative mechanisms are increasingly understood and in the liver are associated with special characteristics that underlie the organ's legendary capacity for restoration of size and function following even severe or chronic injury. The nature of the injury can determine the cellular source of epithelial regeneration and the signalling mechanisms brought to play. These observations are shaping how we understand and experimentally investigate primary liver cancer, in particular cholangiocarcinoma; a highly invasive malignancy of the bile ducts, resistant to chemotherapy and whose pathogenesis has hitherto been poorly understood. Interestingly, signals that drive liver development become activated in the formation of cholangiocarcinoma, such as Notch and Wnt and may be potential future therapeutic targets. In this review, we summarise the work which has led to the current understanding of the cellular source of cholangiocarcinoma, how the tumour recruits, sustains and is educated by its supporting stromal environment, and the tumour-derived signals that drive the progression and invasion of the cancer. With few current treatments of any true efficacy, advances that will improve our understanding of the mechanisms driving this aggressive malignancy are welcome and may help drive therapeutic developments.
Collapse
Affiliation(s)
- R. V. Guest
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, , Edinburgh, EH16 4UU UK
| | - L. Boulter
- Institute for Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, , Edinburgh, EH4 2XU UK
| | - B. J. Dwyer
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, , Edinburgh, EH16 4UU UK
| | - S. J. Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, , Edinburgh, EH16 4UU UK
| |
Collapse
|
16
|
Xuan J, Feng W, An ZT, Yang J, Xu HB, Li J, Zhao ZF, Wen W. Anti-TGFβ-1 receptor inhibitor mediates the efficacy of the human umbilical cord mesenchymal stem cells against liver fibrosis through TGFβ-1/Smad pathway. Mol Cell Biochem 2017; 429:113-122. [DOI: 10.1007/s11010-017-2940-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/16/2017] [Indexed: 12/15/2022]
|
17
|
Hubel E, Saroha A, Park WJ, Pewzner-Jung Y, Lavoie EG, Futerman AH, Bruck R, Fishman S, Dranoff JA, Shibolet O, Zvibel I. Sortilin Deficiency Reduces Ductular Reaction, Hepatocyte Apoptosis, and Liver Fibrosis in Cholestatic-Induced Liver Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:122-133. [DOI: 10.1016/j.ajpath.2016.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/04/2016] [Accepted: 09/01/2016] [Indexed: 01/14/2023]
|
18
|
Hedgehog Signaling Overcomes an EZH2-Dependent Epigenetic Barrier to Promote Cholangiocyte Expansion. PLoS One 2016; 11:e0168266. [PMID: 27936185 PMCID: PMC5148157 DOI: 10.1371/journal.pone.0168266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS Developmental morphogens play an important role in coordinating the ductular reaction and portal fibrosis occurring in the setting of cholangiopathies. However, little is known about how membrane signaling events in ductular reactive cells (DRCs) are transduced into nuclear transcriptional changes to drive cholangiocyte maturation and matrix deposition. Therefore, the aim of this study was to investigate potential mechanistic links between cell signaling events and epigenetic regulators in DRCs. METHODS Using directed differentiation of induced pluripotent stem cells (iPSC), isolated DRCs, and in vivo models, we examine the mechanisms whereby sonic hedgehog (Shh) overcomes an epigenetic barrier in biliary precursors and promotes both cholangiocyte maturation and deposition of fibronectin (FN). RESULTS We demonstrate, for the first time, that Gli1 influences the differentiation state and fibrogenic capacity of iPSC-derived hepatic progenitors and isolated DRCs. We outline a novel pathway wherein Shh-mediated Gli1 binding in key cholangiocyte gene promoters overcomes an epigenetic barrier conferred by the polycomb protein, enhancer of zeste homolog 2 (EZH2) and initiates the transcriptional program of cholangiocyte maturation. We also define previously unknown functional Gli1 binding sites in the promoters of cytokeratin (CK)7, CK19, and FN. Our in vivo results show that EZH2 KO mice fed the choline-deficient, ethanolamine supplemented (CDE) diet have an exaggerated cholangiocyte expansion associated with more robust ductular reaction and increased peri-portal fibrosis. CONCLUSION We conclude that Shh/Gli1 signaling plays an integral role in cholangiocyte maturation in vitro by overcoming an EZH2-dependent epigenetic barrier and this mechanism also promotes biliary expansion in vivo.
Collapse
|
19
|
Feng Y, Ying HY, Qu Y, Cai XB, Xu MY, Lu LG. Novel matrine derivative MD-1 attenuates hepatic fibrosis by inhibiting EGFR activation of hepatic stellate cells. Protein Cell 2016; 7:662-72. [PMID: 27342773 PMCID: PMC5003784 DOI: 10.1007/s13238-016-0285-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Matrine (MT), the effective component of Sophora flavescens Ait, has been shown to have anti-inflammation, immune-suppressive, anti-tumor, and anti-hepatic fibrosis activities. However, the pharmacological effects of MT still need to be strengthened due to its relatively low efficacy and short half-life. In the present study, we report a more effective thio derivative of MT, MD-1, and its inhibitory effects on the activation of hepatic stellate cells (HSCs) in both cell culture and animal models. Cytological experiments showed that MD-1 can inhibit the proliferation of HSC-T6 cells with a half-maximal inhibitory concentration (IC50) of 62 μmol/L. In addition, MD-1 more strongly inhibits the migration of HSC-T6 cells compared to MT and can more effectively induce G0/G1 arrest and apoptosis. Investigating the biological mechanisms underlying anti-hepatic fibrosis in the presence of MD-1, we found that MD-1 can bind the epidermal growth factor receptor (EGFR) on the surface of HSC-T6 cells, which can further inhibit the phosphorylation of EGFR and its downstream protein kinase B (Akt), resulting in decreased expression of cyclin D1 and eventual inhibition of the activation of HSC-T6 cells. Furthermore, in rats with dimethylnitrosamine (DMN)-induced hepatic fibrosis, MD-1 slowed the development and progression of hepatic fibrosis, protecting hepatic parenchymal cells and improving hepatic functions. Therefore, MD-1 is a potential drug for anti-hepatic fibrosis.
Collapse
Affiliation(s)
- Yi Feng
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China.
| | - Hai-Yan Ying
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Ying Qu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Xiao-Bo Cai
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Ming-Yi Xu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China.
| |
Collapse
|
20
|
Locatelli L, Cadamuro M, Spirli C, Fiorotto R, Lecchi S, Morell CM, Popov Y, Scirpo R, De Matteis M, Amenduni M, Pietrobattista A, Torre G, Schuppan D, Fabris L, Strazzabosco M. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis. Hepatology 2016; 63:965-82. [PMID: 26645994 PMCID: PMC4764460 DOI: 10.1002/hep.28382] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Congenital hepatic fibrosis (CHF) is a disease of the biliary epithelium characterized by bile duct changes resembling ductal plate malformations and by progressive peribiliary fibrosis, in the absence of overt necroinflammation. Progressive liver fibrosis leads to portal hypertension and liver failure; however, the mechanisms leading to fibrosis in CHF remain elusive. CHF is caused by mutations in PKHD1, a gene encoding for fibrocystin, a ciliary protein expressed in cholangiocytes. Using a fibrocystin-defective (Pkhd1(del4/del4)) mouse, which is orthologous of CHF, we show that Pkhd1(del4/del4) cholangiocytes are characterized by a β-catenin-dependent secretion of a range of chemokines, including chemokine (C-X-C motif) ligands 1, 10, and 12, which stimulate bone marrow-derived macrophage recruitment. We also show that Pkhd1(del4/del4) cholangiocytes, in turn, respond to proinflammatory cytokines released by macrophages by up-regulating αvβ6 integrin, an activator of latent local transforming growth factor-β1. While the macrophage infiltrate is initially dominated by the M1 phenotype, the profibrogenic M2 phenotype increases with disease progression, along with the number of portal myofibroblasts. Consistent with these findings, clodronate-induced macrophage depletion results in a significant reduction of portal fibrosis and portal hypertension as well as of liver cysts. CONCLUSION Fibrosis can be initiated by an epithelial cell dysfunction, leading to low-grade inflammation, macrophage recruitment, and collagen deposition; these findings establish a new paradigm for biliary fibrosis and represent a model to understand the relationship between cell dysfunction, parainflammation, liver fibrosis, and macrophage polarization over time.
Collapse
Affiliation(s)
- Luigi Locatelli
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, 20126, Milan, Italy
| | - Massimiliano Cadamuro
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, 20126, Milan, Italy,Department of Molecular Medicine, University of Padua School of Medicine, 35121, Padua, Italy
| | - Carlo Spirli
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Romina Fiorotto
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Silvia Lecchi
- Center for Liver Research (CeLiveR), Papa Giovanni XXIII Hospital, 24121, Bergamo, Italy
| | - Carola Maria Morell
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, 20126, Milan, Italy
| | - Yury Popov
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Roberto Scirpo
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, 20126, Milan, Italy
| | - Maria De Matteis
- Department of Molecular Medicine, University of Padua School of Medicine, 35121, Padua, Italy
| | | | | | - Giuliano Torre
- Liver Unit, Bambino Gesu Pediatric Hospital, IRCSS, 00146, Rome, Italy
| | - Detlef Schuppan
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Institute of Translational Immunology, Johannes Gutenberg University, 55122, Mainz, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, 35121, Padua, Italy,Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA,Correspondence. Luca Fabris M.D., Ph.D., Department of Molecular Medicine, University of Padova School of Medicine, Viale G. Colombo, 3; 35131 Padova, Italy, Phone: +39 049 827 6127; Fax: +39 049 807 3310, ;
| | - Mario Strazzabosco
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, 20126, Milan, Italy,Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
21
|
ZHAO YALEI, ZHU RONGTAO, SUN YULING. Epithelial-mesenchymal transition in liver fibrosis. Biomed Rep 2016; 4:269-274. [PMID: 26998262 PMCID: PMC4774315 DOI: 10.3892/br.2016.578] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is the result of a sustained wound healing response to sustained chronic liver injury, which includes viral, alcoholic and autoimmune hepatitis. Hepatic regeneration is the dominant outcome of liver damage. The outcomes of successful repair are the replacement of dead epithelial cells with healthy epithelial cells, and reconstruction of the normal hepatic structure and function. Prevention of the development of epithelial-mesenchymal transition (EMT) may control and even reverse liver fibrosis. EMT is a critical process for an epithelial cell to undergo a conversion to a mesenchymal phenotype, and is believed to be an inflammation-induced response, which may have a central role in liver fibrosis. The origin of fibrogenic cells in liver fibrosis remains controversial. Numerous studies have investigated the origin of all fibrogenic cells within the liver and the mechanism of the signaling pathways that lead to the activation of EMT programs during numerous chronic liver diseases. The present study aimed to summarize the evidence to explain the possible role of EMT in liver fibrosis.
Collapse
Affiliation(s)
- YA-LEI ZHAO
- Department of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary and Pancreatic Diseases, School of Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - RONG-TAO ZHU
- Department of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary and Pancreatic Diseases, School of Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - YU-LING SUN
- Department of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary and Pancreatic Diseases, School of Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| |
Collapse
|
22
|
Frangogiannis NG. Fibroblast-Extracellular Matrix Interactions in Tissue Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2016; 4:11-18. [PMID: 27171595 DOI: 10.1007/s40139-016-0099-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activated myofibroblasts are key effector cells in tissue fibrosis. Emerging evidence suggests that myofibroblasts infiltrating fibrotic tissues originate predominantly from local mesenchyme-derived populations. Alterations in the extracellular matrix network play an important role in modulating fibroblast phenotype and function. In a pro-inflammatory environment, generation of matrix fragments may induce a matrix-degrading fibroblast phenotype. Deposition of ED-A fibronectin plays an important role in myofibroblast transdifferentiation. In fibrotic tissues, the matrix is enriched with matricellular macromolecules that regulate growth factor-mediated responses and modulate protease activation. This manuscript discusses emerging concepts on the role of the extracellular matrix in regulation of fibroblast behavior.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
23
|
Zanotti S, Bragato C, Zucchella A, Maggi L, Mantegazza R, Morandi L, Mora M. Anti-fibrotic effect of pirfenidone in muscle derived-fibroblasts from Duchenne muscular dystrophy patients. Life Sci 2016; 145:127-36. [DOI: 10.1016/j.lfs.2015.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/30/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
|
24
|
Elshal M, Abu-Elsaad N, El-Karef A, Ibrahim TM. The multi-kinase inhibitor pazopanib targets hepatic stellate cell activation and apoptosis alleviating progression of liver fibrosis. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1293-304. [DOI: 10.1007/s00210-015-1157-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023]
|
25
|
Lepreux S, Desmoulière A. Human liver myofibroblasts during development and diseases with a focus on portal (myo)fibroblasts. Front Physiol 2015; 6:173. [PMID: 26157391 PMCID: PMC4477071 DOI: 10.3389/fphys.2015.00173] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022] Open
Abstract
Myofibroblasts are stromal cells mainly involved in tissue repair. These cells present contractile properties and play a major role in extracellular matrix deposition and remodeling. In liver, myofibroblasts are found in two critical situations. First, during fetal liver development, especially in portal tracts, myofibroblasts surround vessels and bile ducts during their maturation. After complete development of the liver, myofibroblasts disappear and are replaced in portal tracts by portal fibroblasts. Second, during liver injury, myofibroblasts re-appear principally deriving from the activation of local stromal cells such as portal fibroblasts and hepatic stellate cells or can sometimes emerge by an epithelial-mesenchymal transition process. After acute injury, myofibroblasts play also a major role during liver regeneration. While myofibroblastic precursor cells are well known, the spectrum of activation and the fate of myofibroblasts during disease evolution are not fully understood. Some data are in accordance with a possible deactivation, at least partial, or a disappearance by apoptosis. Despite these shadows, liver is definitively a pertinent model showing that myofibroblasts are pivotal cells for extracellular matrix control during morphogenesis, repair and fibrous scarring.
Collapse
Affiliation(s)
- Sébastien Lepreux
- Department of Pathology, University Hospital of Bordeaux Bordeaux, France
| | - Alexis Desmoulière
- Department of Physiology, Faculty of Pharmacy, University of Limoges Limoges, France
| |
Collapse
|
26
|
Abstract
BACKGROUND Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. METHODS Analysis of the current literature regarding the epidemiology, clinical features, and pathogenesis of iERM and fibrotic tissue contraction. RESULTS Epidemiologic studies report a relationship between iERM prevalence, increasing age, and posterior vitreous detachment. Clinically, iERM progresses through different stages characterized by an increased thickness and wrinkling of the membrane. Pathophysiologically, iERM formation is a fibrotic process in which myofibroblast formation and the deposition of newly formed collagens play key roles. Anomalous posterior vitreous detachment may be a key event initiating the formation of iERM. The age-related accumulation of advanced glycation end products may contribute to anomalous posterior vitreous detachment formation and may also influence the mechanical properties of the iERM. CONCLUSION Remodeling of the extracellular matrix at the vitreoretinal interface by aging and fibrotic changes, plays a significant role in the pathogenesis of iERM. A better understanding of molecular mechanisms underlying this process may eventually lead to the development of effective and nonsurgical approaches to treat and prevent vitreoretinal fibrotic diseases.
Collapse
|
27
|
Fausther M, Goree JR, Lavoie ÉG, Graham AL, Sévigny J, Dranoff JA. Establishment and characterization of rat portal myofibroblast cell lines. PLoS One 2015; 10:e0121161. [PMID: 25822334 PMCID: PMC4378927 DOI: 10.1371/journal.pone.0121161] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/10/2015] [Indexed: 01/13/2023] Open
Abstract
The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC) and portal fibroblasts (PF). In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5’-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myo)fibroblasts and their contribution to the progression of liver fibrosis.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, AR, United States of America
- * E-mail:
| | - Jessica R. Goree
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, AR, United States of America
| | - Élise G. Lavoie
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, AR, United States of America
| | - Alicia L. Graham
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, QC, Canada
- Centre de Recherche du CHU de Québec, QC, Canada
| | - Jonathan A. Dranoff
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, AR, United States of America
| |
Collapse
|
28
|
Kukolj V, Aleksić-Kovačević S, Katić-Radivojević S, Knežević D, Jovanović M. The role and immunophenotypic characteristics of myofibroblasts in liver of sheep naturally infected with the lancet liver fluke (Dicrocoelium dendriticum). Vet Parasitol 2015; 208:181-9. [DOI: 10.1016/j.vetpar.2015.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 01/16/2015] [Accepted: 01/25/2015] [Indexed: 12/12/2022]
|
29
|
Fu S, Wang F, Cao Y, Huang Q, Xiao J, Yang C, Popescu LM. Telocytes in human liver fibrosis. J Cell Mol Med 2015; 19:676-83. [PMID: 25661250 PMCID: PMC4369823 DOI: 10.1111/jcmm.12542] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 12/23/2014] [Indexed: 12/26/2022] Open
Abstract
Liver fibrosis is a wound-healing response which engages a variety of cell types to encapsulate injury. Telocyte (TC), a novel type of interstitial cell, has been identified in a variety of tissues and organs including liver. TCs have been reported to be reduced in fibrotic areas after myocardial infarction, human interstitial wall's fibrotic remodelling caused either by ulcerative colitis or Crohn's disease, and skin of systemic sclerosis. However, the role of TCs in human liver fibrosis remains unclear. Liver samples from human liver biopsy were collected. All samples were stained with Masson's trichrome to determine fibrosis. TCs were identified by several immunofluorescence stainings including double labelling for CD34 and c-kit/CD117, or vimentin, or PDGF Receptor-α, or β. We found that hepatic TCs were significantly decreased by 27%-60% in human liver fibrosis, suggesting that loss of TCs might lead to the altered organization of extracellular matrix and loss the control of fibroblast/myofibroblast activity and favour the genesis of fibrosis. Adding TCs might help to develop effective and targeted antifibrotic therapies for human liver fibrosis.
Collapse
Affiliation(s)
- Siyi Fu
- Regeneration and Ageing Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China; Innovative Drug Research Center of Shanghai University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Kang N, Shah VH, Urrutia R. Membrane-to-Nucleus Signals and Epigenetic Mechanisms for Myofibroblastic Activation and Desmoplastic Stroma: Potential Therapeutic Targets for Liver Metastasis? Mol Cancer Res 2014; 13:604-12. [PMID: 25548101 DOI: 10.1158/1541-7786.mcr-14-0542] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022]
Abstract
Cancer-associated fibroblasts (CAFs), the most abundant cells in the tumor microenvironment (TME), are a key source of the extracellular matrix (ECM) that constitutes the desmoplastic stroma. Through remodeling of the reactive tumor stroma and paracrine actions, CAFs regulate cancer initiation, progression, and metastasis, as well as tumor resistance to therapies. The CAFs found in stroma-rich primary hepatocellular carcinomas (HCC) and liver metastases of primary cancers of other organs predominantly originate from hepatic stellate cells (HSTC), which are pericytes associated with hepatic sinusoids. During tumor invasion, HSTCs transdifferentiate into myofibroblasts in response to paracrine signals emanating from either tumor cells or a heterogeneous cell population within the hepatic tumor microenvironment. Mechanistically, HSTC-to-myofibroblast transdifferentiation, also known as, HSTC activation, requires cell surface receptor activation, intracellular signal transduction, gene transcription, and epigenetic signals, which combined ultimately modulate distinct gene expression profiles that give rise to and maintain a new phenotype. The current review defines a paradigm that explains how HSTCs are activated into CAFs to promote liver metastasis. Furthermore, a focus on the most relevant intracellular signaling networks and epigenetic mechanisms that control HSTC activation is provided. Finally, we discuss the feasibility of targeting CAF/activated HSTCs, in isolation or in conjunction with targeting cancer cells, which constitutes a promising and viable therapeutic approach for the treatment of primary stroma-rich liver cancers and liver metastasis.
Collapse
Affiliation(s)
- Ningling Kang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, Minnesota.
| | - Vijay H Shah
- GI Research Unit, Division of Gastroenterology and Hepatology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raul Urrutia
- GI Research Unit, Division of Gastroenterology and Hepatology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
31
|
The Role of Fibrocytes in Fibrogenic Liver Diseases. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Abstract
Portal fibroblasts are a minor population in the normal liver, found in the periportal mesenchyme surrounding the bile ducts. While many researchers have hypothesized that they are an important myofibroblast precursor population in biliary fibrosis, responsible for matrix deposition in early fibrosis and for recruiting hepatic stellate cells, the role of portal fibroblasts relative to hepatic stellate cells is controversial. Several papers published in the past year have addressed this point and have identified other potential roles for portal fibroblasts in biliary fibrosis. The goal of this review is to critically assess these recent studies, to highlight gaps in our knowledge of portal fibroblasts, and to suggest directions for future research.
Collapse
Affiliation(s)
- Rebecca G Wells
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
33
|
Hassan S, Syed S, Kehar SI. Glial Fibrillary Acidic Protein (GFAP) as a Mesenchymal marker of Early Hepatic Stellate Cells Activation in Liver Fibrosis in Chronic Hepatitis C Infection. Pak J Med Sci 2014; 30:1027-32. [PMID: 25225520 PMCID: PMC4163226 DOI: 10.12669/pjms.305.5534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE This study aims to determine expression of Glial Fibrillary Acidic Protein and of Alpha Smooth Muscle Actin (α-SMA) in hepatic stellate cells of CHC cases and their association with stage of fibrosis. METHODS The study was conducted at Ziauddin University, Clifton Campus during the year 2010-2012. Sixty Chronic Hepatitis C cases were immmunostained using anti α-SMA antibody and anti-GFAP antibody. Semi quantitative scoring in pericentral, periportal and perisinusoidal area of each case was done to assess immunoexpression of each marker. Results : Immunoexpression of GFAP showed significant association with α-SMA. GFAP expression was inversely correlated with progression of fibrosis. Conclusion : GFAP could represent a useful marker for early hepatic stellate cells activation. Follow up biopsies showing decline in GFAP levels may help identify the target group requiring aggressive therapy.
Collapse
Affiliation(s)
- Sobia Hassan
- Dr. Sobia Hassan, Lecturer, Pathology Department, Ziauddin University Clifton Campus, Karachi, Pakistan
| | - Serajuddaula Syed
- Prof. Serajuddaula Syed, Head of Pathology Department, Ziauddin University Clifton Campus, Karachi, Pakistan
| | - Shahnaz Imdad Kehar
- Dr. Shahnaz Imdad Kehar, Associate Professor, Pathology Department, BMSI – JPMC, Karachi, Pakistan
| |
Collapse
|
34
|
Fausther M, Dranoff JA. Integrins, myofibroblasts, and organ fibrosis. Hepatology 2014; 60:756-8. [PMID: 24700390 PMCID: PMC4110176 DOI: 10.1002/hep.27155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 12/14/2022]
Abstract
Myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are believed to be the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not been developed. We report that Cre under control of the promoter of Pdgfrb (Pdgfrb-Cre) inactivates loxP-flanked genes in mouse HSCs with high efficiency. We used this system to delete the gene encoding αV integrin subunit because various αV-containing integrins have been suggested as central mediators of fibrosis in multiple organs. Such depletion protected mice from carbon tetrachloride–induced hepatic fibrosis, whereas global loss of β3, β5 or β6 integrin or conditional loss of β8 integrins in HSCs did not. We also found that Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of the αV integrin subunit using this system was protective in other models of organ fibrosis, including pulmonary and renal fibrosis. Pharmacological blockade of αV-containing integrins by a small molecule (CWHM 12) attenuated both liver and lung fibrosis, including in a therapeutic manner. These data identify a core pathway that regulates fibrosis and suggest that pharmacological targeting of all αV integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases.
Collapse
|
35
|
Xu J, Liu X, Koyama Y, Wang P, Lan T, Kim IG, Kim IH, Ma HY, Kisseleva T. The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies. Front Pharmacol 2014; 5:167. [PMID: 25100997 PMCID: PMC4105921 DOI: 10.3389/fphar.2014.00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/25/2014] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis results from dysregulation of normal wound healing, inflammation, activation of myofibroblasts, and deposition of extracellular matrix (ECM). Chronic liver injury causes death of hepatocytes and formation of apoptotic bodies, which in turn, release factors that recruit inflammatory cells (neutrophils, monocytes, macrophages, and lymphocytes) to the injured liver. Hepatic macrophages (Kupffer cells) produce TGFβ1 and other inflammatory cytokines that activate Collagen Type I producing myofibroblasts, which are not present in the normal liver. Secretion of TGFβ1 and activation of myofibroblasts play a critical role in the pathogenesis of liver fibrosis of different etiologies. Although the composition of fibrogenic myofibroblasts varies dependent on etiology of liver injury, liver resident hepatic stellate cells and portal fibroblasts are the major source of myofibroblasts in fibrotic liver in both experimental models of liver fibrosis and in patients with liver disease. Several studies have demonstrated that hepatic fibrosis can reverse upon cessation of liver injury. Regression of liver fibrosis is accompanied by the disappearance of fibrogenic myofibroblasts followed by resorption of the fibrous scar. Myofibroblasts either apoptose or inactivate into a quiescent-like state (e.g., stop collagen production and partially restore expression of lipogenic genes). Resolution of liver fibrosis is associated with recruitment of macrophages that secrete matrix-degrading enzymes (matrix metalloproteinase, collagenases) and are responsible for fibrosis resolution. However, prolonged/repeated liver injury may cause irreversible crosslinking of ECM and formation of uncleavable collagen fibers. Advanced fibrosis progresses to cirrhosis and hepatocellular carcinoma. The current review will summarize the role and contribution of different cell types to populations of fibrogenic myofibroblasts in fibrotic liver.
Collapse
Affiliation(s)
- Jun Xu
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Xiao Liu
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Yukinori Koyama
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Ping Wang
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Tian Lan
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - In-Gyu Kim
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - In H Kim
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Hsiao-Yen Ma
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Tatiana Kisseleva
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| |
Collapse
|
36
|
Wells RG. The portal fibroblast: not just a poor man's stellate cell. Gastroenterology 2014; 147:41-7. [PMID: 24814904 PMCID: PMC4090086 DOI: 10.1053/j.gastro.2014.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/12/2022]
Abstract
Portal fibroblasts, the resident fibroblasts of the portal tract, are found in the mesenchyme surrounding the bile ducts. Their roles in liver homeostasis and response to injury are undefined and controversial. Although portal fibroblasts almost certainly give rise to myofibroblasts during the development of biliary fibrosis, recent lineage tracing studies suggest that their contribution to fibrogenesis is limited compared with that of hepatic stellate cells. Other functions of portal fibroblasts include participation in the peribiliary stem cell niche, regulation of cholangiocyte proliferation, and deposition of specific matrix proteins. Portal fibroblasts synthesize elastin and other components of microfibrils; these may serve structural roles, providing stability to ducts and the vasculature under conditions of increased ductal pressure, or could regulate the bioavailability of the fibrogenic transforming growth factor β in response to injury. Viewing portal fibroblasts in the context of fibroblast populations throughout the body and studying their niche-specific roles in matrix deposition and epithelial regulation could yield new insights into their contributions in the normal and injured liver. Understanding the functions of portal fibroblasts will require us to view them as more than just an alternative to hepatic stellate cells in fibrosis.
Collapse
Affiliation(s)
- Rebecca G Wells
- Departments of Medicine (GI) and Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
37
|
Yang X, Han ZP, Zhang SS, Zhu PX, Hao C, Fan TT, Yang Y, Li L, Shi YF, Wei LX. Chronic restraint stress decreases the repair potential from mesenchymal stem cells on liver injury by inhibiting TGF-β1 generation. Cell Death Dis 2014; 5:e1308. [PMID: 24967970 PMCID: PMC4611730 DOI: 10.1038/cddis.2014.257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/19/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022]
Abstract
Chronic psychological stress has been demonstrated to play an important role in several severe diseases, but whether it affects disease therapy or not remains unclear. Mesenchymal stem cells (MSCs) have been demonstrated to have therapeutic potentials in treating tissue injury based on their multidifferentiation potential toward various cell types. We investigated the effect of chronic restraint stress on therapeutic potential of MSCs on carbon tetrachloride (CCl4)-induced liver injury in mice. CCl4-induced mice were injected with enhanced green fluorescent protein–MSCs, which was followed by chronic restraint stress administration. Corticosterone and RU486, a glucocorticoid receptor (GR) antagonist, were employed in vivo and in vitro, too. In the present study, we illustrated that MSCs could repair liver injury by differentiating into myofibroblasts (MFs) which contribute to fibrosis, whereas stress repressed differentiation of MSCs into MFs displayed by reducing α-smooth muscle actin (α-SMA, a solid marker of MFs) expression. Whereas RU486 could maintain the liver injury reduction and liver fibrosis increases induced by MSCs in stressed mice and block the decrease of α-SMA expression induced by stress. Furthermore, chronic stress inhibited MFs differentiation from MSCs by inhibiting transforming growth factor-β1 (TGF-β1)/Smads signaling pathway which is essential for MFs differentiation. Chronic stress reduced autocrine TGF-β1 of MSCs, but not blunted activation of Smads. All these data suggested that corticosterone triggered by chronic stress impaired liver injury repair by MSCs through inhibiting TGF-β1 expression which results in reduced MFs differentiation of MSCs.
Collapse
Affiliation(s)
- X Yang
- 1] Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China [2] Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Z-P Han
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - S-S Zhang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - P-X Zhu
- Department of Pharmacy, Chang Hai Hospital, the Second Military Medical University, Shanghai, China
| | - C Hao
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - T-T Fan
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Y Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - L Li
- Department of Anesthesia, Intensive Care Units, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Y-F Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - L-X Wei
- 1] Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China [2] Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| |
Collapse
|
38
|
Fausther M, Lavoie EG, Goree JR, Baldini G, Dranoff JA. NT5E mutations that cause human disease are associated with intracellular mistrafficking of NT5E protein. PLoS One 2014; 9:e98568. [PMID: 24887587 PMCID: PMC4041762 DOI: 10.1371/journal.pone.0098568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/05/2014] [Indexed: 11/21/2022] Open
Abstract
Ecto-5′-nucleotidase/CD73/NT5E, the product of the NT5E gene, is the dominant enzyme in the generation of adenosine from degradation of AMP in the extracellular environment. Nonsense (c.662C→A, p.S221X designated F1, c.1609dupA, p.V537fsX7 designated F3) and missense (c.1073G→A, p.C358Y designated F2) NT5E gene mutations in three distinct families have been shown recently to cause premature arterial calcification disease in human patients. However, the underlying mechanisms by which loss-of-function NT5E mutations cause human disease are unknown. We hypothesized that human NT5E gene mutations cause mistrafficking of the defective proteins within cells, ultimately blocking NT5E catalytic function. To test this hypothesis, plasmids encoding cDNAs of wild type and mutant human NT5E tagged with the fluorescent probe DsRed were generated and used for transfection and heterologous expression in immortalized monkey COS-7 kidney cells that lack native NT5E protein. Enzyme histochemistry and Malachite green assays were performed to assess the biochemical activities of wild type and mutant fusion NT5E proteins. Subcellular trafficking of fusion NT5E proteins was monitored by confocal microscopy and western blot analysis of fractionated cell constituents. All 3 F1, F2, and F3 mutations result in a protein with significantly reduced trafficking to the plasma membrane and reduced ER retention as compared to wild type protein. Confocal immunofluorescence demonstrates vesicles containing DsRed-tagged NT5E proteins (F1, F2 and F3) in the cell synthetic apparatus. All 3 mutations resulted in absent NT5E enzymatic activity at the cell surface. In conclusion, three familial NT5E mutations (F1, F2, F3) result in novel trafficking defects associated with human disease. These novel genetic causes of human disease suggest that the syndrome of premature arterial calcification due to NT5E mutations may also involve a novel “trafficking-opathy”.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, Arkansas, United States of America
| | - Elise G. Lavoie
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, Arkansas, United States of America
| | - Jessica R. Goree
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, Arkansas, United States of America
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jonathan A. Dranoff
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Research Service, Central Arkansas VA Healthcare System, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Machado MV, Diehl AM. Liver renewal: detecting misrepair and optimizing regeneration. Mayo Clin Proc 2014; 89:120-30. [PMID: 24388030 DOI: 10.1016/j.mayocp.2013.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Cirrhosis and liver cancer, the main causes of liver-related morbidity and mortality, result from defective repair of liver injury. This article summarizes rapidly evolving knowledge about liver myofibroblasts and progenitors, the 2 key cell types that interact to orchestrate effective repair, because deregulation of these cells is likely to be central to the pathogenesis of both cirrhosis and liver cancer. We focus on cirrhosis pathogenesis because cirrhosis is the main risk factor for primary liver cancer. Emerging evidence suggests that the defective repair process has certain characteristics that might be exploited for biomarker development. Recent findings in preclinical models also indicate that the newly identified cellular and molecular targets are amenable to therapeutic manipulation. Thus, recent advances in our understanding about key cell types and fundamental mechanisms that regulate liver regeneration have opened new avenues to improve the outcomes of liver injury. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01899859.
Collapse
Affiliation(s)
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham, NC.
| |
Collapse
|
40
|
Sun S, Song Z, Cotler SJ, Cho M. Biomechanics and functionality of hepatocytes in liver cirrhosis. J Biomech 2013; 47:2205-10. [PMID: 24262849 DOI: 10.1016/j.jbiomech.2013.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/21/2013] [Accepted: 10/26/2013] [Indexed: 12/13/2022]
Abstract
Cirrhosis is a life-threatening condition that is generally attributed to overproduction of collagen fibers in the extracellular matrix that mechanically stiffens the liver. Chronic liver injury due to causes including viral hepatitis, inherited and metabolic liver diseases and external factors such as alcohol abuse can result in the development of cirrhosis. Progression of cirrhosis leads to hepatocellular dysfunction. While extensive studies to understand the complexity underlying liver fibrosis have led to potential application of anti-fibrotic drugs, no such FDA-approved drugs are currently available. Additional studies of hepatic fibrogenesis and cirrhosis primarily have focused on the extracellular matrix, while hepatocyte biomechanics has received limited attention. The role of hepatocyte biomechanics in liver cirrhosis remains elusive, and how the cell stiffness is correlated with biological functions of hepatocytes is also unknown. In this study, we demonstrate that the biomechanical properties of hepatocytes are correlated with their functions (e.g., glucose metabolism), and that hepatic dysfunction can be restored through modulation of the cellular biomechanics. Furthermore, our results indicate the hepatocyte functionality appears to be regulated through a crosstalk between the Rho and Akt signaling. These novel findings may lead to biomechanical intervention of hepatocytes and the development of innovative tissue engineering for clinical treatment to target liver cells rather than exclusively focusing on the extracellular matrix alone in liver cirrhosis.
Collapse
Affiliation(s)
- Shan Sun
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Scott J Cotler
- Division of Hepatology, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Michael Cho
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|