1
|
Saini RS, Bavabeedu SS, Quadri SA, Gurumurthy V, Kanji MA, Okshah A, Binduhayyim RIH, Alarcón-Sánchez MA, Mosaddad SA, Heboyan A. Mapping the research landscape of nanoparticles and their use in denture base resins: a bibliometric analysis. DISCOVER NANO 2024; 19:95. [PMID: 38814562 PMCID: PMC11139848 DOI: 10.1186/s11671-024-04037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Nanoparticles are increasingly used in dentistry for various applications, including enhancing the mechanical properties of denture base resins. This study aimed to comprehensively review and analyze the research landscape of nanoparticles and their effect on the flexural strength of denture base resins to identify key research areas and trends and to highlight the importance of collaboration between authors and institutions. METHODS A Bibliometric Analysis was conducted using the Keywords "Nanoparticle*" AND "Denture*" OR "CAD/CAM." The literature search from the WOS database was restricted to the publication years 2011 to 2022. RESULTS Key findings encompass an increase in research publications but a decline in citations. Saudi Arabia, China, and Iraq led this research, with specific institutions excelling. Notable journals with high impact factors were identified. Authorship patterns show variations in citation impact. Additionally, keyword analysis revealed that current research trends offer insights into influential authors and their networks. CONCLUSIONS The analysis of nanoparticles and denture base resins reveals a dynamic and evolving landscape that emphasizes the importance of collaboration, staying current with research trends, and conducting high-quality research in this ever-evolving domain.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Shashit Shetty Bavabeedu
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | | | - Masroor Ahmed Kanji
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Abdulmajeed Okshah
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Mario Alberto Alarcón-Sánchez
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Qasr-e-Dasht Street, Shiraz, Iran.
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, 0025, Yerevan, Armenia.
| |
Collapse
|
2
|
Ginot L, El Bakkouche A, Giusti F, Dourdain S, Pellet‐Rostaing S. Hydrophobic Porous Liquids with Controlled Cavity Size and Physico-Chemical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305906. [PMID: 38036426 PMCID: PMC10811500 DOI: 10.1002/advs.202305906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Developing greener hydrometallurgical processes implies offering alternatives to conventional solvents used for liquid-liquid extraction (LLE) of metals. In this context, it is proposed to substitute the organic phase by a hydrophobic silica-based porous liquid (PL). Two different sulfonated hollow silica particles (HSPs) are modified with various polyethoxylated fatty amines (EthAs) forming a canopy that provides both the targeted hydrophobicity and liquefying properties. This study shows that these properties can be tuned by varying the number of ethylene oxide units in the EthA: middle-range molecular weight EthAs allow obtaining a liquid at room temperature, while too short or too long EthA leads to solid particles. Viscosity is also impacted by the density and size of the silica spheres: less viscous PLs are obtained with small low-density spheres, while for larger spheres (c.a. 200 nm) the density has a less significant impact on viscosity. According to this approach, hydrophobic PLs are successfully synthesized. When contacted with an aqueous phase, the most hydrophobic PLs obtained allow a subsequent phase separation. Preliminary extraction tests on three rare earth elements have further shown that functionalization of the PL is necessary to observe metal extraction.
Collapse
Affiliation(s)
- Lorianne Ginot
- ICSM, CEA, CNRS, ENSCMUniv MontpellierMarcoule30207France
| | | | - Fabrice Giusti
- ICSM, CEA, CNRS, ENSCMUniv MontpellierMarcoule30207France
| | | | | |
Collapse
|
3
|
Qiao Y, Han Y, Guan R, Liu S, Bi X, Liu S, Cui W, Zhang T, He T. Inorganic hollow mesoporous spheres-based delivery for antimicrobial agents. FRONTIERS OF MATERIALS SCIENCE 2023; 17:230631. [PMID: 36911597 PMCID: PMC9991883 DOI: 10.1007/s11706-023-0631-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
Microorganisms coexist with human beings and have formed a complex relationship with us. However, the abnormal spread of pathogens can cause infectious diseases thus demands antibacterial agents. Currently available antimicrobials, such as silver ions, antimicrobial peptides and antibiotics, have diverse concerns in chemical stability, biocompatibility, or triggering drug resistance. The "encapsulate-and-deliver" strategy can protect antimicrobials against decomposing, so to avoid large dose release induced resistance and achieve the controlled release. Considering loading capacity, engineering feasibility, and economic viability, inorganic hollow mesoporous spheres (iHMSs) represent one kind of promising and suitable candidates for real-life antimicrobial applications. Here we reviewed the recent research progress of iHMSs-based antimicrobial delivery. We summarized the synthesis of iHMSs and the drug loading method of various antimicrobials, and discussed the future applications. To prevent and mitigate the spread of an infective disease, multilateral coordination at the national level is required. Moreover, developing effective and practicable antimicrobials is the key to enhancing our capability to eliminate pathogenic microbes. We believe that our conclusion will be beneficial for researches on the antimicrobial delivery in both lab and mass production phases.
Collapse
Affiliation(s)
- Yunping Qiao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Yanyang Han
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Rengui Guan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Shiliang Liu
- Weifang Branch Company, Shandong HI-speed Transportation Construction Group Co., Ltd., Qingzhou, 262500 China
| | - Xinling Bi
- Shandong Jinhai Titanium Resources Technology Co., Ltd., Binzhou, 256600 China
| | - Shanshan Liu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Wei Cui
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Tao He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| |
Collapse
|
4
|
Gurung S, Gucci F, Cairns G, Chianella I, Leighton GJT. Hollow Silica Nano and Micro Spheres with Polystyrene Templating: A Mini-Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8578. [PMID: 36500076 PMCID: PMC9739639 DOI: 10.3390/ma15238578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/17/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Synthesis of monodisperse hollow silica nanospheres, especially using a hard template route, has been shown to be successful, but a high yield is needed for this strategy to be used on an industrial scale. On the other hand, there is a research gap in the synthesis of hollow silica microspheres due to the popularity and easiness of the synthesis of silica nanospheres despite the larger spheres being beneficial in some fields. In this review, current trends in producing hollow silica nanospheres using hard templates, especially polystyrene, are briefly presented. Soft templates have also been used to make highly polydisperse hollow silica spheres, and complex designs have improved polydispersity. The effect of the main parameters on the coating is presented here to provide a basic understanding of the interactions between the silica and template surface in the absence or presence of surfactants. Surface charge, surface modification, parameters in the sol-gel method and interaction between the silica and templates need to be further improved to have a uniform coating and better control over the size, dispersity, wall thickness and porosity. As larger organic templates will have lower surface energy, the efficiency of the micro sphere synthesis needs to be improved. Control over the physical structure of hollow silica spheres will open up many opportunities for them to be extensively used in fields ranging from waste removal to energy storage.
Collapse
Affiliation(s)
- Siddharth Gurung
- Surface Engineering and Precision Centre, Department of Manufacturing and Materials, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Francesco Gucci
- Surface Engineering and Precision Centre, Department of Manufacturing and Materials, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Gareth Cairns
- Atomic Weapons Establishment, Reading, Berkshire RG7 4PR, UK
| | - Iva Chianella
- Surface Engineering and Precision Centre, Department of Manufacturing and Materials, Cranfield University, Bedfordshire MK43 0AL, UK
| | | |
Collapse
|
5
|
Physicochemical and Morphological Properties of Hybrid Films Containing Silver-Based Silica Materials Deposited on Glass Substrates. COATINGS 2022. [DOI: 10.3390/coatings12020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main goal of this study was to present a facile and inexpensive approach for the preparation of hybrid coatings by the deposition under ambient air conditions of silver-based silica materials on glass substrates, which can be used to improve solar cells’ performance. The silica materials containing silver nanoparticles (AgNPs) were synthesized by the hydrolytic condensation of tetraethylorthosilicate (TEOS), triethoxymethylsilane (MTES), and trimethoxyhexadecylsilane (HDTMES), under acidic conditions, at room temperature (25 ± 2 °C). The silver nitrate solution (AgNO3, 0.1 wt. %) was used as a source of Ag+ ions. The final samples were investigated through Fourier Transform Infrared Spectroscopy–Attenuated Total Reflectance (FTIR–ATR), Transmission Electron Microscopy equipped with energy dispersive X–ray (TEM–EDX), UV–Vis spectroscopy, Atomic Force Microscopy (AFM), and Raman Spectroscopy (RS). The TEM images confirmed the formation of AgNPs and were found to be around 3 nm. It was observed that AgNPs were embedded in the silica matrix. EDX also confirmed the presence of the resulting AgNPs within the silica material. AFM images demonstrated that the morphology of the hybrid films’ surfaces can be changed as a function of sol–gel composition. RS analysis indicated that silanol groups were significantly present on the silver-based silica film surface. The UV–Vis spectra revealed that the hybrid coatings presented a reflectance of ~8%, at 550 nm. This study will enhance the value of nanocoating technology in optoelectronics, particularly in the development of nanostructures that improve the performance in thin-film solar cells.
Collapse
|
6
|
Sharma J, Polizos G. Hollow Silica Particles: Recent Progress and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1599. [PMID: 32823994 PMCID: PMC7466709 DOI: 10.3390/nano10081599] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/17/2023]
Abstract
Hollow silica particles (or mesoporous hollow silica particles) are sought after for applications across several fields, including drug delivery, battery anodes, catalysis, thermal insulation, and functional coatings. Significant progress has been made in hollow silica particle synthesis and several new methods are being explored to use these particles in real-world applications. This review article presents a brief and critical discussion of synthesis strategies, characterization techniques, and current and possible future applications of these particles.
Collapse
Affiliation(s)
- Jaswinder Sharma
- Roll-to-Roll Manufacturing Group, Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|