1
|
Georgouvelas D, Abdelhamid HN, Edlund U, Mathew AP. In situ modified nanocellulose/alginate hydrogel composite beads for purifying mining effluents. NANOSCALE ADVANCES 2023; 5:5892-5899. [PMID: 37881700 PMCID: PMC10597566 DOI: 10.1039/d3na00531c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Biobased adsorbents and membranes offer advantages related to resource efficiency, safety, and fast kinetics but have challenges related to their reusability and water flux. Nanocellulose/alginate composite hydrogel beads were successfully prepared with a diameter of about 3-4 mm and porosity as high as 99%. The beads were further modified with in situ TEMPO-mediated oxidation to functionalize the hydroxyl groups of cellulose and facilitate the removal of cationic pollutants from aqueous samples at low pressure, driven by electrostatic interactions. The increased number of carboxyl groups in the bead matrix improved the removal efficiency of the adsorbent without compromising the water throughput rate; being as high as 17 000 L h-1 m-2 bar-1. The absorptivity of the beads was evaluated with UV-vis for the removal of the dye Methylene Blue (91% removal) from spiked water and energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) elemental analyses for the removal of Cd2+ from industrial mining effluents. The modified beads showed a 3-fold increase in ion adsorption and pose as excellent candidates for the manufacturing of three-dimensional (3-D) column filters for large-volume, high flux water treatment under atmospheric pressure.
Collapse
Affiliation(s)
- Dimitrios Georgouvelas
- Division of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C Stockholm SE-10691 Sweden +468161256
| | - Hani Nasser Abdelhamid
- Division of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C Stockholm SE-10691 Sweden +468161256
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University Assiut 71515 Egypt
| | - Ulrica Edlund
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology Teknikringen 56 Stockholm SE-10044 Sweden
| | - Aji P Mathew
- Division of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C Stockholm SE-10691 Sweden +468161256
| |
Collapse
|
2
|
Cai J, Peng Y, Jiang Y, Li L, Wang H, Li K. Application of Fe-MOFs in Photodegradation and Removal of Air and Water Pollutants: A Review. Molecules 2023; 28:7121. [PMID: 37894600 PMCID: PMC10609057 DOI: 10.3390/molecules28207121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Photocatalytic technology has received increasing attention in recent years. A pivotal facet of photocatalytic technology lies in the development of photocatalysts. Porous metal-organic framework (MOF) materials, distinguished by their unique properties and structural characteristics, have emerged as a focal point of research in the field, finding widespread application in the photo-treatment and conversion of various substances. Fe-based MOFs have attained particular prominence. This review explores recent advances in the photocatalytic degradation of aqueous and gaseous substances. Furthermore, it delves into the interaction between the active sites of Fe-MOFs and pollutants, offering deeper insights into their mechanism of action. Fe-MOFs, as photocatalysts, predominantly facilitate pollutant removal through redox processes, interaction with acid sites, the formation of complexes with composite metal elements, binding to unsaturated metal ligands (CUSs), and hydrogen bonding to modulate their respiratory behavior. This review also highlights the focal points of future research, elucidating the challenges and opportunities that lie ahead in harnessing the characteristics and advantages of Fe-MOF composite catalysts. In essence, this review provides a comprehensive summary of research progress on Fe-MOF-based catalysts, aiming to serve as a guiding reference for other catalytic processes.
Collapse
Affiliation(s)
- Jun Cai
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
| | - Yang Peng
- Kunming Electric Power Design Institute Limited Liability Company, Kunming 650034, China
| | - Yanxin Jiang
- Yunnan Hubai Environmental Protection Technology Co., Ltd., Kunming 650034, China
| | - Li Li
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Hua Wang
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Kongzhai Li
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
| |
Collapse
|
3
|
Tursi A, Beneduci A, Nicotera I, Simari C. MWCNTs Decorated with TiO 2 as Highly Performing Filler in the Preparation of Nanocomposite Membranes for Scalable Photocatalytic Degradation of Bisphenol A in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2325. [PMID: 37630910 PMCID: PMC10458988 DOI: 10.3390/nano13162325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Bisphenol A (BPA), an endocrine-disrupting compound with estrogenic behavior, is of great concern within the scientific community due to its high production levels and increasing concentration in various surface aquifers. While several materials exhibit excellent capacity for the photocatalytic degradation of BPA, their powdered nature and poor chemical stability render them unsuitable for practical application in large-scale water decontamination. In this study, a new class of nanocomposite membranes based on sulfonated polyethersulfone (sPES) and multiwalled carbon nanotubes decorated with TiO2 nanoparticles (MWCNTs-TiO2) were investigated as efficient and scalable photocatalysts for the photodegradation of BPA in aqueous solutions. The MWCNTs-TiO2 hybrid material was prepared through a facile and inexpensive hydrothermal method and extensively characterized by XRD, Raman, FTIR, BET, and TGA. Meanwhile, nanocomposite membranes at different filler loadings were prepared by a simple casting procedure. Swelling tests and PFG NMR analyses provided insights into the impact of filler introduction on membrane hydrophilicity and water molecular dynamics, whereas the effectiveness of the various photocatalysts in BPA removal was monitored using HPLC. Among the different MWCNTs-TiO2 content nanocomposites, the one at 10 wt% loading (sP-MT10) showed the best photoactivity. Under UV irradiation at 254 nm and 365 nm for 240 min, photocatalytic oxidation of 5 mg/L bisphenol A by sP-MT10 resulted in 91% and 82% degradation, respectively. Both the effect of BPA concentration and the membrane regenerability were evaluated, revealing that the sP-MT10 maintained its maximum BPA removal capability over more than 10 cycles. Our findings indicate that sP-MT nanocomposite membranes are versatile, scalable, efficient, and highly reusable photocatalysts for the degradation of BPA, as well as potentially for other endocrine disruptors.
Collapse
Affiliation(s)
- Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy; (A.T.); (A.B.); (I.N.)
| | - Amerigo Beneduci
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy; (A.T.); (A.B.); (I.N.)
- SIRiA S.r.l.-Servizi Integrati e Ricerche per l’Ambiente, c/o Department of Chemistry and Chemical Technologies, Spin-Off of the University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy
| | - Isabella Nicotera
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy; (A.T.); (A.B.); (I.N.)
- National Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Cataldo Simari
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy; (A.T.); (A.B.); (I.N.)
- National Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
4
|
Covaliu-Mierlă CI, Păunescu O, Iovu H. Recent Advances in Membranes Used for Nanofiltration to Remove Heavy Metals from Wastewater: A Review. MEMBRANES 2023; 13:643. [PMID: 37505009 PMCID: PMC10385156 DOI: 10.3390/membranes13070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
The presence of heavy metal ions in polluted wastewater represents a serious threat to human health, making proper disposal extremely important. The utilization of nanofiltration (NF) membranes has emerged as one of the most effective methods of heavy metal ion removal from wastewater due to their efficient operation, adaptable design, and affordability. NF membranes created from advanced materials are becoming increasingly popular due to their ability to depollute wastewater in a variety of circumstances. Tailoring the NF membrane's properties to efficiently remove heavy metal ions from wastewater, interfacial polymerization, and grafting techniques, along with the addition of nano-fillers, have proven to be the most effective modification methods. This paper presents a review of the modification processes and NF membrane performances for the removal of heavy metals from wastewater, as well as the application of these membranes for heavy metal ion wastewater treatment. Very high treatment efficiencies, such as 99.90%, have been achieved using membranes composed of polyvinyl amine (PVAM) and glutaraldehyde (GA) for Cr3+ removal from wastewater. However, nanofiltration membranes have certain drawbacks, such as fouling of the NF membrane. Repeated cleaning of the membrane influences its lifetime.
Collapse
Affiliation(s)
- Cristina Ileana Covaliu-Mierlă
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Oana Păunescu
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 132 Calea Grivitei, 010737 Bucharest, Romania
| |
Collapse
|
5
|
Kumari H, Sonia, Suman, Ranga R, Chahal S, Devi S, Sharma S, Kumar S, Kumar P, Kumar S, Kumar A, Parmar R. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. WATER, AIR, AND SOIL POLLUTION 2023; 234:349. [PMID: 37275322 PMCID: PMC10212744 DOI: 10.1007/s11270-023-06359-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Water pollution is a global issue as a consequence of rapid industrialization and urbanization. Organic compounds which are generated from various industries produce problematic pollutants in water. Recently, metal oxide (TiO2, SnO2, CeO2, ZrO2, WO3, and ZnO)-based semiconductors have been explored as excellent photocatalysts in order to degrade organic pollutants in wastewater. However, their photocatalytic performance is limited due to their high band gap (UV range) and recombination time of photogenerated electron-hole pairs. Strategies for improving the performance of these metal oxides in the fields of photocatalysis are discussed. To improve their photocatalytic activity, researchers have investigated the concept of doping, formation of nanocomposites and core-shell nanostructures of metal oxides. Rare-earth doped metal oxides have the advantage of interacting with functional groups quickly because of the 4f empty orbitals. More precisely, in this review, in-depth procedures for synthesizing rare earth doped metal oxides and nonocomposites, their efficiency towards organic pollutants degradation and sources have been discussed. The major goal of this review article is to propose high-performing, cost-effective combined tactics with prospective benefits for future industrial applications solutions.
Collapse
Affiliation(s)
- Harita Kumari
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| | - Sonia
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Suman
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rohit Ranga
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Surjeet Chahal
- Materials and Nano Engineering Research Laboratory, Department of Physics, School of Physical Sciences, DIT University, Dehradun, 248009 India
| | - Seema Devi
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sourabh Sharma
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sandeep Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Parmod Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Suresh Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Ashok Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rajesh Parmar
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| |
Collapse
|
6
|
Effective Removal of Methylene Blue by Mn3O4/NiO Nanocomposite under Visible Light. SEPARATIONS 2023. [DOI: 10.3390/separations10030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Wastewater treatment is indispensable as wastewater can lead to adverse health effects and deteriorate the quality of life on earth. Photocatalysis is a facile methodology to address this issue. In this study, nanocomposites (NCs) of manganese oxide (Mn3O4) and nickel oxide (NiO) were synthesized in different weight ratios via the solid-state reaction route. Structural properties, optical properties, surface morphology, and functional group analysis of the synthesized nanomaterials were conducted using X-ray diffraction (XRD), UV– Vis spectroscopy, scanning electron microscopy (SEM) along with energy-dispersive X-ray (EDX) analysis, and Fourier-transform infrared (FTIR) spectroscopy, respectively. The bandgap of the nanocomposite decreases significantly from 2.35 eV for the Mn3O4 NPs to 1.65 eV for the Mn3O4/NiO nanocomposite (NC). Moreover, adsorption studies followed by the photocatalytic performance of the Mn3O4/NiO NCs were evaluated to determine the removal of methylene blue (MB) dye from wastewater. The photocatalytic performance of the nanocomposite enhances as the ratio of Mn3O4 in the composite increases from one weight percentage to three weight percentage. The photocatalytic degradation efficiency was calculated to be 95%. The results show that the synthesized NCs could play an important role in photocatalytic wastewater purification and environmental remediation.
Collapse
|
7
|
High Value Utilization of Waste Wood toward Porous and Lightweight Carbon Monolith with EMI Shielding, Heat Insulation and Mechanical Properties. Molecules 2023; 28:molecules28062482. [PMID: 36985453 PMCID: PMC10056734 DOI: 10.3390/molecules28062482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
With the increasing pollution of electromagnetic (EM) radiation, it is necessary to develop low-cost, renewable electromagnetic interference (EMI) shielding materials. Herein, wood-derived carbon (WC) materials for EMI shielding are prepared by one-step carbonization of renewable wood. With the increase in carbonization temperature, the conductivity and EMI performance of WC increase gradually. At the same carbonization temperature, the denser WC has better conductivity and higher EMI performance. In addition, due to the layered superimposed conductive channel structure, the WC in the vertical-section shows better EMI shielding performance than that in the cross-section. After excluding the influence of thickness and density, the specific EMI shielding effectiveness (SSE/t) value can be calculated to further optimize tree species. We further discuss the mechanism of the influence of the microstructure of WC on its EMI shielding properties. In addition, the lightweight WC EMI material also has good hydrophobicity and heat insulation properties, as well as good mechanical properties.
Collapse
|
8
|
Tesfahunegn BA, Kleinberg MN, Powell CD, Arnusch CJ. A Laser-Induced Graphene-Titanium(IV) Oxide Composite for Adsorption Enhanced Photodegradation of Methyl Orange. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:947. [PMID: 36903825 PMCID: PMC10005721 DOI: 10.3390/nano13050947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Numerous treatment methods such as biological digestion, chemical oxidation, and coagulation have been used to treat organic micropollutants. However, such wastewater treatment methods can be either inefficient, expensive, or environmentally unsound. Here, we embedded TiO2 nanoparticles in laser-induced graphene (LIG) and obtained a highly efficient photocatalyst composite with pollutant adsorption properties. TiO2 was added to LIG and lased to form a mixture of rutile and anatase TiO2 with a decreased band gap (2.90 ± 0.06 eV). The LIG/TiO2 composite adsorption and photodegradation properties were tested in solutions of a model pollutant, methyl orange (MO), and compared to the individual and mixed components. The adsorption capacity of the LIG/TiO2 composite was 92 mg/g using 80 mg/L MO, and together the adsorption and photocatalytic degradation resulted in 92.8% MO removal in 10 min. Adsorption enhanced photodegradation, and a synergy factor of 2.57 was seen. Understanding how LIG can modify metal oxide catalysts and how adsorption can enhance photocatalysis might lead to more effective pollutant removal and offer alternative treatment methods for polluted water.
Collapse
|
9
|
In Situ Electrospun Porous MIL-88A/PAN Nanofibrous Membranes for Efficient Removal of Organic Dyes. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020760. [PMID: 36677818 PMCID: PMC9860898 DOI: 10.3390/molecules28020760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
In recent years, metal-organic framework (MOF)-based nanofibrous membranes (NFMs) have received extensive attention in the application of water treatment. Hence, it is of great significance to realize a simple and efficient preparation strategy of MOF-based porous NFMs. Herein, we developed a direct in situ formation of MOF/polymer NFMs using an electrospinning method. The porous MOF/polymer NFMs were constructed by interconnecting mesopores in electrospun composite nanofibers using poly(vinylpolypyrrolidone) (PVP) as the sacrificial pore-forming agent. MOF (MIL-88A) particles were formed inside the polyacrylonitrile (PAN)/PVP nanofibers in situ during electrospinning, and the porous MIL-88A/PAN (pMIL-88A/PAN) NFM was obtained after removing PVP by ethanol and water washing. The MOF particles were uniformly distributed throughout the pMIL-88A/PAN NFM, showing a good porous micro-nano morphological structure of the NFM with a surface area of 143.21 m2 g-1, which is conducive to its efficient application in dye adsorption and removal. Specifically, the dye removal efficiencies of the pMIL-88A/PAN NFM for amaranth red, rhodamine B, and acid blue were as high as 99.2, 94.4, and 99.8%, respectively. In addition, the NFM still showed over 80% dye removal efficiencies after five adsorption cycles. The pMIL-88A/PAN NFM also presented high adsorption capacities, fast adsorption kinetics, and high cycling stabilities during the processes of dye adsorption and removal. Overall, this work demonstrates that the in situ electrospun porous MOF/polymer NFMs present promising application potential in water treatment for organic dyestuff removal.
Collapse
|
10
|
Wu L, Song Y, Xing S, Li Y, Xu H, Yang Q, Li Y. Advances in electrospun nanofibrous membrane sensors for ion detection. RSC Adv 2022; 12:34866-34891. [PMID: 36540220 PMCID: PMC9724217 DOI: 10.1039/d2ra04911b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2024] Open
Abstract
Harmful metal ions and toxic anions produced in industrial processes cause serious damage to the environment and human health. Chemical sensors are used as an efficient and convenient detection method for harmful ions. Electrospun fiber membranes are widely used in the field of solid-state chemical sensors due to high specific surface area, high porosity, and strong adsorption. This paper reviews the solid-state chemical sensors based on electrospinning technology for the detection of harmful heavy metal ions and toxic anions in water over the past decade. These electrospun fiber sensors have different preparation methods, sensing mechanisms, and sensing properties. The preparation method can be completed by physical doping, chemical modification, copolymerization, surface adsorption and self-assembly combined with electrospinning, and the material can also be combined with organic fluorescent molecules, biological matrix materials and precious metal materials. Sensing performance aspects can also be manifested as changes in color and fluorescence. By comparing the literature, we summarize the advantages and disadvantages of electrospinning technology in the field of ion sensing, and discuss the opportunities and challenges of electrospun fiber sensor research. We hope that this review can provide inspiration for the development of electrospun fiber sensors.
Collapse
Affiliation(s)
- Liangqiang Wu
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Yan Song
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology Jilin 132022 P. R. China
| | - Shuo Xing
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Yapeng Li
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Hai Xu
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Qingbiao Yang
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Yaoxian Li
- College of Chemistry, Jilin University Changchun 130021 P. R China
| |
Collapse
|
11
|
Islam MA, Akter J, Lee I, Shrestha S, Pandey A, Gyawali N, Hossain MM, Hanif MA, Jang SG, Hahn JR. Facile Preparation of a Bispherical Silver-Carbon Photocatalyst and Its Enhanced Degradation Efficiency of Methylene Blue, Rhodamine B, and Methyl Orange under UV Light. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3959. [PMID: 36432244 PMCID: PMC9698814 DOI: 10.3390/nano12223959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The combination of organic and inorganic materials is attracting attention as a photocatalyst that promotes the decomposition of organic dyes. A facile thermal procedure has been proposed to produce spherical silver nanoparticles (AgNPs), carbon nanospheres (CNSs), and a bispherical AgNP-CNS nanocomposite. The AgNPs and CNSs were each synthesized from silver acetate and glucose via single- and two-step annealing processes under sealed conditions, respectively. The AgNP-CNS nanocomposite was synthesized by the thermolysis of a mixture of silver acetate and a mesophase, where the mesophase was formed by annealing glucose in a sealed vessel at 190 °C. The physicochemical features of the as-prepared nanoparticles and composite were evaluated using several analytical techniques, revealing (i) increased light absorption, (ii) a reduced bandgap, (iii) the presence of chemical interfacial heterojunctions, (iv) an increased specific surface area, and (v) favorable band-edge positions of the AgNP-CNS nanocomposite compared with those of the individual AgNP and CNS components. These characteristics led to the excellent photocatalytic efficacy of the AgNP-CNS nanocomposite for the decomposition of three pollutant dyes under ultraviolet (UV) radiation. In the AgNP-CNS nanocomposite, the light absorption and UV utilization capacity increased at more active sites. In addition, effective electron-hole separation at the heterojunction between the AgNPs and CNSs was possible under favorable band-edge conditions, resulting in the creation of reactive oxygen species. The decomposition rates of methylene blue were 95.2, 80.2, and 73.2% after 60 min in the presence of the AgNP-CNS nanocomposite, AgNPs, and CNSs, respectively. We also evaluated the photocatalytic degradation efficiency at various pH values and loadings (catalysts and dyes) with the AgNP-CNS nanocomposite. The AgNP-CNS nanocomposite was structurally rigid, resulting in 93.2% degradation of MB after five cycles of photocatalytic degradation.
Collapse
Affiliation(s)
- Md. Akherul Islam
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Jeasmin Akter
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Insup Lee
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Santu Shrestha
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Anil Pandey
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Narayan Gyawali
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Md. Monir Hossain
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Functional Composite Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju, Jeonbuk 55324, Korea
| | - Md. Abu Hanif
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Se Gyu Jang
- Functional Composite Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju, Jeonbuk 55324, Korea
| | - Jae Ryang Hahn
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
- Textile Engineering, Chemistry and Science, North Carolina State University 2401 Research Dr., Raleigh, NC 27695-8301, USA
| |
Collapse
|
12
|
Wang W, Nadagouda MN, Mukhopadhyay SM. Advances in Matrix-Supported Palladium Nanocatalysts for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3593. [PMID: 36296782 PMCID: PMC9612339 DOI: 10.3390/nano12203593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Advanced catalysts are crucial for a wide range of chemical, pharmaceutical, energy, and environmental applications. They can reduce energy barriers and increase reaction rates for desirable transformations, making many critical large-scale processes feasible, eco-friendly, energy-efficient, and affordable. Advances in nanotechnology have ushered in a new era for heterogeneous catalysis. Nanoscale catalytic materials are known to surpass their conventional macro-sized counterparts in performance and precision, owing it to their ultra-high surface activities and unique size-dependent quantum properties. In water treatment, nanocatalysts can offer significant promise for novel and ecofriendly pollutant degradation technologies that can be tailored for customer-specific needs. In particular, nano-palladium catalysts have shown promise in degrading larger molecules, making them attractive for mitigating emerging contaminants. However, the applicability of nanomaterials, including nanocatalysts, in practical deployable and ecofriendly devices, is severely limited due to their easy proliferation into the service environment, which raises concerns of toxicity, material retrieval, reusability, and related cost and safety issues. To overcome this limitation, matrix-supported hybrid nanostructures, where nanocatalysts are integrated with other solids for stability and durability, can be employed. The interaction between the support and nanocatalysts becomes important in these materials and needs to be well investigated to better understand their physical, chemical, and catalytic behavior. This review paper presents an overview of recent studies on matrix-supported Pd-nanocatalysts and highlights some of the novel emerging concepts. The focus is on suitable approaches to integrate nanocatalysts in water treatment applications to mitigate emerging contaminants including halogenated molecules. The state-of-the-art supports for palladium nanocatalysts that can be deployed in water treatment systems are reviewed. In addition, research opportunities are emphasized to design robust, reusable, and ecofriendly nanocatalyst architecture.
Collapse
Affiliation(s)
- Wenhu Wang
- Frontier Institute for Research in Sensor Technologies (FIRST), The University of Maine, Orono, ME 04469, USA
| | | | - Sharmila M. Mukhopadhyay
- Frontier Institute for Research in Sensor Technologies (FIRST), The University of Maine, Orono, ME 04469, USA
- Department of Mechanical Engineering, The University of Maine, Orono, ME 04469, USA
| |
Collapse
|
13
|
Crystal Structure and Optical Properties of ZnO:Ce Nano Film. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165308. [PMID: 36014546 PMCID: PMC9412255 DOI: 10.3390/molecules27165308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022]
Abstract
ZnO and cerium-doped ZnO on a glass substrate have been prepared by the sol–gel method using the spin coating technique and water bath growth process. Ce-doping concentration on film structure, morphology, and optical properties is investigated. The result indicated that the hexagonal wurtzite ZnO with high crystalline quality formed on the substrate. The crystal parameters a and c decreased, crystal size increased, and the compressive strain formed after Ce-doping. Formed un-, 3%, 6%, 12% Ce-doped ZnO film has a spherical shape with a size between 8.6–31, 14–52, 18–56, and 20–91 nm, respectively. All films had good absorption of 300–400 nm ultraviolet light, in particular, the absorption of near ultraviolet (370–400 nm) increased after doping of Ce. The transmittance of light between 400–800 nm decreased with Ce-doping concentration. The band gap energy increased after Ce-doping reaching better optical behavior for preparing ZnO heterostructured thin-film. All film emitted intense blue emission under 375 nm excitation at room temperature. This indicated the film can have application in optoelectronic devices.
Collapse
|
14
|
Alshahrani AA, Alorabi AQ, Hassan MS, Amna T, Azizi M. Chitosan-Functionalized Hydroxyapatite-Cerium Oxide Heterostructure: An Efficient Adsorbent for Dyes Removal and Antimicrobial Agent. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12152713. [PMID: 35957143 PMCID: PMC9370144 DOI: 10.3390/nano12152713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 05/27/2023]
Abstract
The current research intended to employ a facile and economical process, which is also ecofriendly to transform camel waste bones into novel heterostructure for cleansing of diverse waste waters. The bones of camel were utilized for preparation of hydroxyapatite by hydrothermal method. The prepared hydroxyapatite was applied to the synthesis of cerium oxide-hydroxyapatite coated with natural polymer chitosan (CS-HAP-CeO2) heterostructure. Being abundant natural polymer polysaccharide, chitosan possesses exceptional assets such as accessibility, economic price, hydrophilicity, biocompatibility as well as biodegradability, therefore style it as an outstanding adsorbent for removing colorant and other waste molecules form water. This heterostructure was characterized by various physicochemical processes such as XRD, SEM-EDX, TEM, and FT-IR. The CS-HAP-CeO2 was screened for adsorption of various industrially important dyes, viz., Brilliant blue (BB), Congo red (CR), Crystal violet (CV), Methylene blue (MB), Methyl orange (MO), and Rhodamine B (RB) which are collective pollutants of industrial waste waters. The CS-HAP-CeO2 demonstrated exceptional adsorption against CR dye. The adsorption/or removal efficiency ranges are BB (11.22%), CR (96%), CV (28.22%), MB (47.74%), MO (2.43%), and RB (58.89%) dyes. Moreover, this heterostructure showed excellent bacteriostatic potential for E. coli, that is liable for serious waterborne diseases. Interestingly, this work revealed that the incorporation of cerium oxide and chitosan into hydroxyapatite substantially strengthened antimicrobial and adsorption capabilities than those observed in virgin hydroxyapatite. Herein, we recycled the unwanted camel bones into a novel heterostructure, which assists to reduce water pollution, mainly caused by the dye industries.
Collapse
Affiliation(s)
- Aisha A. Alshahrani
- Department of Chemistry, College of Science, Al-Baha University, P.O. Box 1988, Al-Baha 65799, Saudi Arabia
| | - Ali Q. Alorabi
- Department of Chemistry, College of Science, Al-Baha University, P.O. Box 1988, Al-Baha 65799, Saudi Arabia
| | - M. Shamshi Hassan
- Department of Chemistry, College of Science, Al-Baha University, P.O. Box 1988, Al-Baha 65799, Saudi Arabia
| | - Touseef Amna
- Department of Biology, College of Science, Al-Baha University, P.O. Box 1988, Al-Baha 65799, Saudi Arabia
| | - Mohamed Azizi
- Department of Chemistry, Faculty of Science and Arts, Al-Baha University, Qilwah 65941, Saudi Arabia
- Lab. Desalination and Water Treatment Valorisation (LaDVEN), Water Research and Technologies Center (WRTC), BP 273, Soliman 8020, Tunisia
| |
Collapse
|
15
|
Kan Y, Bondareva JV, Statnik ES, Cvjetinovic J, Lipovskikh S, Abdurashitov AS, Kirsanova MA, Sukhorukhov GB, Evlashin SA, Salimon AI, Korsunsky AM. Effect of Graphene Oxide and Nanosilica Modifications on Electrospun Core-Shell PVA–PEG–SiO2@PVA–GO Fiber Mats. NANOMATERIALS 2022; 12:nano12060998. [PMID: 35335811 PMCID: PMC8950511 DOI: 10.3390/nano12060998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
Electrospinning is a well-established method for the fabrication of polymer biomaterials, including those with core-shell nanofibers. The variability of structures presents a great range of opportunities in tissue engineering and drug delivery by incorporating biologically active molecules such as drugs, proteins, and growth factors and subsequent control of their release into the target microenvironment to achieve therapeutic effect. The object of study is non-woven core-shell PVA–PEG–SiO2@PVA–GO fiber mats assembled by the technology of coaxial electrospinning. The task of the core-shell fiber development was set to regulate the degradation process under external factors. The dual structure was modified with silica nanoparticles and graphene oxide to ensure the fiber integrity and stability. The influence of the nano additives and crosslinking conditions for the composite was investigated as a function of fiber diameter, hydrolysis, and mechanical properties. Tensile mechanical tests and water degradation tests were used to reveal the fracture and dissolution behavior of the fiber mats and bundles. The obtained fibers were visualized by confocal fluorescence microscopy to confirm the continuous core-shell structure and encapsulation feasibility for biologically active components, selectively in the fiber core and shell. The results provide a firm basis to draw the conclusion that electrospun core-shell fiber mats have tremendous potential for biomedical applications as drug carriers, photocatalysts, and wound dressings.
Collapse
Affiliation(s)
- Yuliya Kan
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
- Correspondence:
| | - Julia V. Bondareva
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia; (J.V.B.); (S.A.E.)
| | - Eugene S. Statnik
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
| | - Julijana Cvjetinovic
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia;
| | - Svetlana Lipovskikh
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
| | - Arkady S. Abdurashitov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (A.S.A.); (G.B.S.)
| | - Maria A. Kirsanova
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
| | - Gleb B. Sukhorukhov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (A.S.A.); (G.B.S.)
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Stanislav A. Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia; (J.V.B.); (S.A.E.)
| | - Alexey I. Salimon
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
| | - Alexander M. Korsunsky
- Multi-Beam Laboratory for Engineering Microscopy (MBLEM), Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK;
| |
Collapse
|
16
|
Li Y, Shen L, Pun EYB, Lin H. All-inorganic perovskite quantum dots-based electrospun polyacrylonitrile fiber for ultra-sensitive trace-recording. NANOTECHNOLOGY 2021; 33:095708. [PMID: 34798625 DOI: 10.1088/1361-6528/ac3b83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
All-inorganic dual-phase CsPbBr3-Cs4PbBr6quantum dots (CPB QDs)-based polyacrylonitrile (PAN) fiber synthesized by supersaturated recrystallization and electrospinning technique possesses characteristics of homogeneous morphology, high crystallinity and solution sensitivity. Under 365 nm laser excitation, CPB@PAN fiber exhibits surprising trace-recording capability attributing to the splash-enhanced fluorescence (FL) performance with a narrow-band emission at 477-515 nm. In the process of ethanol anhydrous (EA) and water splashing, the CPB@PAN fiber presents conspicuous blue and green emission when contacting with EA and water, and maintains intense blue and green FL for more than 4 months. These experimental and theoretical findings provide a facile technology for the development of biological protection display, biotic detection and moisture-proof forewarning based on the trace-recording performance of CPB@PAN fiber.
Collapse
Affiliation(s)
- Yanyan Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Lifan Shen
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- College of Microelectronics and Key Laboratory of Optoelectronics Technology, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Edwin Yue Bun Pun
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hai Lin
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
17
|
Abstract
Abstract
Recently, bicomponent fibers have been attracting much attention due to their unique structural characteristics and properties. A common concern was how to characterize a bicomponent fiber. In this review, we generally summarized the classification, structural characteristics, preparation methods of the bicomponent fibers, and focused on the experimental evidence for the identification of bicomponent fibers. Finally, the main challenges and future perspectives of bicomponent fibers and their characterization are provided. We hope that this review will provide readers with a comprehensive understanding of the design and characterization of bicomponent fibers.
Collapse
Affiliation(s)
- Shufang Zhu
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
| | - Xin Meng
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
| | - Xu Yan
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University , Qingdao 266071 , China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University , Qingdao 266071 , China
| | - Shaojuan Chen
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
| |
Collapse
|
18
|
Yuan MJ, Hu ZY, Fang H, Li SJ, Guo HT, Hu RB, Jiang SH, Liu KM, Hou HQ. High Performance Electrospun Polynaphthalimide Nanofibrous Membranes with Excellent Resistance to Chemically Harsh Conditions. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2634-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|