1
|
Ma J, Cai Z, Ahmad F, Xiao Y, Shu T, Zhang X. Confining metal nanoparticles and nanoclusters in covalent organic frameworks for biosensing and biomedicine. Biosens Bioelectron 2025; 281:117461. [PMID: 40250017 DOI: 10.1016/j.bios.2025.117461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Metal nanoscale particles, primarily including metal nanoparticles (MNPs) and nanoclusters (MNCs), have garnered substantial interests owing to their unique electronic configurations and distinct physicochemical properties. However, practical applications are frequently constrained by their limited stability and aggregation tendency. Covalent organic frameworks (COFs), featuring highly ordered periodic architectures, have emerged as ideal porous matrices for hosting metal nanoparticles. The resulting metal-embedded COFs synthesized through adsorption methods (M/COFs) or in-situ reduction (M@COFs) not only mitigate nanoparticle aggregation and enhance stability but also demonstrate synergistic effects that generate enhanced or novel functionalities, significantly broadening their application potential. This review firstly examines adsorption-based synthesis strategies for M/COFs through physical and chemical approaches. Subsequently, we analyze in-situ reduction methods for M@COFs, categorizing them by reduction pathways: deposition, impregnation-pyrolysis, and "one-step" synthesis. Special attention is given to an emerging pore wall engineering strategy within in-situ reduction approach. The biosensing and biomedical applications of metal-embedded COFs are systematically examined, highlighting their comparative advantages over conventional nanomaterials in sensing and antimicrobial applications. While metal-embedded COFs remain in their developmental infancy and face considerable challenges, the controlled synthesis of multifunctional variants promises transformative potential across biomedical domains.
Collapse
Affiliation(s)
- Jianxin Ma
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhongjie Cai
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Faisal Ahmad
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Yelan Xiao
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Tong Shu
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Gao Y, Zhang S, Ge B, Zhao H, Jin C, Yan H, Zhao L. Designing fluorescent covalent organic frameworks through regulation of link bond for selective detection of Al 3+ and Ce 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125620. [PMID: 39740394 DOI: 10.1016/j.saa.2024.125620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
The high thermal stability and chemical durability of amide-linked covalent organic frameworks (amide COFs) make them a promising material for a range of new applications. Nevertheless, the low reversibility of the amide bond presents a significant challenge to the direct synthesis of amide-bonded COFs. In this paper, we present a simple method for synthesizing amide COFs. The synthesis of imine-linked COFs was initially achieved through the reaction of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and 2,5-dimethoxybenzene-1,4-dicarboxaldehyde. Subsequently, amide COFs were synthesized via the oxidation of the imine bond into an amide bond, utilizing ammonium persulfate as the oxidizing agent. Due to the difference of link bond, two COFs separately displayed distinct and significant fluorescence enhancement for Al3+ and Ce3+, which was highly sensitive and less affected by environmental factors. The strategy offers a novel approach to the convenient and environmentally benign synthesis of amide COFs, which may facilitate their wider applications.
Collapse
Affiliation(s)
- Yingwei Gao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Shuo Zhang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Bo Ge
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Hui Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Chuanyu Jin
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Hui Yan
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Limin Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China.
| |
Collapse
|
3
|
Yan Z, Fang M, Wang L, Gao H, Ying Y, Yang J, Wang J, Liu Y, Tang Z. Linkage Engineering of Semiconductive Covalent-Organic Frameworks toward Room-Temperature Ppb-Level Selective Ammonia Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407436. [PMID: 39955759 DOI: 10.1002/smll.202407436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Rational design of molecular architectures is crucial for developing advanced materials such as covalent-organic frameworks (COFs) with excellent sensing performance. In this work, two isostructural COFs (β-keto-AnCOF and imine-AnCOF) with the same conjugated linkers but distinct linkages are constructed. Although both COFs have porous structure and semiconductor behavior conferred by the identical conjugated backbones, β-keto-AnCOF with ─C═O side groups exhibits superior room-temperature ammonia (NH3) sensing performance than imine-AnCOF and even the state-of-the-art dynamic and commercial NH3 sensors, i.e., high sensitivity up to 18.94% ppm-1, ultralow experimental detection limit of 1 ppb, outstanding selectivity, and remarkable response stability and reproducibility after 180 days. In situ spectroscopy and theoretical calculation reveal that the additional charge transfer between NH3 and ─C═O sites in β-keto-AnCOF effectively increases the distance between Fermi level and the valence band, enabling highly-sensitive NH3 detection at ppb levels. This work provides novel molecular architectures for next-generation high-performance sensors.
Collapse
Affiliation(s)
- Zhuang Yan
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Munan Fang
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Longfei Wang
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huiwen Gao
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Ying
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinlei Yang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiahua Wang
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yaling Liu
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Mekkeparambath V, Sreejaya MM, M S, K HK, Anil Kumar L, M KP, Venkatesh Y, Gangopadhyay M. Covalent Organic Framework as Selective Fluorescence Sensors for Cancer Inducing Volatile Organic Compounds. Chembiochem 2025; 26:e202400784. [PMID: 39607949 DOI: 10.1002/cbic.202400784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Certain volatile organic compounds (VOCs), such as formaldehyde, acetone, and ethanol, are overexpressed in some terminal diseases like cancer, diabetes, Alzheimer's, etc. Therefore, high-precision detection and quantification of VOCs is imperative for early diagnosis of such detrimental diseases. Non-invasive and accurate fluorescence-based detection of such analytes has garnered widespread attention. The inherent luminescent properties of covalent organic frameworks (COFs), resulting from their extensive π-conjugation, have made them suitable for sensing applications. Structural tunability and strong covalent linkers facilitate sensing by COFs. Appropriate choices of linker and skeletal units of the COF can help detect various biologically important analytes selectively. The most common linkers used in this regard is the imine linker, which can undergo excellent hydrogen bonding with different protic VOCs e. g., ethanol, methanol, etc. Besides imine detection, hydrogen bonding also proved useful for detection of aldehydes. Suitable combinations of donors and acceptors enable the COFs to have specific charge transfer interactions with many electron-rich and electron-poor VOCs. In this review, we have highlighted the syntheses of selective COFs incorporating linkers designed for sensing cancer-inducing VOCs. A detailed discussion of the interaction mechanisms between COFs and these VOCs is provided, along with examples from recent literature in this field.
Collapse
Affiliation(s)
- Vaishnavi Mekkeparambath
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - M M Sreejaya
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Sreelekshmi M
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Harikrishnan K K
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Lina Anil Kumar
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Kalyani P M
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Yarra Venkatesh
- Department of Chemistry Institution University of Pennsylvania Address 2 Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Moumita Gangopadhyay
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| |
Collapse
|
5
|
Alshubramy MA, Alamry KA, Alorfi HS, Ismail SH, Rezki N, Aouad MR, Al-Sodies S, Hussein MA. Room temperature sensing of CO 2 using C3-symmetry pyridinium-based porous ionic polymers with triazine or benzene cores. RSC Adv 2025; 15:3317-3330. [PMID: 39902105 PMCID: PMC11788645 DOI: 10.1039/d4ra07062c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
A new class of ionic polymers tethering triazine (benzene) core hybrids with three dipyridinium as cationic counterparts combined with bromide and/or chloride anions PPyBz-OBr and PPyTri-OCl were successfully prepared via the alkylation of 4,4'-dipyridyl derivatives 4,4'-bp-O with 1,3,5-tris(bromomethyl)benzene BB and/or cyanuric chloride CC. The precursor, 4,4'-bp-O,was synthesized through the condensation of 4-pyridine carboxaldehyde and 4,4'-oxydianiline. The resulting ionic polymers, PPyBz-OBr and PPyTri-OCl, underwent metathetical anion exchange, forming new ionic polymers bearing LiTFSI and KPF6 as anions. Characterization of the synthesized hybrid molecules was performed through FTIR, 1H NMR, and 13C NMR analyses. PXRD and SEM showed semi-crystalline structures and a homogenous distribution of micro-/or nanoparticles. TGA and DTA displayed high thermal stability of the synthesized polymer. The sensing activity of the modified ionic polymers was examined using a quartz crystal nanobalance (QCN) for CO2 detection. The resulting sensor demonstrated the ability to provide precise, selective, and reproducible CO2 measurements.
Collapse
Affiliation(s)
- Maha A Alshubramy
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Hajar S Alorfi
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Sameh H Ismail
- Egypt Nanotechnology Center, Cairo University El-Sheikh Zayed, 6th October Giza Egypt
| | - Nadjet Rezki
- Department of Chemistry, Taibah University 30002 Al-Madina Al-Mounawara Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry, Taibah University 30002 Al-Madina Al-Mounawara Saudi Arabia
| | - Salsabeel Al-Sodies
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Department of Chemistry, Taibah University 30002 Al-Madina Al-Mounawara Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
6
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
7
|
García-Arroyo P, Gala E, Martínez-Fernández M, Salagre E, Martínez JI, Michel EG, Segura JL. Turn-On Solid-State Fluorescent Determination of Zinc Ion by Quinoline-Based Covalent Organic Framework. Macromol Rapid Commun 2024; 45:e2400134. [PMID: 38689427 DOI: 10.1002/marc.202400134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Indexed: 05/02/2024]
Abstract
A new quinoline-based COF (covalent organic framework), obtained by Povarov reaction, containing 2,6-diisopropylphenyl moieties as substituents over the heterocyclic ring is described for detecting Zn2+ in aqueous solution. The introduction of the mentioned bulky phenyl rings into the network favors an increase of the distance between the reticular sheets and their arrangement, obtaining a new material with an alternating AB type stacking. The new material exhibits good selectivity to detect Zn2+ by fluorescence emission in aqueous solutions up to a concentration of 1.2 × 10-4 m of the metal ion. In order to have a deeper insight into the interaction between the COF and the zinc cation, a thorough spectroscopical, microscopical, and theoretical study is also presented and discussed in this communication.
Collapse
Affiliation(s)
- Paloma García-Arroyo
- Departamento de Química Orgánica I, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Elena Gala
- Departamento de Química Orgánica I, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
- Chemical and Environmental Technology Department, Rey Juan Carlos University, Móstoles, 28933, Spain
| | - Marcos Martínez-Fernández
- Departamento de Química Orgánica I, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Elena Salagre
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José I Martínez
- Departamento de Materiales de baja dimensionalidad, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, 28049, Spain
| | - Enrique G Michel
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José L Segura
- Departamento de Química Orgánica I, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| |
Collapse
|
8
|
Zheng X, Qiu W, Cui J, Liu H, Zhao Y, Zhang J, Zhang Z, Zhao Y. Donor-Acceptor Interactions Enhanced Colorimetric Sensors for Both Acid and Base Vapor Based on Two-Dimensional Covalent Organic Frameworks. Chemistry 2024; 30:e202303004. [PMID: 38189555 DOI: 10.1002/chem.202303004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 01/09/2024]
Abstract
Due to the high surface area and uniform porosity of covalent organic frameworks (COFs), they exhibit superior properties in capturing and detecting even trace amounts of gases in the air. However, the COFs materials that possess dual detected functionality are still less reported. Here, an imine-based COF containing thiophene as a donor and triazine as an acceptor to form spatial-distribution-defined D-A structures was prepared. D-A system between thiophene and triazine facilitates the charge transfer process during the protonation process of the imine and the triazine units. The obtained COF exhibits simultaneous sensing ability toward both acidic and alkaline vapors with obvious colorimetric sensing functionality.
Collapse
Affiliation(s)
- Xuhan Zheng
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Wenqi Qiu
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Jialin Cui
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Hui Liu
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Yunzheng Zhao
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Jianming Zhang
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Zhenxiu Zhang
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Yingjie Zhao
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| |
Collapse
|
9
|
Koonani S, Ghiasvand A. A highly porous fiber coating based on a Zn-MOF/COF hybrid material for solid-phase microextraction of PAHs in soil. Talanta 2024; 267:125236. [PMID: 37757692 DOI: 10.1016/j.talanta.2023.125236] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
This study involved the development of a novel adsorbent by combining a Zn-based MOF with a melamine-based COF, resulting in the formation of a hybrid material known as Zn-MOF/COF. The adsorbent was characterized using FT-IR, SEM, XRD, EDX, and BET analysis techniques. The resulting Zn-MOF/COF sorbent was employed to prepare solid-phase microextraction (SPME) fibers for the extraction and enrichment of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil samples, after coupling with GC-FID. A Box-Behnken design (BBD) was used to optimize key variables of SPME conditions. Under optimal conditions of 85 °C for 30 min extraction with 23 μL g-1 sample's moisture level, linear responses of six PAHs were ranging from 1 to 20000 ng g⁻1 with determination coefficients greater than 0.99. Limits of detection (LODs) were over the ranges of 0.1-1 ng g-1. The RSDs for intra-fiber and inter-fiber analyses were obtained 2.2-6.6% and 5.2-11.6%, respectively. Relative recoveries values for real soil samples were found to be 91.1-110.2%. The results showed lower cost and higher extraction efficiency for the Zn-MOF/COF fiber, compared with commercial and homemade adsorbents.
Collapse
Affiliation(s)
- Samira Koonani
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khoramabad, Iran.
| | - Alireza Ghiasvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khoramabad, Iran.
| |
Collapse
|
10
|
Yan M, Hao Q, Diao S, Zhou F, Yichen C, Jiang N, Zhao C, Ren XR, Yu F, Tong J, Wang D, Liu H. Smart Home Sleep Respiratory Monitoring System Based on a Breath-Responsive Covalent Organic Framework. ACS NANO 2024; 18:728-737. [PMID: 38118144 DOI: 10.1021/acsnano.3c09018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A smart home sleep respiratory monitoring system based on a breath-responsive covalent organic framework (COF) was developed and utilized to monitor the sleep respiratory behavior of real sleep apnea patients in this work. The capacitance of the interdigital electrode chip coated with COFTPDA-TFPy exhibits thousands-level reversible responses to breath humidity gases, with subsecond response time and robustness against environmental humidity. A miniaturized printed circuit board, an open-face-mask-based respiratory sensor, and a smartphone app were constructed for the wearable wireless smart home sleep respiratory monitoring system. Leveraging the sensitive and rapid reversible response of COFs, the COF-based respiratory monitoring system can effectively record normal breath, rapid breath, and breath apnea, enabling over a thousand cycles of hour-level continuous monitoring during daily wear. Next, we took the groundbreaking step of advancing the humidity sensor to the clinical trial stage. In clinical experiments on real sleep apnea patients, the COF-based respiratory monitoring system successfully recorded hour-level sleep respiratory data and differentiated the breathing behavior characteristics and severity of sleep apnea patients and subjects with normal sleep function and primary snoring patients. This work successfully advanced humidity sensors into clinical research for real patients and demonstrated the enormous application potential of COF materials in clinical diagnosis.
Collapse
Affiliation(s)
- Mengwen Yan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Qing Hao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Shanyan Diao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Fan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chen Yichen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Nan Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chao Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Xiao-Rui Ren
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital, Nanjing, China Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital, Nanjing, China Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
11
|
Wen F, Wu X, Li X, Huang N. Two-Dimensional Covalent Organic Frameworks as Tailor-Made Scaffolds for Water Harvesting. Chemistry 2023; 29:e202302399. [PMID: 37718650 DOI: 10.1002/chem.202302399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Developing materials to harvest water from the air is of great importance to alleviate the water shortage for people living in arid regions, where the annual average relative humidity (RH) is lower than 0.4. In this work, we report a general nitrogen atom incorporation strategy to prepare high-performance covalent organic frameworks (COFs) for water harvesting from the air in arid areas. A series of COFs, namely COF-W1, COF-W2, and COF-W3 were developed for this purpose. Different contents of nitrogen were embedded into COFs by incorporating pyridine units into the building blocks. With the increasing content of nitrogen from COF-W1 to COF-W3, the inflection points of their water isotherms shift distinctly from RH values from 0.65 to 0.25. Significantly, COF-W3 exhibits the lowest inflection point at a low RH value of 0.25 and reaches a high uptake capacity of 0.28 g g-1 at 25 °C with a low hysteresis loop. Moreover, the gram-scale COF-W3 retains its high performance, which renders it more attractive in water harvesting. This work demonstrates the feasibility of this nitrogen incorporation strategy to acquire high-performance COFs as water harvesters in the future.
Collapse
Affiliation(s)
- Fuxiang Wen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Xinyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Xiangyu Li
- Dalian Ecological and Environmental Affairs Service Center, Dalian Municipal Bureau of Ecological Environment, 116023, Dalian, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
12
|
Meskher H, Belhaouari SB, Sharifianjazi F. Mini review about metal organic framework (MOF)-based wearable sensors: Challenges and prospects. Heliyon 2023; 9:e21621. [PMID: 37954292 PMCID: PMC10632523 DOI: 10.1016/j.heliyon.2023.e21621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Among many types of wearable sensors, MOFs-based wearable sensors have recently been explored in both commercialization and research. There has been much effort in various aspects of the development of MOF-based wearable sensors including but not limited to miniaturization, size control, safety, improvements in conformal and flexible features, improvements in the analytical performance and long-term storage of these devices. Recent progress in the design and deployment of MOFs-based wearable sensors are covered in this paper, as are the remaining obstacles and prospects. This work also highlights the enormous potential for synergistic effects of MOFs used in combination with other nanomaterials for healthcare applications and raise attention toward the economic aspect and market diffusion of MOFs-based wearable sensors.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Process Engineering, College of Science and Technology, Chadli Bendjedid University, 36000, Algeria
| | - Samir Brahim Belhaouari
- Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa,Doha, Qatar
| | | |
Collapse
|
13
|
GÜNEY G, ALTINDEMİR KAPLAN G, TAŞALTIN C, GÜROL İ. Advanced tetra amino (ATA-100) cobalt(II) phthalocyanine-based metallo-covalent organic polymer for sensitively detecting volatile organic compounds. Turk J Chem 2023; 47:1138-1148. [PMID: 38173747 PMCID: PMC10760821 DOI: 10.55730/1300-0527.3600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/31/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
The synthesis and characterization of a novel covalent organic polymer cobalt (II) phthalocyanine (ATA-100) including tetra amino group is described for the first time. This covalent organic polymer (COP) is characterized by FTIR, TGA, RAMAN, PXRD, and SEM-EDS. The developed sensor is tested for acetone, ethyl butyrate, n-hexane, chloroform, and n-butyraldehyde in a range of 80-10,900 ppm. ATA-100 showed the highest sensitivity for ethyl butyrate. The results have confirmed the possibility of utilizing ATA-100 COP-based surface acoustic wave (SAW) sensors for a wide variety of applications, including indoor air quality and environmental monitoring of volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Günseli GÜNEY
- TÜBİTAK Marmara Research Center, Materials Technologies, Kocaeli,
Turkiye
- Department of Chemistry, Faculty of Arts and Science, Yıldız Technical University, İstanbul,
Turkiye
| | | | - Cihat TAŞALTIN
- TÜBİTAK Marmara Research Center, Materials Technologies, Kocaeli,
Turkiye
| | - İlke GÜROL
- TÜBİTAK Marmara Research Center, Materials Technologies, Kocaeli,
Turkiye
| |
Collapse
|
14
|
Yan B. Lanthanide Functionalized Covalent Organic Frameworks Hybrid Materials for Luminescence Responsive Chemical Sensing. Chemistry 2023; 29:e202301108. [PMID: 37254951 DOI: 10.1002/chem.202301108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023]
Abstract
Covalent organic frameworks (COFs) possess several unique features of structural and functional chemistry, together with other modular photophysical performance, which make them candidates for luminescence responsive chemical sensing. Lanthanide (Ln3+ ) functionalized COFs hybrid materials still keep the parent COFs' virtues and also embody the abundant multiple luminescence response with both COFs and Ln3+ ions or other guest species. In this review, the summary is highlighted on the lanthanide functionalized COFs hybrid materials and their relevant systems for luminescence responsive chemical sensing. It is subdivided into five sections involving the three main topics. Firstly, the basic knowledges of COFs materials related to the luminescence responsive chemical sensing are introduced (including three sections), involving the chemistry, application and post-synthetic modification (PSM) of COFs, the luminescence and luminescence responsive chemical sensing, and the luminescence responsive chemical sensing of non-lanthanide functionalized COFs hybrids materials. Secondly, the systematic progresses are outlined on the lanthanide functionalized COFs hybrid materials in luminescence responsive chemical sensing, which is the emphasis for this review. Finally, the conclusion and prospect are given.
Collapse
Affiliation(s)
- Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| |
Collapse
|
15
|
Shi Y, Yang J, Gao F, Zhang Q. Covalent Organic Frameworks: Recent Progress in Biomedical Applications. ACS NANO 2023; 17:1879-1905. [PMID: 36715276 DOI: 10.1021/acsnano.2c11346] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline organic porous material with specific features and interesting structures, including porosity, large surface area, and biocompatibility. These features enable COFs to be considered as excellent candidates for applications in various fields. Recently, COFs have been widely demonstrated as promising materials for biomedical applications because of their excellent physicochemical properties and ultrathin structures. In this review, we cover the recent progress of COF materials for applications in photodynamic therapy, gene delivery, photothermal therapy, drug delivery, bioimaging, biosensing, and combined therapies. Moreover, the critical challenges and further perspectives with regards to COFs for future biology-facing applications are also discussed.
Collapse
Affiliation(s)
- Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Feng Gao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
16
|
Zhang Y, Wu J, Gao J, Chen X, Wang Q, Yu X, Zhang Z, Liu M, Li J. Oxygen ether chain containing covalent organic frameworks as efficient fluorescence-enhanced probe for water detection. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Machado TF, Santos FA, Pereira RFP, de Zea Bermudez V, Valente AJM, Serra MES, Murtinho D. β-Ketoenamine Covalent Organic Frameworks—Effects of Functionalization on Pollutant Adsorption. Polymers (Basel) 2022; 14:polym14153096. [PMID: 35956612 PMCID: PMC9370968 DOI: 10.3390/polym14153096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Water pollution due to global economic activity is one of the greatest environmental concerns, and many efforts are currently being made toward developing materials capable of selectively and efficiently removing pollutants and contaminants. A series of β-ketoenamine covalent organic frameworks (COFs) have been synthesized, by reacting 1,3,5-triformylphloroglucinol (TFP) with different C2-functionalized and nonfunctionalized diamines, in order to evaluate the influence of wall functionalization and pore size on the adsorption capacity toward dye and heavy metal pollutants. The obtained COFs were characterized by different techniques. The adsorption of methylene blue (MB), which was used as a model for the adsorption of pharmaceuticals and dyes, was initially evaluated. Adsorption studies showed that –NO2 and –SO3H functional groups were favorable for MB adsorption, with TpBd(SO3H)2-COF [100%], prepared between TFP and 4,4′-diamine- [1,1′-biphenyl]-2,2′-disulfonic acid, achieving the highest adsorption capacity (166 ± 13 mg g−1). The adsorption of anionic pollutants was less effective and decreased, in general, with the increase in –SO3H and –NO2 group content. The effect of ionic interactions on the COF performance was further assessed by carrying out adsorption experiments involving metal ions. Isotherms showed that nonfunctionalized and functionalized COFs were better described by the Langmuir and Freundlich sorption models, respectively, confirming the influence of functionalization on surface heterogeneity. Sorption kinetics experiments were better adjusted according to a second-order rate equation, confirming the existence of surface chemical interactions in the adsorption process. These results confirm the influence of selective COF functionalization on adsorption processes and the role of functional groups on the adsorption selectivity, thus clearly demonstrating the potential of this new class of materials in the efficient and selective capture and removal of pollutants in aqueous solutions.
Collapse
Affiliation(s)
- Tiago F. Machado
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
| | - Filipa A. Santos
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
| | - Rui F. P. Pereira
- Chemistry Department and Chemistry Center, University of Minho, 4710-057 Braga, Portugal;
| | - Verónica de Zea Bermudez
- Chemistry Department and CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
| | - Artur J. M. Valente
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
- Correspondence: ; Tel.: +351-966047336
| | - M. Elisa Silva Serra
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
| | - Dina Murtinho
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
| |
Collapse
|