1
|
Haraya K, Ichikawa T, Murao N, Katada H, Kuramochi T. Prediction of human pharmacokinetics of Fc-engineered therapeutic monoclonal antibodies using human FcRn transgenic mice. MAbs 2025; 17:2484443. [PMID: 40133232 PMCID: PMC11938312 DOI: 10.1080/19420862.2025.2484443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025] Open
Abstract
Human FcRn transgenic mice (Tg32) have been widely used to evaluate the pharmacokinetics of mAbs and predict human pharmacokinetics. This study aims to establish an approach for predicting the human pharmacokinetics of Fc-engineered mAbs with enhanced FcRn binding mutations using Tg32 mice. MAbs were intravenously administered at 10 mg/kg in the absence or presence of IVIG (1000 mg/kg) in Tg32 mice. Pharmacokinetic parameters (CL, Q, Vc, and Vp) estimated in Tg32 mice were compared with clinical data. Optimal allometric scaling exponents were determined to improve the accuracy of human pharmacokinetic predictions for Fc-engineered mAbs. Moreover, we predicted the plasma concentration-time profile after IV injection in humans using parameters estimated based on an optimized exponent. While normal mAbs exhibited a higher CL in the presence of IVIG compared to its absence, Fc-engineered mAbs showed comparable CL in both conditions. The larger difference in CL between normal and Fc-engineered mAbs observed in the presence of IVIG closely matched clinical study results. A significant positive correlation between Tg32 mice and humans was observed in the CL of Fc-engineered mAbs in both the absence and presence of IVIG. The estimated optimal exponents for CL, Q, Vc, and Vp were 0.73, 0.60, 0.95, and 0.87, respectively. Using these exponents, the plasma mAb concentration-time profile after IV injection in humans was accurately predicted. This study establishes a robust methodology for accurately predicting the human pharmacokinetics of Fc-engineered mAbs using Tg32 mice, achieving prediction accuracy comparable to that of cynomolgus monkeys. This approach, as a viable alternative to cynomolgus monkeys, can accelerate the preclinical development of promising Fc-engineered mAbs with enhanced FcRn binding.
Collapse
Affiliation(s)
- Kenta Haraya
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Takuya Ichikawa
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Naoaki Murao
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Hitoshi Katada
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Taichi Kuramochi
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Robarge JD, Budge KM, Her L, Patterson AM, Brown-Augsburger P. Rat as a Predictive Model for Human Clearance and Bioavailability of Monoclonal Antibodies. Antibodies (Basel) 2024; 14:2. [PMID: 39846610 PMCID: PMC11755617 DOI: 10.3390/antib14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND The prediction of human clearance (CL) and subcutaneous (SC) bioavailability is a critical aspect of monoclonal antibody (mAb) selection for clinical development. While monkeys are a well-accepted model for predicting human CL, other preclinical species have been less-thoroughly explored. Unlike CL, predicting the bioavailability of SC administered mAbs in humans remains challenging as contributing factors are not well understood, and preclinical models have not been systematically evaluated. METHODS Non-clinical and clinical pharmacokinetic (PK) parameters were mined from public and internal sources for rats, cynomolgus monkeys, and humans. Intravenous (IV) and SC PK was determined in Sprague Dawley rats for fourteen mAbs without existing PK data. Together, we obtained cross-species data for 25 mAbs to evaluate CL and SC bioavailability relationships among rats, monkeys, and humans. RESULTS Rat and monkey CL significantly correlated with human CL and supported the use of species-specific exponents for body-weight-based allometric scaling. Notably, rat SC bioavailability significantly correlated with human SC bioavailability, while monkey SC bioavailability did not. Bioavailability also correlated with clearance. CONCLUSIONS The rat model enables an early assessment of mAb PK properties, allowing discrimination among molecules in the discovery pipeline and prediction of human PK. Importantly, rat SC bioavailability significantly correlated with human SC bioavailability, which has not been observed with other species. Rats are cost-effective and efficient relative to monkeys and provide a valuable tool for pharmacokinetic predictions in therapeutic antibody discovery.
Collapse
Affiliation(s)
| | | | | | | | - Patricia Brown-Augsburger
- Eli Lilly and Company, Lilly Corporate Center Indianapolis, Indianapolis, IN 46285, USA; (J.D.R.); (K.M.B.); (L.H.); (A.M.P.)
| |
Collapse
|
3
|
Rowland SP, Nixon E, Mohan K, Wang Q, Yates JWT. A systematic review of allometric scaling exponents for IgG mAbs. Xenobiotica 2024; 54:609-614. [PMID: 39067010 DOI: 10.1080/00498254.2024.2383925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Increasing complexity of mAbs in development creates challenges in predicting human pharmacokinetic (PK) parameters from preclinical data. The aim of this analysis was to identify optimal allometric scaling exponents.Data were extracted from literature to create a central database (currently the largest available published database) of two-compartment model parameters for mAbs (n = 59) in cynomolgus monkey (CM) and human.Global allometric exponents were calculated and drug-dependent factors were investigated as potential variables in determining the optimal scaling factor.The global exponents for scaling CM mAb PK data were 0.74 (CL), 0.80 (CL with Fc-modified mAbs excluded), 0.44 (CL with Fc-modified mAbs only), 0.71 (Q), 1.12 (V1), and 0.99 (V2). These values are in line with previously published literature values.
Collapse
Affiliation(s)
| | | | | | - Qianwen Wang
- CPMS Infectious Disease & Vaccine, GSK, London, UK
| | | |
Collapse
|
4
|
Tajiri A, Matsumoto S, Maeda S, Soga T, Kagiyama K, Ikeda H, Fukasawa K, Miyata A, Kamimura H. Prediction of human serum concentration-time profiles of therapeutic monoclonal antibodies using common marmosets ( Callithrix jacchus): initial assessment with canakinumab, adalimumab, and bevacizumab. Xenobiotica 2024; 54:648-657. [PMID: 38977390 DOI: 10.1080/00498254.2024.2371921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Cynomolgus monkeys and human FcRn transgenic mice are generally used for pharmacokinetic predictions of therapeutic monoclonal antibodies (mAbs). In the present study, the application of the common marmoset, a small nonhuman primate, as a potential animal model for prediction was evaluated for the first time.Canakinumab, adalimumab, and bevacizumab, which exhibited linear pharmacokinetics in humans, were selected as the model compounds. Marmoset pharmacokinetic data were reportedly available only for canakinumab, and those for adalimumab and bevacizumab were acquired in-house.Four pharmacokinetic parameters for a two-compartment model (i.e. clearance and volume of distribution in the central and peripheral compartments) in marmosets were extrapolated to the values in humans with allometric scaling using the average exponents of the three mAbs. As a result, the observed human serum concentration-time curves of the three mAbs following intravenous administration and those of canakinumab and adalimumab following subcutaneous injections (with an assumed absorption rate constant and bioavailability) were reasonably predicted.Although further prediction studies using a sufficient number of other mAbs are necessary to evaluate the versatility of this model, the findings indicate that marmosets can be an alternative to preceding animals for human pharmacokinetic predictions of therapeutic mAbs.
Collapse
Affiliation(s)
- Ayaka Tajiri
- Drug Discovery Department, R&D Division, Meiji Seika Pharma Co., Ltd, Tokyo, Japan
| | - Shogo Matsumoto
- Drug Discovery Department, R&D Division, Meiji Seika Pharma Co., Ltd, Tokyo, Japan
| | - Satoshi Maeda
- Yaotsu Breeding Center, CLEA Japan, Inc., Gifu, Japan
| | - Takuma Soga
- Yaotsu Breeding Center, CLEA Japan, Inc., Gifu, Japan
| | | | - Hiroshi Ikeda
- Tokyo Animal and Diet Department, CLEA Japan, Inc., Tokyo, Japan
| | | | - Atsunori Miyata
- Drug Discovery Department, R&D Division, Meiji Seika Pharma Co., Ltd, Tokyo, Japan
| | | |
Collapse
|
5
|
Han C, Fung I, Zhang D, Jin Y, Chen P, Tam S, Chiu ML, Fung MC. Phase 1 Safety and Pharmacokinetics Study of TAVO101, an Anti-Human Thymic Stromal Lymphopoietin Antibody for the Treatment of Allergic Inflammatory Conditions. J Clin Pharmacol 2024. [PMID: 39141432 DOI: 10.1002/jcph.6115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 08/16/2024]
Abstract
TAVO101 is a humanized anti-human thymic stromal lymphopoietin (TSLP) monoclonal antibody under clinical development for the treatment of atopic dermatitis (AD) and other allergic inflammatory conditions. The crystallizable fragment region of the antibody was engineered for half-life extension and attenuated effector functions. This Phase 1, double-blinded, randomized, placebo-controlled study assessed the safety, tolerability, pharmacokinetics, and immunogenicity of TAVO101 in healthy adult subjects in seven ascending dose cohorts. Subjects received a single intravenous administration of TAVO101 or placebo with a 195-day follow-up. TAVO101 was safe and well tolerated. The incidences and severities of treatment-emergent adverse events were mostly mild and comparable between the active and placebo groups, with no trends of dose relationship. There were no severe adverse events, deaths, or treatment-related withdrawals. TAVO101 exhibited a linear pharmacokinetic profile, low clearance, and a median elimination half-life of 67 days in healthy subjects. All TAVO101-treated subjects tested negative for anti-drug antibodies. To support development in AD, TAVO101 was studied in an oxazolone-induced AD model in hTSLP transgenic mice and demonstrated efficacy. This long-acting anti-TSLP antibody has the potential for stronger and sustained allergic inflammatory disease control. The results from this study warranted further clinical development of TAVO101 in patients.
Collapse
Affiliation(s)
- Chao Han
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Isa Fung
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Di Zhang
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Ying Jin
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Peng Chen
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Susan Tam
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Mark L Chiu
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| | - Man-Cheong Fung
- Tavotek Biotherapeutics, 727 Norristown Road, Lower Gwynedd, PA, USA
| |
Collapse
|
6
|
Danto SI, Tsamandouras N, Reddy P, Gilbert S, Mancuso J, Page K, Peeva E, Vincent MS, Beebe JS. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of PF-06817024 in Healthy Participants, Participants with Chronic Rhinosinusitis with Nasal Polyps, and Participants with Atopic Dermatitis: A Phase 1, Randomized, Double-Blind, Placebo-Controlled Study. J Clin Pharmacol 2024; 64:529-543. [PMID: 37772436 DOI: 10.1002/jcph.2360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
PF-06817024 is a high affinity, humanized antibody that binds interleukin-33, a proinflammatory type 2 cytokine, and thereby has the potential to inhibit downstream type 2 inflammation. This Phase 1, randomized, placebo-controlled study was conducted in 3 parts to evaluate the safety, tolerability, pharmacokinetics (PK), immunogenicity, and pharmacodynamics of escalating single and limited repeat PF-06817024 doses in healthy participants (Part 1), a single dose of PF-06817024 in participants with chronic rhinosinusitis with nasal polyps (Part 2), and repeat doses of PF-06817024 in participants with moderate to severe atopic dermatitis (atoptic dermatitis; Part 3). PF-06817024 was generally well tolerated in all participant populations. Most participants experienced a treatment-emergent adverse event (healthy participants, 78.4% and 100%; participants with chronic rhinosinusitis with nasal polyps, 90.9% and 88.9%; and participants with atoptic dermatitis, 60.0% and 62.5% in the PF-06817024 and placebo groups, respectively). No substantial deviations from dose proportionality were observed for single intravenous doses of 10-1000 mg, indicating linear PK in healthy participants. Mean terminal half-life ranged from 83 to 94 days after single intravenous administration in healthy participants and was similar to that observed after administration in the studied patient populations. Incidences of antidrug antibodies in the studied populations were 10.8%, 9.1%, and 5.0% for healthy participants, participants with chronic rhinosinusitis with nasal polyps, and participants with atoptic dermatitis, respectively. In addition, dose-dependent increases were observed in total serum interleukin-33 levels of treated participants, indicating target engagement. Overall, the PK and safety profile of PF-06817024 supports further investigation of the drug as a potential treatment for allergic diseases.
Collapse
|
7
|
Teranishi-Ikawa Y, Soeda T, Koga H, Yamaguchi K, Kato K, Esaki K, Asanuma K, Funaki M, Ichiki M, Ikuta Y, Ito S, Joyashiki E, Komatsu SI, Muto A, Nishimura K, Okuda M, Sanada H, Sato M, Shibahara N, Wakabayashi T, Yamaguchi K, Matsusaki A, Sampei Z, Shiraiwa H, Konishi H, Kawabe Y, Hattori K, Kitazawa T, Igawa T. A bispecific antibody NXT007 exerts a hemostatic activity in hemophilia A monkeys enough to keep a nonhemophilic state. J Thromb Haemost 2024; 22:430-440. [PMID: 37940048 DOI: 10.1016/j.jtha.2023.09.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Emicizumab, a factor (F) VIIIa-function mimetic bispecific antibody (BsAb) to FIXa and FX, has become an indispensable treatment option for people with hemophilia A (PwHA). However, a small proportion of PwHA still experience bleeds even under emicizumab prophylaxis, as observed in the long-term outcomes of clinical studies. A more potent BsAb may be desirable for such patients. OBJECTIVES To identify a potent BsAb to FIXa and FX, NXT007, surpassing emicizumab by in vitro and in vivo evaluation. METHODS New pairs of light chains for emicizumab's heavy chains were screened from phage libraries, and subsequent antibody optimization was performed. For in vitro evaluation, thrombin generation assays were performed with hemophilia A plasma. In vivo hemostatic activity was evaluated in a nonhuman primate model of acquired hemophilia A. RESULTS NXT007 exhibited an in vitro thrombin generation activity comparable to the international standard activity of FVIII (100 IU/dL), much higher than emicizumab, when triggered by tissue factor. NXT007 also demonstrated a potent in vivo hemostatic activity at approximately 30-fold lower plasma concentrations than emicizumab's historical data. In terms of dose shift between NXT007 and emicizumab, the in vitro and in vivo results were concordant. Regarding pharmacokinetics, NXT007 showed lower in vivo clearance than those shown by typical monoclonal antibodies, suggesting that the Fc engineering to enhance FcRn binding worked well. CONCLUSION NXT007, a potent BsAb, was successfully created. Nonclinical results suggest that NXT007 would have a potential to keep a nonhemophilic range of coagulation potential in PwHA or to realize more convenient dosing regimens than emicizumab.
Collapse
Affiliation(s)
| | - Tetsuhiro Soeda
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Hikaru Koga
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan.
| | - Kazuki Yamaguchi
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Kazuki Kato
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Keiko Esaki
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Kentaro Asanuma
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Miho Funaki
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Mina Ichiki
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Yuri Ikuta
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Shunsuke Ito
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Eri Joyashiki
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | | | - Atsushi Muto
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Kei Nishimura
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Momoko Okuda
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Hisakazu Sanada
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Motohiko Sato
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Norihito Shibahara
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | | | - Koji Yamaguchi
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Akiko Matsusaki
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Zenjiro Sampei
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Hirotake Shiraiwa
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Hiroko Konishi
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Yoshiki Kawabe
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Kunihiro Hattori
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Takehisa Kitazawa
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan
| | - Tomoyuki Igawa
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Kanagawa, Japan; Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| |
Collapse
|