1
|
Eales B, Helal NA, Vattelana O, Kronfol MM, Fletcher EP, Wang YM, Burckart GJ, Vaidyanathan J, Seo SK, Nounou MI. Population Pharmacokinetics (PopPK) Support for Pediatric Dosing of Biological Products. J Clin Pharmacol 2024; 64:1594-1605. [PMID: 39149895 DOI: 10.1002/jcph.6116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
This study assesses the use of population pharmacokinetics (PopPK) in supporting pediatric dosing of novel biological drug products. The labeling for biologic drug products approved by the US Food and Drug Administration (FDA) from 2002 until 2021 was reviewed to identify those with a pediatric indication. For the drugs with a pediatric indication, the dosing regimen(s) based on age groups, dosing strategy, the use of PopPK to support the dose, and the types of pediatric clinical trials were reviewed. Data were collected from FDA's review documents and product labels on the Drugs@FDA website, and as needed, more clinical trial details were collected from PubMed and clinicaltrials.gov. The role of PopPK analyses in dosing was captured when mentioned in the label or review as playing a role in selecting the approved pediatric dose and/or in verifying the adequacy of the studied dose to support labeling. Between 2002 and 2021, FDA approved 169 biological products, and 78 of 169 (46%) products have an approved indication for which the label contains dosing recommendations for pediatric use. For the 78 products approved in pediatrics, there was a total of 180 clinical trials that included pediatric patients. Phase 3 pediatric trials commonly supported pediatric approval and dosing for the reviewed products (64%, 50/78 products; 56.1%, 101/180 trials). PopPK analyses were reported to play a critical role in dose selection, prediction, and verification for 40 of the 78 products (51%), including informing pediatric dosing in the absence of pediatric data (e.g., drugs approved under animal rule), comparing exposures to the exposure range observed in adults, and informing alternative dosing strategies in certain age or body weight groups. PopPK analyses have been applied in a variety of ways to inform pediatric dosing and support extrapolation from adult data or other pediatric age groups for biologics. Understanding and learning from these past cases on the use of pharmacometrics tools to support pediatric dosing of biological products can inform future pediatric development programs.
Collapse
Affiliation(s)
- Brianna Eales
- Department of Pharmacology and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Nada A Helal
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Olivia Vattelana
- The University of Georgia College of Pharmacy , University of Georgia, Athens, GA, USA
| | - Mohamad M Kronfol
- Office of Clinical Pharmacology (OCP), OTS | CDER | FDA, White Oak Campus, Silver Spring, MD, USA
| | - Elimika Pfuma Fletcher
- Office of Clinical Pharmacology (OCP), OTS | CDER | FDA, White Oak Campus, Silver Spring, MD, USA
| | - Yow-Ming Wang
- Office of Clinical Pharmacology (OCP), OTS | CDER | FDA, White Oak Campus, Silver Spring, MD, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology (OCP), OTS | CDER | FDA, White Oak Campus, Silver Spring, MD, USA
| | | | - Shirley K Seo
- Office of Clinical Pharmacology (OCP), OTS | CDER | FDA, White Oak Campus, Silver Spring, MD, USA
| | - Mohamed Ismail Nounou
- Office of Clinical Pharmacology (OCP), OTS | CDER | FDA, White Oak Campus, Silver Spring, MD, USA
| |
Collapse
|
2
|
Wu JH, Pennesi E, Bautista F, Garrett M, Fukuhara K, Brivio E, Ammerlaan ACJ, Locatelli F, van der Sluis IM, Rossig C, Chen-Santel C, Bielorai B, Petit A, Starý J, Díaz-de-Heredia C, Rives S, O'Marcaigh A, Rizzari C, Engstler G, Nysom K, Rubio-San-Simón A, Bruno B, Bertrand Y, Brethon B, Rialland F, Plat G, Dirksen U, Sramkova L, Zwaan CM, Huitema ADR. Population Pharmacokinetics of Inotuzumab Ozogamicin in Pediatric Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia: Results of Study ITCC-059. Clin Pharmacokinet 2024; 63:981-997. [PMID: 38907948 PMCID: PMC11271359 DOI: 10.1007/s40262-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND AND OBJECTIVE Inotuzumab ozogamicin is an antibody-drug conjugate approved for treating relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in adults. Pediatric pharmacokinetic data of inotuzumab ozogamicin are lacking. This study is the first to examine the population pharmacokinetics of inotuzumab ozogamicin in pediatric patients with relapsed/refractory BCP-ALL. METHODS From 531 adult patients with B-cell non-Hodgkin's lymphoma, 234 adult patients with BCP-ALL, and 53 pediatric patients with BCP-ALL, 8924 inotuzumab ozogamicin serum concentrations were analyzed using non-linear mixed-effects modeling. A published adult inotuzumab ozogamicin population-pharmacokinetic model, a two-compartment model with linear and time-dependent clearance, was adapted to describe the pediatric data. RESULTS Modifications in this analysis, compared to the published adult model, included: (i) re-estimating pharmacokinetic parameters and covariate effects; (ii) modifying covariate representation; and (iii) introducing relevant pediatric covariate effects (age on the decay coefficient of time-dependent clearance and ALL effect (disease type and/or different bioanalytical analysis methods) on initial values of time-dependent clearance). For patients with relapsed/refractory BCP-ALL, increasing age was associated with a decreasing decay coefficient of time-dependent clearance, reflecting that the target-mediated drug clearance declines more rapidly in children. In pediatric BCP-ALL, the median [interquartile range] cumulative area under the concentration-time curve was significantly higher among responders (n = 42) versus non-responders (n = 10) at the end of the first cycle (26.1 [18.9-35.0] vs 10.1 [9.19-16.1], × 103 ng*h/mL, p < 0.001). From simulations performed at the recommended pediatric phase II dose, inotuzumab ozogamicin exposure reached a similar level as observed in responding pediatric trial participants. CONCLUSIONS The pharmacokinetic profile of inotuzumab ozogamicin in pediatric patients with relapsed/refractory BCP-ALL was well described in this study. No dose adjustment is required clinically for pediatric patients with BCP-ALL based on the simulated inotuzumab ozogamicin exposure at the recommended pediatric phase II dose, promising efficacy and acceptable tolerability.
Collapse
Affiliation(s)
- Jen-Hao Wu
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Edoardo Pennesi
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - May Garrett
- Pfizer Global Pharmacometrics, San Diego, CA, USA
| | | | - Erica Brivio
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Anneke C J Ammerlaan
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Franco Locatelli
- Department of Hematology, Oncology and of Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesú, Catholic University of the Sacred Heart, Rome, Italy
| | - Inge M van der Sluis
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Claudia Rossig
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Christiane Chen-Santel
- Department of Pediatrics, Division of Oncology and Hematology, Charité-Universitätsmedizin Berlin, German Cancer Consortium (DKTK) site Berlin, National Center for Tumor diseases (NCT) site Berlin, Berlin, Germany
| | - Bella Bielorai
- Division of Pediatric Hematology and Oncology, Sheba Medical Center, Ramat-Gan, Israel
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, Hopital Armand Trousseau, APHP, Sorbonne Université, Paris, France
| | - Jan Starý
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Cristina Díaz-de-Heredia
- Division of Pediatric Hematology and Oncology. Hospital, Universitari Vall d'Hebron, Barcelona, Spain
| | - Susana Rives
- Pediatric Oncology and Hematology Department, Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, IRCCS Foundation San Gerardo dei Tintori, Monza and University of Milano-Bicocca, Monza, Italy
| | - Gernot Engstler
- St Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Karsten Nysom
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Alba Rubio-San-Simón
- Department of Pediatric Oncology and Hematology, Hospital Niño Jesús, Madrid, Spain
| | - Benedicte Bruno
- Pediatric Hematology, Hôpital Jeanne de Flandre, , CHRU de Lille, Lille, France
| | - Yves Bertrand
- Institute of Pediatric Hematology and Oncology, Civil Hospital of Lyon, Claude Bernard University, Lyon, France
| | - Benoît Brethon
- Department of Pediatric Hematology, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fanny Rialland
- Service Onco-Hématologie Pédiatrique, Hôpital Mère-Enfant, Nantes University Hospital, Nantes, France
| | - Geneviève Plat
- Service d'Hématologie-Immunologie-Oncologie, Hôpital des Enfants, CHU Toulouse, Toulouse, France
| | - Uta Dirksen
- Pediatrics III, University Hospital Essen, German Cancer Consortium (DKTK) Site Essen, Essen, Germany
| | - Lucie Sramkova
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Alwin D R Huitema
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Proctor JR, Wong H. Time-dependent clearance can confound exposure-response analysis of therapeutic antibodies: A comprehensive review of the current literature. Clin Transl Sci 2024; 17:e13676. [PMID: 37905360 PMCID: PMC10766027 DOI: 10.1111/cts.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Exposure-response (ER) analysis is used to optimize dose and dose regimens during clinical development. Characterization of relationships between drug exposure and efficacy or safety outcomes can be utilized to make dose adjustments that improve patient response. Therapeutic antibodies typically show predictable pharmacokinetics (PK) but can exhibit clearance that decreases over time due to treatment. Moreover, time-dependent changes in clearance are frequently associated with drug response, with larger decreases in clearance and increased exposure seen in patients who respond to treatment. This often confounds traditional ER analysis, as drug response influences exposure rather than the reverse. In this review, we survey published population PK analyses for reported time-dependent drug clearance effects across 158 therapeutic antibodies approved or in regulatory review. We describe the mechanisms by which time-dependent clearance can arise, and evaluate trends in frequency, magnitude, and time scale of changes in clearance with respect to indication, mechanistic interpretation of time-dependence, and PK modeling techniques employed. We discuss the modeling and simulation strategies commonly used to characterize time-dependent clearance, and examples where time-dependent clearance has impeded ER analysis. A case study using population model simulation was explored to interrogate the impact of time-dependent clearance on ER analysis and how it can lead to spurious conclusions. Overall, time-dependent clearance arises frequently among therapeutic antibodies and has spurred erroneous conclusions in ER analysis. Appropriate PK modeling techniques aid in identifying and characterizing temporal shifts in exposure that may impede accurate ER assessment and successful dose optimization.
Collapse
Affiliation(s)
- Jeffrey R. Proctor
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Harvey Wong
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
4
|
Nijstad AL, Barnett S, Lalmohamed A, Bérénos IM, Parke E, Carruthers V, Tweddle DA, Kong J, Zwaan CM, Huitema ADR, Veal GJ. Clinical pharmacology of cytotoxic drugs in neonates and infants: Providing evidence-based dosing guidance. Eur J Cancer 2022; 164:137-154. [PMID: 34865945 PMCID: PMC8914347 DOI: 10.1016/j.ejca.2021.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023]
Abstract
Cancer in neonates and infants is a rare but challenging entity. Treatment is complicated by marked physiological changes during the first year of life, excess rates of toxicity, mortality, and late effects. Dose optimisation of chemotherapeutics may be an important step to improving outcomes. Body size-based dosing is used for most anticancer drugs used in infants. However, dose regimens are generally not evidence based, and dosing strategies are frequently inconsistent between tumour types and treatment protocols. In this review, we collate available pharmacological evidence supporting dosing regimens in infants for a wide range of cytotoxic drugs. A systematic review was conducted, and available data ranked by a level of evidence (1-5) and a grade of recommendation (A-D) provided on a consensus basis, with recommended dosing approaches indicated as appropriate. For 9 of 29 drugs (busulfan, carboplatin, cyclophosphamide, daunorubicin, etoposide, fludarabine, isotretinoin, melphalan and vincristine), grade A was scored, indicating sufficient pharmacological evidence to recommend a dosing algorithm for infants. For busulfan and carboplatin, sufficient data were available to recommend therapeutic drug monitoring in infants. For eight drugs (actinomycin D, blinatumomab, dinutuximab, doxorubicin, mercaptopurine, pegaspargase, thioguanine and topotecan), some pharmacological evidence was available to guide dosing (graded as B). For the remaining drugs, including commonly used agents such as cisplatin, cytarabine, ifosfamide, and methotrexate, pharmacological evidence for dosing in infants was limited or non-existent: grades C and D were scored for 10 and 2 drugs, respectively. The review provides clinically relevant evidence-based dosing guidance for cytotoxic drugs in neonates and infants.
Collapse
Affiliation(s)
- A Laura Nijstad
- Department of Clinical Pharmacy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| | - Shelby Barnett
- Newcastle University Centre for Cancer, Newcastle University, NE2 4HH Newcastle Upon Tyne, UK
| | - Arief Lalmohamed
- Department of Clinical Pharmacy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Inez M Bérénos
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Elizabeth Parke
- Newcastle University Centre for Cancer, Newcastle University, NE2 4HH Newcastle Upon Tyne, UK
| | - Vickyanne Carruthers
- Newcastle University Centre for Cancer, Newcastle University, NE2 4HH Newcastle Upon Tyne, UK
| | - Deborah A Tweddle
- Newcastle University Centre for Cancer, Newcastle University, NE2 4HH Newcastle Upon Tyne, UK; Great North Children's Hospital, NE1 4LP Newcastle Upon Tyne, UK
| | - Jordon Kong
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Alwin D R Huitema
- Department of Clinical Pharmacy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Gareth J Veal
- Newcastle University Centre for Cancer, Newcastle University, NE2 4HH Newcastle Upon Tyne, UK.
| |
Collapse
|
5
|
Ceci C, Lacal PM, Graziani G. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol Ther 2022; 236:108106. [PMID: 34990642 DOI: 10.1016/j.pharmthera.2021.108106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Antibody-drug conjugates (ADCs) constitute a relatively new group of anticancer agents, whose first appearance took place about two decades ago, but a renewed interest occurred in recent years, following the success of anti-cancer immunotherapy with monoclonal antibodies. Indeed, an ADC combines the selectivity of a monoclonal antibody with the cell killing properties of a chemotherapeutic agent (payload), joined together through an appropriate linker. The antibody moiety targets a specific cell surface antigen expressed by tumor cells and/or cells of the tumor microenvironment and acts as a carrier that delivers the cytotoxic payload within the tumor mass. Despite advantages in terms of selectivity and potency, the development of ADCs is not devoid of challenges, due to: i) low tumor selectivity when the target antigens are not exclusively expressed by cancer cells; ii) premature release of the cytotoxic drug into the bloodstream as a consequence of linker instability; iii) development of tumor resistance mechanisms to the payload. All these factors may result in lack of efficacy and/or in no safety improvement compared to unconjugated cytotoxic agents. Nevertheless, the development of antibodies engineered to remain inert until activated in the tumor (e.g., antibodies activated proteolytically after internalization or by the acidic conditions of the tumor microenvironment) together with the discovery of innovative targets and cytotoxic or immunomodulatory payloads, have allowed the design of next-generation ADCs that are expected to possess improved therapeutic properties. This review provides an overview of approved ADCs, with related advantages and limitations, and of novel targets exploited by ADCs that are presently under clinical investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
6
|
Clinical Pharmacology of Antibody-Drug Conjugates. Antibodies (Basel) 2021; 10:antib10020020. [PMID: 34063812 PMCID: PMC8161445 DOI: 10.3390/antib10020020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are biopharmaceutical products where a monoclonal antibody is linked to a biologically active drug (a small molecule) forming a conjugate. Since the approval of first ADC (Gemtuzumab ozogamicin (trade name: Mylotarg)) for the treatment of CD33-positive acute myelogenous leukemia, several ADCs have been developed for the treatment of cancer. The goal of an ADC as a cancer agent is to release the cytotoxic drug to kill the tumor cells without harming the normal or healthy cells. With time, it is being realized that ADCS can also be used to manage or cure other diseases such as inflammatory diseases, atherosclerosis, and bacteremia and some research in this direction is ongoing. The focus of this review is on the clinical pharmacology aspects of ADC development. From the selection of an appropriate antibody to the finished product, the entire process of the development of an ADC is a difficult and challenging task. Clinical pharmacology is one of the most important tools of drug development since this tool helps in finding the optimum dose of a product, thus preserving the safety and efficacy of the product in a patient population. Unlike other small or large molecules where only one moiety and/or metabolite(s) is generally measured for the pharmacokinetic profiling, there are several moieties that need to be measured for characterizing the PK profiles of an ADC. Therefore, knowledge and understanding of clinical pharmacology of ADCs is vital for the selection of a safe and efficacious dose in a patient population.
Collapse
|
7
|
Tarcsa E, Guffroy MR, Falahatpisheh H, Phipps C, Kalvass JC. Antibody-drug conjugates as targeted therapies: Are we there yet? A critical review of the current clinical landscape. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:13-22. [PMID: 34895651 DOI: 10.1016/j.ddtec.2020.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 06/14/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted therapies with the expectation of broadened therapeutic window due to tumor-specific drug delivery. Recent approvals, including ADCs with a novel payload class, topoisomerase-1 inhibitors, generated renewed excitement in the field. We provide a critical review of approved and late-stage molecules, discuss strategies in solid tumors and ADCs outside oncology. Our pharmacokinetics-based assessment of targeting suggests that ADCs, especially in solid tumors, rely on additional mechanisms for efficacy including slow-release of the payload to the circulation at potentially efficacious levels. Further adjustments in the technology are needed to fulfill the promise of true targeted drug delivery.
Collapse
Affiliation(s)
- Edit Tarcsa
- AbbVie Bioresearch Center, 100 Research Dr., Worcester, MA, 01605, USA.
| | | | | | - Colin Phipps
- AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - John C Kalvass
- AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| |
Collapse
|
8
|
Bensalem A, Ternant D. Pharmacokinetic Variability of Therapeutic Antibodies in Humans: A Comprehensive Review of Population Pharmacokinetic Modeling Publications. Clin Pharmacokinet 2020; 59:857-874. [DOI: 10.1007/s40262-020-00874-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Modelling of the Time-Varying Pharmacokinetics of Therapeutic Monoclonal Antibodies: A Literature Review. Clin Pharmacokinet 2019; 59:37-49. [DOI: 10.1007/s40262-019-00816-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Fostvedt LK, Hibma JE, Masters JC, Vandendries E, Ruiz-Garcia A. Pharmacokinetic/Pharmacodynamic Modeling to Support the Re-approval of Gemtuzumab Ozogamicin. Clin Pharmacol Ther 2019; 106:1006-1017. [PMID: 31070776 PMCID: PMC6852000 DOI: 10.1002/cpt.1500] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/13/2019] [Indexed: 11/07/2022]
Abstract
Gemtuzumab ozogamicin (Mylotarg; Pfizer, New York, NY) was the first antibody-drug conjugate to be approved for CD33-positive acute myeloid leukemia (AML). However, it was voluntarily withdrawn from the US market due to lack of clinical benefit in the confirmatory phase III trial. In 2012, several investigator cooperative studies using a different dosing regimen showed efficacy, but pharmacokinetic (PK) data were not collected in these trials. Through simulation of expected concentrations for new dosing regimens, PK/pharmacodynamic modeling was able to support the safety and efficacy of these regimens. Significant exposure-response relationships were found for the attainment of complete remission with and without platelet recovery, attainment of blast-free status, the time course of myelosuppression, several grade ≥ 3 hepatic adverse events, and veno-occlusive disease. Gemtuzumab ozogamicin received full approval by the US Food and Drug Administration (FDA) in September 2017 for newly diagnosed and relapsed AML in adult patients and relapsed AML in pediatric patients aged 2-17 years.
Collapse
Affiliation(s)
- Luke K Fostvedt
- Pfizer Global Product Development, La Jolla, California, USA
| | | | | | - Erik Vandendries
- Pfizer Global Product Development, Cambridge, Massachusetts, USA
| | - Ana Ruiz-Garcia
- Pfizer Global Product Development, La Jolla, California, USA
| |
Collapse
|