1
|
Wang C, Li X, Ye T, Gu J, Zheng Z, Chen G, Dong J, Zhou W, Shi J, Zhang L. Polydatin, a derivative of resveratrol, ameliorates busulfan-induced oligozoospermia in mice by inhibiting NF-κB pathway activation and suppressing ferroptosis. Bioorg Chem 2025; 156:108170. [PMID: 39848165 DOI: 10.1016/j.bioorg.2025.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Polydatin (PD), a glucoside derivative of resveratrol (RES), is extracted as a monomer compound from the dried rhizome of Polygonum cuspidatum. Our laboratory synthesized PD via the biotransformation of resveratrol. To assess the reproductive protective effects of PD, an oligozoospermia mouse model was induced by administering 30 mg/kg busulfan (BUS) via intraperitoneal injection. Initially, mice were categorized into groups based on PD concentrations of 10, 50, and 100 mg/kg. Subsequently, the optimal concentration of 10 mg/kg was ascertained based on testis weight and spermatological parameters. Additionally, a 10 mg/kg resveratrol group was included as a control. The findings revealed that exposure to BUS resulted in a reduction of testicular weight, diminished spermatogenic cells and epididymal sperm counts, increased sperm deformity, disordered testicular cytoskeleton, compromised blood-testis barrier integrity, and a significant decrease in serum sex hormone levels, notably testosterone. This resulted in decreased expression of androgen receptors and other testosterone-related proteins, increased levels of malondialdehyde and reactive oxygen species, and promoted testicular ferroptosis. However, PD could successfully reverse these injuries. High-throughput sequencing data demonstrated that polydatin significantly downregulated the expression of inflammatory and metabolic genes, including PRKCQ and CARD11. These proteins are pivotal in the activation of the NF-κB pathway during the inflammatory response. Molecular docking studies showed that PD could interact with PRKCQ and CARD11 to reduce the level of inflammation. Additionally, PD was shown to interact with the ferroptosis-promoting gene ACSL4, modulating ferroptosis. In summary, PD facilitates the reversal of BUS-induced oligozoospermia through the mitigation of oxidative stress and inflammation, the inhibition of ferroptosis, and the modulation of hormonal levels.
Collapse
Affiliation(s)
- Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaoran Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Taowen Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Jiale Gu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Zihan Zheng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Guangtong Chen
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Jin Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Wenbiao Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianwu Shi
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Lei Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China; School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Bognàr T, Garcia-Rosa M, Lalmohamed A, Güngör T, Hauri-Hohl M, Prockop S, Oram L, Pai SY, Brooks J, Savic RM, Dvorak CC, Long-Boyle JR, Krajinovic M, Bittencourt H, Teyssier AC, Théorêt Y, Martinez C, Egberts TCG, Morales E, Slatter M, Cuvelier GDE, Chiesa R, Wynn RF, Coussons M, Cicalese MP, Ansari M, Long SE, Ebens CL, Lust H, Chaudhury S, Nath CE, Shaw PJ, Keogh SJ, van der Stoep MYEC, Bredius R, Lindemans CA, Boelens JJ, Bartelink IH. Association of busulfan exposure and outcomes after HCT for patients with an inborn error of immunity. Blood Adv 2024; 8:5137-5145. [PMID: 39074263 PMCID: PMC11470247 DOI: 10.1182/bloodadvances.2024013275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
ABSTRACT Allogeneic hematopoietic cell transplantation (HCT) is a potentially curative treatment strategy for patients with inborn errors of immunities (IEIs). The objective of this study was to assess the optimal busulfan exposure before allogeneic HCT for patients with an IEI who received an IV busulfan-based conditioning regimen. Patients from 17 international centers were included. The main outcome of interest was event-free survival (EFS). Patients were categorized into 4 IEI subgroups: combined immunodeficiency (CID), severe combined immunodeficiency (SCID), neutrophil disorders, and hemophagocytic lymphohistiocytosis (HLH)-related disorders. Busulfan exposure was calculated by individual centers (area under the curve [AUC]CENTER) and re-estimated using a nonlinear mixed-effects model (NONMEM; exposure defined as AUCNONMEM). Overall, 562 patients were included: 173 (30.8%) with CID, 154 (27.4%) with SCID, 101 (18.0%) with HLH-related disorders, and 134 (23.8%) with neutrophil disorders. The median busulfan AUCNONMEM was 69.0 mg × h/L and correlated poorly with the AUCCENTER (r2 = 0.54). In patients with SCID, HLH-related, and neutrophil disorders with a busulfan AUCNONMEM of 70 to 90 mg × h/L, 2-year EFS was superior to <70 mg × h/L, and >90 mg ×h/L. Full donor chimerism increased with higher busulfan AUCNONMEM, plateauing at 90 mg × h/L. For patients with CID, the optimal AUCNONMEM for donor chimerism was found to be >70 mg × h/L. Improved EFS and higher donor chimerism may be achieved by targeting a cumulative busulfan AUCNONMEM of 80 mg × h/L (range, 70-90). Our study stresses the importance of uniformly using a validated population pharmacokinetic model to estimate AUCNONMEM.
Collapse
Affiliation(s)
- Tim Bognàr
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Moises Garcia-Rosa
- Transplantation and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Arief Lalmohamed
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tayfun Güngör
- Division of Stem Cell Transplantation and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Mathias Hauri-Hohl
- Division of Stem Cell Transplantation and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Layne Oram
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Sung-Yun Pai
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Jordan Brooks
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Clinical Pharmacy and Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Rada M. Savic
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Clinical Pharmacy and Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Christopher C. Dvorak
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Clinical Pharmacy and Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Janel R. Long-Boyle
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Clinical Pharmacy and Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Maja Krajinovic
- Centre de Cancérologie Charles-Bruneau, Centre de recherche, Hospital Sainte-Justine Montréal, Montréal, QC, Canada
| | - Henrique Bittencourt
- Centre de Cancérologie Charles-Bruneau, Centre de recherche, Hospital Sainte-Justine Montréal, Montréal, QC, Canada
| | - Anne-Charlotte Teyssier
- Centre de Cancérologie Charles-Bruneau, Centre de recherche, Hospital Sainte-Justine Montréal, Montréal, QC, Canada
| | - Yves Théorêt
- Centre de Cancérologie Charles-Bruneau, Centre de recherche, Hospital Sainte-Justine Montréal, Montréal, QC, Canada
| | - Cary Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Toine C. G. Egberts
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Erin Morales
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Mary Slatter
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Geoffrey D. E. Cuvelier
- Pediatric Blood and Marrow Transplantation, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Robert Chiesa
- Great Ormond Street Hospital for Children & Stem Cell Program, London, United Kingdom
| | - Robert F. Wynn
- Department of Blood and Marrow Transplant, Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Mary Coussons
- Department of Blood and Marrow Transplant, Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Maria P. Cicalese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute S. Raffaele University, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marc Ansari
- Cansearch Research Platform in Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Susan E. Long
- Division of Pediatric Blood and Marrow Transplant & Cellular Therapy, M Health Fairview Masonic Children's Hospital, University of Minnesota, Minneapolis, MN
| | - Christen L. Ebens
- Division of Pediatric Blood and Marrow Transplant & Cellular Therapy, M Health Fairview Masonic Children's Hospital, University of Minnesota, Minneapolis, MN
| | - Hannah Lust
- Stem Cell Transplant Program, Ann & Robert Lurie Children's Hospital, Northwestern University, Chicago, IL
| | - Sonali Chaudhury
- Stem Cell Transplant Program, Ann & Robert Lurie Children's Hospital, Northwestern University, Chicago, IL
| | | | | | | | - M. Y. Eileen C. van der Stoep
- Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Cell and Gene Therapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Robbert Bredius
- Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline A. Lindemans
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center Utrecht, Utrecht, The Netherlands
| | - Jaap-Jan Boelens
- Transplantation and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Imke H. Bartelink
- Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Yerla RR, Manubolu Surya SB. Identification, Isolation, and Characterization of a Novel Degradation Impurity of Busulfan Using Preparative Chromatography, NMR, and LC-MS. J AOAC Int 2024; 107:582-591. [PMID: 38430462 DOI: 10.1093/jaoacint/qsae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Busulfan is the most effective medication for treating chronic myelogenous or granulocytic leukemia because it has cytotoxic properties that harm or kill hematopoietic cells. It cannot absorb light in the Ultraviolet range due to its structure. Because of this, it is very challenging to quantify using traditional HPLC coupled with UV/Photodiode Array detectors. So, using sodium diethyldithiocarbamate, a derivatization method was developed to quantify related impurities. A significant unknown impurity was identified in derivatized samples of busulfan and a noticeably high percentage level was discovered during routine drug testing. OBJECTIVE We aimed to isolate, and characterize the unknown impurity observed in the samples and to identify its root cause. METHODS Preparative HPLC was used to isolate the unidentified, derivatized impurity, and 1H NMR, 13C NMR, and MS were used to decipher its structural components. RESULTS The spectral characterization data analysis showed that the unknown impurity was related to busulfan. Additionally, it was noted that the impurity developed as a result of the residual buffer used to prepare the derivatizing reagent. CONCLUSION The isolated impurity was found to be same as comparable to that found in busulfan drug substances, according to the results of the characterization tools. An alternative method of reagent preparation was optimized and deemed satisfactory because the buffer used in reagent preparation is the only factor contributing to the formation of impurities. HIGHLIGHTS Using cutting-edge analytical characterization tools, it was possible to explain the structural characteristics of an unknown impurity and discover that it was a novel impurity, which undoubtedly contributes to the comprehension of drug substance reaction properties.
Collapse
Affiliation(s)
- Rajender Reddy Yerla
- GITAM deemed to be University, Department of Chemistry, GITAM School of Science, Hyderabad, Telangana 502 329, India
| | - Surendra Babu Manubolu Surya
- GITAM deemed to be University, Department of Chemistry, GITAM School of Science, Hyderabad, Telangana 502 329, India
| |
Collapse
|
4
|
Ben Hassine K, Daali Y, Gloor Y, Nava T, Théorêt Y, Krajinovic M, Bittencourt H, Satyanarayana Uppugunduri CR, Ansari M. Simulation-Based Optimization of Sampling Schedules for Model-Informed Precision Dosing of Once-Daily and 4-Times-Daily Busulfan in Pediatric Patients. Ther Drug Monit 2024; 46:00007691-990000000-00240. [PMID: 38885146 PMCID: PMC11554249 DOI: 10.1097/ftd.0000000000001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) is crucial in optimizing the outcomes of hematopoietic stem cell transplantation by guiding busulfan (Bu) dosing. Limited sampling strategies show promise for efficiently adjusting drug doses. However, comprehensive assessments and optimization of sampling schedules for Bu TDM in pediatric patients are limited. We aimed to establish optimal sampling designs for model-informed precision dosing (MIPD) of once-daily (q24h) and 4-times-daily (q6h) Bu administration in pediatric patients. METHODS Simulated data sets were used to evaluate the population pharmacokinetic model-based Bayesian estimation of the area under the concentration-time curve (AUC) for different limited sampling strategy designs. The evaluation was based on the mean prediction error for accuracy and root mean square error for precision. These findings were validated using patient-observed data. In addition, the MIPD protocol was implemented in the Tucuxi software, and its performance was assessed. RESULTS Our Bayesian estimation approach allowed for flexible sampling times while maintaining mean prediction error within ±5% and root mean square error below 10%. Accurate and precise AUC0-24h and cumulative AUC estimations were obtained using 2-sample and single-sample schedules for q6h and q24h dosing, respectively. TDM on 2 separate days was necessary to accurately estimate cumulative exposure, especially in patients receiving q6h Bu. Validation with observed patient data confirmed the precision of the proposed limited sampling scenarios. Implementing the MIPD protocol in Tucuxi software yielded reliable AUC estimations. CONCLUSIONS Our study successfully established precise limited sampling protocols for MIPD of Bu in pediatric patients. Our findings underscore the importance of TDM on at least 2 occasions to accurately achieve desired Bu exposures. The developed MIPD protocol and its implementation in Tucuxi software provide a valuable tool for routine TDM in pediatric hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Khalil Ben Hassine
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, University Hospital of Geneva, Geneva, Switzerland
- Faculty of Medicine & Sciences, University of Geneva, Geneva, Switzerland
| | - Yvonne Gloor
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tiago Nava
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Clinical Pharmacology Unit, CHU Sainte-Justine, Montreal, Quebec, Canada; and
| | - Yves Théorêt
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Clinical Pharmacology Unit, CHU Sainte-Justine, Montreal, Quebec, Canada; and
| | - Maja Krajinovic
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Clinical Pharmacology Unit, CHU Sainte-Justine, Montreal, Quebec, Canada; and
| | - Henrique Bittencourt
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Clinical Pharmacology Unit, CHU Sainte-Justine, Montreal, Quebec, Canada; and
| | - Chakradhara Rao Satyanarayana Uppugunduri
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Ansari
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child, and Adolescent, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Puangpetch A, Thomas F, Anurathapan U, Pakakasama S, Hongeng S, Rachanakul J, Prommas S, Nuntharadthanaphong N, Chatelut É, Sukasem C, Le Louedec F. Model-Informed Precision Dosing of Intravenous Busulfan in Thai Pediatrics Undergoing Hematopoietic Stem Cell Transplantation. Ther Drug Monit 2024:00007691-990000000-00226. [PMID: 38758634 DOI: 10.1097/ftd.0000000000001225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/26/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Conditioning bifunctional agent, busulfan, is commonly used on children before hematopoietic stem cell transplantation. Currently, at the Ramathibodi hospital, Bangkok, Thailand, initial dosing is calculated according to age and body surface area, and 7 samples per day are used for therapeutic drug monitoring (TDM). This study aimed to identify the best strategies for individual dosages a priori from patient characteristics and a posteriori based on TDM. METHODS The pharmacokinetic data set consisted of 2018 plasma concentrations measured in 135 Thai (n = 135) pediatric patients (median age = 8 years) and were analyzed using a population approach. RESULTS Body weight, presence of malignant disease, and genetic polymorphism of Glutathione S-transferase Alpha-1 (GSTA1) were predictors of clearance. The optimum sampling times for TDM concentration measurements were 0.25, 2, and 5 hours after a 3-hour infusion. This was sufficient to obtain a Bayesian estimate of clearance a posteriori. Simulations showed the poor performance of a priori formula-based dose calculations with 90% of patients demonstrating a 69%-151% exposure interval around the target. This interval shrank to 85%-124% if TDM was carried out only at day 1 and to 90%-116% with TDM at days 1 and 3. CONCLUSIONS This comprehensive study reinforces the interest of TDM in managing interindividual variability in busulfan exposure. Therapeutic drug monitoring can reliably be implemented from 3 samples using the Bayesian approach, preferably over 2 days. If using the latter is not possible, the formulas developed herein could present an alternative in Thai patients.
Collapse
Affiliation(s)
- Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Fabienne Thomas
- Laboratoire de Pharmacologie, Oncopole Claudius-Regaud, Institut Universitaire du Cancer de Toulouse Oncopole, Centre de Recherche en Cancérologie de Toulouse, INSERM U1037, Université Paul Sabatier, Toulouse, France
| | - Usanarat Anurathapan
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Samart Pakakasama
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jiratha Rachanakul
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
| | - Santirhat Prommas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
| | - Nutthan Nuntharadthanaphong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
| | - Étienne Chatelut
- Laboratoire de Pharmacologie, Oncopole Claudius-Regaud, Institut Universitaire du Cancer de Toulouse Oncopole, Centre de Recherche en Cancérologie de Toulouse, INSERM U1037, Université Paul Sabatier, Toulouse, France
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics Clinic, Bumrungrad Genomic Medicine Institute, Bumrungrad International Hospital, Bangkok, Thailand
- Research and Development Laboratory, Bumrungrad International Hospital, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand; and
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Félicien Le Louedec
- Laboratoire de Pharmacologie, Oncopole Claudius-Regaud, Institut Universitaire du Cancer de Toulouse Oncopole, Centre de Recherche en Cancérologie de Toulouse, INSERM U1037, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
6
|
Ben Hassine K, Seydoux C, Khier S, Daali Y, Medinger M, Halter J, Heim D, Chalandon Y, Schanz U, Nair G, Cantoni N, Passweg JR, Satyanarayana Uppugunduri CR, Ansari M. Pharmacokinetic Modeling and Simulation with Pharmacogenetic Insights Support the Relevance of Therapeutic Drug Monitoring for Myeloablative Busulfan Dosing in Adult HSCT. Transplant Cell Ther 2024; 30:332.e1-332.e15. [PMID: 38081414 DOI: 10.1016/j.jtct.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/01/2024]
Abstract
Therapeutic drug monitoring (TDM) of busulfan (Bu) is well-established in pediatric hematopoietic stem cell transplantation (HSCT), but its use in adults is limited due to a lack of clear recommendations and scarcity of evidence regarding its utility. GSTA1 promoter variants are reported to affect Bu clearance in both adults and pediatric patients. This study aimed to evaluate the value of preemptive genotyping GSTA1 and body composition (obesity) in individualizing Bu dosing in adults, through pharmacokinetic (PK) modeling and simulations. A population pharmacokinetic (PopPK) model was developed and validated with data from 60 adults who underwent HSCT. Simulations assessed different dosing scenarios based on body size metrics and GSTA1 genotypes. Due to the limited number of obese patients in the cohort, the effect of obesity on Bu pharmacokinetics (PK) was evaluated in silico using a physiologically-based pharmacokinetic (PBPK) model and relevant virtual populations from Simcyp software. Patients with at least 1 GSTA1*B haplotype had 17% lower clearance on average. PopPK simulations indicated that adjusting doses based on genotype increased the probability of achieving the target exposure (3.7 to 5.5 mg.h/L) from 53% to 60 % in GSTA1*A homozygous patients, and from 50% to 61% in *B carriers. Still, Approximately 40% of patients would not achieve this therapeutic window without TDM. A 2-sample optimal design was validated for routine model-based Bu first dose AUC0-∞ estimation, and the model was implemented in the Tucuxi user-friendly TDM software. PBPK simulations confirmed body surface area-based doses of 29 to 31 mg/m2/6h as the most appropriate, regardless of obesity status. This study emphasizes the importance of individualized Bu dosing strategies in adults to achieve therapeutic targets. Preemptive genotyping alone may not have a significant clinical impact, and routine TDM may be necessary for optimal transplantation outcomes.
Collapse
Affiliation(s)
- Khalil Ben Hassine
- Department of Pediatrics, Gynecology and Obstetrics, Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire Seydoux
- Division of Hematology, University Hospital of Basel, Basel, Switzerland
| | - Sonia Khier
- Pharmacokinetic and Modeling Department, School of Pharmacy, Montpellier University, Montpellier, France; Probabilities and Statistics Department, Institut Montpelliérain Alexander Grothendieck (IMAG), CNRS, UMR 5149, Inria, Montpellier University, Montpellier, France
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, University Hospital of Geneva, Geneva, Switzerland; Faculty of Medicine & Sciences, University of Geneva, Geneva, Switzerland
| | - Michael Medinger
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland
| | - Joerg Halter
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland
| | - Dominik Heim
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland
| | - Yves Chalandon
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland
| | - Gayathri Nair
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland
| | - Nathan Cantoni
- Division of Oncology, Hematology and Transfusion Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Jakob R Passweg
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland
| | - Chakradhara Rao Satyanarayana Uppugunduri
- Department of Pediatrics, Gynecology and Obstetrics, Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Ansari
- Department of Pediatrics, Gynecology and Obstetrics, Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland.
| |
Collapse
|
7
|
Iemura T, Kondo T, Ueda A, Maeda T, Kitawaki T, Arai Y, Kanda J, Ikeda T, Imada K, Ishikawa T, Anzai N, Itoh M, Takeoka T, Akasaka T, Yago K, Yonezawa A, Arima N, Kitano T, Nohgawa M, Watanabe M, Moriguchi T, Yamashita K, Ueda Y, Matsumoto K, Takaori-Kondo A. Effects of combined test dose and therapeutic drug monitoring strategy in exposure-directed busulfan. Ann Hematol 2023; 102:2909-2922. [PMID: 37052663 DOI: 10.1007/s00277-023-05209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
Although exposure-directed busulfan (BU) dosing can improve allogeneic hematopoietic stem cell transplantation outcomes, there is still large variability in BU exposure with test dose alone due to changes in BU clearance caused by drug interactions. We conducted a single-arm phase II trial using the combined test dose and therapeutic drug monitoring strategy (PK-guided group) and compared the outcomes with an external historical cohort receiving a fixed-dose (fixed-dose group). The first eight and second eight doses were adjusted based on the area under the blood concentration-time curve (AUC) of the test and first doses, respectively, targeting a total AUC of 82.1 mg·h/L. All patients received either BU and cyclophosphamide conditioning (BU/CY) or fludarabine (FLU)-containing conditioning. The BU clearance at the first dose decreased more in patients receiving FLU than in those receiving BU/CY; however, BU clearance also declined over time in patients who received BU/CY. The simulated total AUC (sAUC) with test dose only was significantly higher in patients who received FLU than in those who received BU/CY, but sAUC with the combined strategy was comparable. The 100-day progression-free survival was 85.5% (95% confidence interval [CI]: 71.9-92.8%), and was not inferior to that in the fixed-dose group. For the FLU-containing regimens, the PK-guided group showed decreased relapse (0.0% vs. 26.9%, p = 0.03), and favorable overall survival (75.1% vs. 57.0%, p = 0.07) at 1 year. The combined strategy effectively controlled the BU exposure close to the target levels, potentially improving efficacy, especially in patients receiving the FLU-containing regimen. Clinical evaluation of efficacy of dose-modified intravenous busulfan in allogeneic hematopoietic stem cell transplantation for hematological malignancy (#UMIN000014077, June 15th, 2014).
Collapse
Affiliation(s)
- Tomoki Iemura
- Department of Hematology and Oncology, Kyoto University, 54, Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tadakazu Kondo
- Department of Hematology and Oncology, Kyoto University, 54, Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Atsushi Ueda
- Department of Hematology, Kurashiki Central Hospital, Okayama, Japan
| | - Takeshi Maeda
- Department of Hematology, Kurashiki Central Hospital, Okayama, Japan
| | - Toshio Kitawaki
- Department of Hematology and Oncology, Kyoto University, 54, Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasuyuki Arai
- Department of Hematology and Oncology, Kyoto University, 54, Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Kyoto University, 54, Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takashi Ikeda
- Division of Hematology and Stem Cell Transplantation, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kazunori Imada
- Department of Hematology, Japanese Red Cross Osaka Hospital, Osaka, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Naoyuki Anzai
- Department of Hematology, Takatsuki Red Cross Hospital, Osaka, Japan
| | - Mitsuru Itoh
- Department of Hematology, Kyoto City Hospital, Kyoto, Japan
| | - Tomoharu Takeoka
- Department of Hematology, Japan Red Cross Otsu Hospital, Shiga, Japan
| | | | - Kazuhiro Yago
- Department of Hematology, Shizuoka General Hospital, Shizuoka, Japan
| | - Akihito Yonezawa
- Department of Hematology, Kokura Memorial Hospital, Fukuoka, Japan
| | | | | | - Masaharu Nohgawa
- Department of Hematology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Mitsumasa Watanabe
- Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | | | - Kouhei Yamashita
- Department of Hematology and Oncology, Kyoto University, 54, Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasunori Ueda
- Department of Hematology, Kurashiki Central Hospital, Okayama, Japan
| | - Kana Matsumoto
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Kyoto University, 54, Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
8
|
Bognàr TT, Kingma JSJ, Smeijsters EHE, van der Elst KCMK, de Kanter CTMK, Lindemans CAC, Egberts ACGT, Bartelink IHI, Lalmohamed AA. Busulfan target exposure attainment in children undergoing allogeneic hematopoietic cell transplantation: a single day versus a multiday therapeutic drug monitoring regimen. Bone Marrow Transplant 2023; 58:762-768. [PMID: 37002411 DOI: 10.1038/s41409-023-01971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Busulfan exposure has previously been linked to clinical outcomes, hence the need for therapeutic drug monitoring (TDM). Study objective was to evaluate the effect of day 1 TDM-guided dosing (regimen d1) versus days 1 + 2 TDM-guided dosing (regimen d1 + 2) on attaining adequate busulfan exposure. In this observational study, we included all children receiving busulfan-based allogeneic hematopoietic cell transplantation. Primary outcome was the percentage of patients achieving busulfan target attainment in both TDM regimens. Secondary outcomes were the variance in busulfan exposure and day-4 clearance (Clday4) estimates between both TDM regimens and dosing day 1 and 2. In regimen d1, 84.3% (n = 91/108) attained a therapeutic busulfan exposure, while in regimen d1 + 2 a proportion of 90.9% was found (n = 30/33, not-significant). Variance of Clday4 estimate based on busulfan day 2 concentrations was significantly smaller than the variance of Clday4 estimates based on day 1 concentrations (p < 0.001). Therefore, day 1-guided TDM (pharmacometric model-based) of busulfan may be sufficient for attaining optimal target exposure, provided that subsequent TDM is carried out if required. However, performing TDM on subsequent days may be beneficial, as measurements on day 2 seemed to reduce the variance in the estimated clearance as compared to day 1 sampling.
Collapse
Affiliation(s)
- T Tim Bognàr
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands.
| | - J S Jurjen Kingma
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - E H Erin Smeijsters
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - K C M Kim van der Elst
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | | | - C A Caroline Lindemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatrics, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - A C G Toine Egberts
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - I H Imke Bartelink
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - A Arief Lalmohamed
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
9
|
Takahashi T, Jaber MM, Brown SJ, Al-Kofahi M. Population Pharmacokinetic Model of Intravenous Busulfan in Hematopoietic Cell Transplantation: Systematic Review and Comparative Simulations. Clin Pharmacokinet 2023; 62:955-968. [PMID: 37415003 DOI: 10.1007/s40262-023-01275-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Busulfan is commonly used in the chemotherapy prior to hematopoietic cell transplantation (HCT). Busulfan has a narrow therapeutic window and a well-established exposure-response relationship with important clinical outcomes. Model-informed precision dosing (MIPD) based on population pharmacokinetic (popPK) models has been implemented in the clinical settings. We aimed to systematically review existing literature on popPK models of intravenous busulfan. METHODS We systematically searched Ovid MEDLINE, EMBASE, Cochrane Library, Scopus, and Web of Science databases from inception to December 2022 to identify original popPK models (nonlinear mixed-effect modeling) of intravenous busulfan in HCT population. Model-predicted busulfan clearance (CL) was compared using US population data. RESULTS Of the 44 eligible popPK studies published since 2002, 68% were developed predominantly in children, 20% in adults, and 11% in both children and adults. The majority of the models were described using first-order elimination or time-varying CL (69% and 26%, respectively). All but three included a body-size descriptor (e.g., body weight, body surface area). Other commonly included covariates were age (30%) and GSTA1 variant (15%). Median between-subject and between-occasion variabilities of CL were 20% and 11%, respectively. Between-model variabilities in predicted median CL were < 20% in all of the weight tiers (10-110 kg) in the simulation based on US population data. CONCLUSION Busulfan PK is commonly described using a first-order elimination or time-varying CL. A simple model with limited covariates were generally sufficient to attain relatively small unexplained variabilities. However, therapeutic drug monitoring may still be necessary to attain a narrow target exposure.
Collapse
Affiliation(s)
- Takuto Takahashi
- Division of Stem Cell Transplantation, Department of Pediatrics, Boston Children's Hospital/Dana-Farber Cancer Institute, Boston, MA, USA.
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA.
| | - Mutaz M Jaber
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
- Gilead Sciences, Inc., Foster City, CA, USA
| | - Sarah J Brown
- Health Sciences Library, University of Minnesota, Minneapolis, MN, USA
| | - Mahmoud Al-Kofahi
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
- Gilead Sciences, Inc., Foster City, CA, USA
| |
Collapse
|
10
|
Li D, Zhao J, Xu B, Zheng Y, Liu M, Huang H, Han S, Wu X. Predicting busulfan exposure in patients undergoing hematopoietic stem cell transplantation using machine learning techniques. Expert Rev Clin Pharmacol 2023; 16:751-761. [PMID: 37326641 DOI: 10.1080/17512433.2023.2226866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE This study aimed to establish an optimal model to predict the busulfan (BU) area under the curve at steady state (AUCss) by using machine learning (ML). PATIENTS AND METHODS Seventy-nine adult patients (age ≥18 years) who received BU intravenously and underwent therapeutic drug monitoring from 2013 to 2021 at Fujian Medical University Union Hospital were enrolled in this retrospective study. The whole dataset was divided into a training group and test group at the ratio of 8:2. BU AUCss were considered as the target variable. Nine different ML algorithms and one population pharmacokinetic (pop PK) model were developed and validated, and their predictive performance was compared. RESULTS All ML models were superior to the pop PK model (R2 = 0.751, MSE = 0.722, 14 and RMSE = 0.830) in model fitting and had better predictive accuracy. The ML model of BU AUCss established through support vector regression (SVR) and gradient boosted regression trees (GBRT) had the best predictive ability (R2 = 0.953 and 0.953, MSE = 0.323 and 0.326, and RMSE = 0.423 and 0.425). CONCLUSION All the ML models can potentially be used to estimate BU AUCss with the aim of facilitating rational use of BU on the individualized level, especially models built by SVR and GBRT algorithms.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jingtong Zhao
- School of Economics, Renmin University of China, Beijing, China
| | - Baohua Xu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - You Zheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huiping Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Song Han
- School of Economics, Renmin University of China, Beijing, China
| | - Xuemei Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
11
|
Briki M, André P, Thoma Y, Widmer N, Wagner AD, Decosterd LA, Buclin T, Guidi M, Carrara S. Precision Oncology by Point-of-Care Therapeutic Drug Monitoring and Dosage Adjustment of Conventional Cytotoxic Chemotherapies: A Perspective. Pharmaceutics 2023; 15:pharmaceutics15041283. [PMID: 37111768 PMCID: PMC10147065 DOI: 10.3390/pharmaceutics15041283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Therapeutic drug monitoring (TDM) of conventional cytotoxic chemotherapies is strongly supported yet poorly implemented in daily practice in hospitals. Analytical methods for the quantification of cytotoxic drugs are instead widely presented in the scientific literature, while the use of these therapeutics is expected to keep going for longer. There are two main issues hindering the implementation of TDM: turnaround time, which is incompatible with the dosage profiles of these drugs, and exposure surrogate marker, namely total area under the curve (AUC). Therefore, this perspective article aims to define the adjustment needed from current to efficient TDM practice for cytotoxics, namely point-of-care (POC) TDM. For real-time dose adjustment, which is required for chemotherapies, such POC TDM is only achievable with analytical methods that match the sensitivity and selectivity of current methods, such as chromatography, as well as model-informed precision dosing platforms to assist the oncologist with dose fine-tuning based on quantification results and targeted intervals.
Collapse
Affiliation(s)
- Myriam Briki
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - Pascal André
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Yann Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - Nicolas Widmer
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Pharmacy of the Eastern Vaud Hospitals, 1847 Rennaz, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland
| | - Anna D Wagner
- Service of Medical Oncology, Department of Oncology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Laurent A Decosterd
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Thierry Buclin
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Monia Guidi
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Sandro Carrara
- Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| |
Collapse
|
12
|
McCune JS, Navarro SL, Baker KS, Risler LJ, Phillips BR, Randolph TW, Shireman L, Schoch G, Deeg HJ, Zhang Y, Men A, Maton L, Huitema ADR. Prediction of Busulfan Clearance by Predose Plasma Metabolomic Profiling. Clin Pharmacol Ther 2023; 113:370-379. [PMID: 36369996 PMCID: PMC9888309 DOI: 10.1002/cpt.2794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Intravenous busulfan doses are often personalized to a target plasma exposure (targeted busulfan) using an individual's busulfan clearance (BuCL). We evaluated whether BuCL could be predicted by a predose plasma panel of 841 endogenous metabolomic compounds (EMCs). In this prospective cohort of 132 hematopoietic cell transplantation (HCT) patients, all had samples collected immediately before busulfan administration (preBU) and 96 had samples collected 2 weeks before busulfan (2-week-preBU). BuCL was significantly associated with 37 EMCs after univariate linear regression analysis and controlling for false discovery (< 0.05) in the 132 preBU samples. In parallel, with preBU samples, we included all 841 EMCs in a least absolute shrinkage and selection operator-penalized regression which selected 13 EMCs as predominantly associated with BuCL. Then, we constructed a prediction model by estimating coefficients for these 13 EMCs, along with sex, using ordinary least-squares. When the resulting linear prediction model was applied to the 2-week-preBU samples, it explained 40% of the variation in BuCL (adjusted R2 = 0.40). Pathway enrichment analysis revealed 18 pathways associated with BuCL. Lysine degradation followed by steroid biosynthesis, which aligned with the univariate analysis, were the top two pathways. BuCL can be predicted before busulfan administration with a linear regression model of 13 EMCs. This pharmacometabolomics method should be prioritized over use of a busulfan test dose or pharmacogenomics to guide busulfan dosing. These results highlight the potential of pharmacometabolomics as a precision medicine tool to improve or replace pharmacokinetics to personalize busulfan doses.
Collapse
Affiliation(s)
- Jeannine S. McCune
- City of Hope, Department of Hematologic Malignancies Translational Sciences, Duarte, California (CA), 91010, United States of America (USA)
| | - Sandi L. Navarro
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (WA), 98109, USA
| | - K. Scott Baker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (WA), 98109, USA,Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Linda J. Risler
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Brian R. Phillips
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Timothy W. Randolph
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (WA), 98109, USA
| | - Laura Shireman
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Gary Schoch
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (WA), 98109, USA
| | - H. Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (WA), 98109, USA,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Yuzheng Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (WA), 98109, USA
| | - Alex Men
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Loes Maton
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands,Department of Pharmacology, Princes Maxima & Pharmacology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands,Department of Clinical Pharmacy, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
13
|
Lopez-Mendez TB, Strippoli R, Trionfetti F, Calvo P, Cordani M, Gonzalez-Valdivieso J. Clinical Trials Involving Chemotherapy-Based Nanocarriers in Cancer Therapy: State of the Art and Future Directions. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Implementation and Cross-Validation of a Pharmacokinetic Model for Precision Dosing of Busulfan in Hematopoietic Stem Cell Transplanted Children. Pharmaceutics 2022; 14:pharmaceutics14102107. [PMID: 36297541 PMCID: PMC9611936 DOI: 10.3390/pharmaceutics14102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Busulfan, a drug used in conditioning prior to hematopoietic stem cell transplantation (HSCT) in children, has a narrow therapeutic margin. The model-informed precision dosing (MIPD) of busulfan is desirable, but there is a lack of validated tools. The objective of this study was to implement and cross-validate a population pharmacokinetic (PK) model in the Tucuxi software for busulfan MIPD in HSCT children. A search of the literature was performed to identify candidate population PK models. The goodness of fit of three selected models was assessed in a dataset of 178 children by computing the mean error (ME) and root-mean-squared error of prediction (RMSE). The best model was implemented in Tucuxi. The individual predicted concentrations, the area under the concentration-time curve (AUC), and dosage requirements were compared between the Tucuxi model and a reference model available in the BestDose software in a subset of 61 children. The model from Paci et al. best fitted the data in the full dataset. In a subset of 61 patients, the predictive performance of Tucuxi and BestDose models was comparable with ME values of 6.4% and -2.5% and RMSE values of 11.4% and 13.6%, respectively. The agreement between the estimated AUC and the predicted dose was good, with 6.6% and 4.9% of the values being out of the 95% limits of agreement, respectively. To conclude, a PK model for busulfan MIPD was cross-validated and is now available in the Tucuxi software.
Collapse
|
15
|
Gurlek Gokcebay D, Arman Bilir O, Şahin S, Ok Bozkaya İ, Ozbek NY. Role of therapeutic drug monitoring of intravenous Busulfan for prevention of sinusoidal obstructive syndrome in children. Pediatr Transplant 2022; 26:e14266. [PMID: 35343635 DOI: 10.1111/petr.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) of intravenous busulfan (Bu) has been recommended for safe engraftment and decreased toxicity in children undergoing hematopoietic stem cell transplantation (HSCT). This study aims to compare HSCT-related outcomes, such as acute or chronic graft-versus-host disease (GvHD), sinusoidal obstructive syndrome (SOS), event-free survival (EFS), and overall survival (OS) in children with and without TDM for busulfan. METHODS This retrospective study conducted between February 2012 and February 2021 at our Bone Marrow Transplantation Unit included 172 patients (34% girls) with a median age of 4.70 years (IQR 2.41-10.01). Group A consisted of 46 patients whose Bu doses were adjusted according to actual body weight, and group B consisted of 126 patients whose Bu dose adjustments made according to TDM. RESULTS Totally, 32 patients (19%) developed moderate or severe SOS. The incidence of SOS was significantly higher in the group without TDM (29% vs. 15%, p = .041). A multivariable analysis showed that the presence of acute GvHD and one alkylating drug-containing conditioning regimen compared with two or three were associated with SOS (p = .03 and p = .002, respectively). In patients with TDM, cumulative Bu dose and area under curve also were not associated with SOS. Other HSCT-related outcomes such as acute or chronic GvHD, relapse and graft rejection rates, OS and EFS rates did not differ between the groups. CONCLUSIONS TDM and making dose adjustments with Bayesian forecasting over four days of Bu therapy optimizes exposure and reduces the risk of SOS in children undergoing HSCT.
Collapse
Affiliation(s)
- Dilek Gurlek Gokcebay
- Department of Pediatric Hematology Bone Marrow Transplantation Unit, University of Health Sciences Ankara City Hospital, Ankara, Turkey
| | - Ozlem Arman Bilir
- Department of Pediatric Hematology Bone Marrow Transplantation Unit, University of Health Sciences Ankara City Hospital, Ankara, Turkey
| | - Seda Şahin
- Department of Pediatric Hematology Bone Marrow Transplantation Unit, University of Health Sciences Ankara City Hospital, Ankara, Turkey
| | - İkbal Ok Bozkaya
- Department of Pediatric Hematology Bone Marrow Transplantation Unit, University of Health Sciences Ankara City Hospital, Ankara, Turkey
| | - Namık Yasar Ozbek
- Department of Pediatric Hematology Bone Marrow Transplantation Unit, University of Health Sciences Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
16
|
Lawson R, Staatz CE, Fraser CJ, Ramachandran S, Teague L, Mitchell R, O'Brien T, Hennig S. Population pharmacokinetic model for once‐daily intravenous busulfan in pediatric subjects describing
time‐associated
clearance. CPT Pharmacometrics Syst Pharmacol 2022; 11:1002-1017. [PMID: 35611997 PMCID: PMC9381908 DOI: 10.1002/psp4.12809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
This study aimed to characterize the population pharmacokinetics (PK) of busulfan focusing on how busulfan clearance (CL) changes over time during once‐daily administration and assess different methods for measuring busulfan exposure and the ability to achieve target cumulative exposure under different dosing adjustment scenarios in pediatric stem cell transplantation recipients. Daily serial blood sampling was performed and concentration‐time data were analyzed using a nonlinear mixed‐effects approach. The developed PK model was used to assess achievement of target exposure under six dose‐adjustment scenarios based on simulations performed in RStudio (RxODE package)®. A total of 2491 busulfan plasma concentration–time measurements were collected from 95 patients characterizing 379 dosing days. A two‐compartment model with time‐associated CL best described the data with a typical CL of 14.5 L/h for an adult male with 62 kg normal fat mass (NFM; equivalent to 70 kg total body weight), typical volume of distribution central compartment (V1) of 40.6 L/59 kg NFM (equivalent to 70 kg total body weight), and typical volume of distribution peripheral compartment of 3.57 L/62 kg NFM. Model interindividual variability in CL and V1 was 14.7% and 34.9%, respectively, and interoccasional variability in CL was 6.6%. Patient size described by NFM, a maturation component, and time since start of treatment significantly influenced CL. Simulations demonstrated that using model‐based exposure estimates with each dose, and either a proportional dose‐adjustment calculation or model‐based calculated individual CL estimates to support dose adjustments, increased proportion of subjects attaining cumulative exposure within 5% of target compared with using noncompartmental analysis (100% vs. 0%). A time‐associated reduction in CL during once‐daily busulfan treatment was described.
Collapse
Affiliation(s)
- Rachael Lawson
- School of PharmacyUniversity of QueenslandBrisbaneQueenslandAustralia
- Pharmacy DepartmentQueensland Children's HospitalBrisbaneQueenslandAustralia
| | | | - Christopher J. Fraser
- Blood and Marrow Transplant ServiceQueensland Children's HospitalBrisbaneQueenslandAustralia
| | | | - Lochie Teague
- Pediatric Blood and Cancer CentreStarship HospitalAucklandNew Zealand
| | - Richard Mitchell
- Kids Cancer CentreSydney Children's HospitalRandwickNew South WalesAustralia
- School of Women & Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Tracey O'Brien
- Kids Cancer CentreSydney Children's HospitalRandwickNew South WalesAustralia
- School of Women & Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Stefanie Hennig
- Certara, Inc.PrincetonNew JerseyUSA
- School of Clinical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneAustralia
| |
Collapse
|
17
|
Huang H, Liu Q, Zhang X, Xie H, Liu M, Chaphekar N, Wu X. External Evaluation of Population Pharmacokinetic Models of Busulfan in Chinese Adult Hematopoietic Stem Cell Transplantation Recipients. Front Pharmacol 2022; 13:835037. [PMID: 35873594 PMCID: PMC9300831 DOI: 10.3389/fphar.2022.835037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Objective: Busulfan (BU) is a bi-functional DNA-alkylating agent used in patients undergoing hematopoietic stem cell transplantation (HSCT). Over the last decades, several population pharmacokinetic (pop PK) models of BU have been established, but external evaluation has not been performed for almost all models. The purpose of the study was to evaluate the predictive performance of published pop PK models of intravenous BU in adults using an independent dataset from Chinese HSCT patients, and to identify the best model to guide personalized dosing. Methods: The external evaluation methods included prediction-based diagnostics, simulation-based diagnostics, and Bayesian forecasting. In prediction-based diagnostics, the relative prediction error (PE%) was calculated by comparing the population predicted concentration (PRED) with the observations. Simulation-based diagnostics included the prediction- and variability-corrected visual predictive check (pvcVPC) and the normalized prediction distribution error (NPDE). Bayesian forecasting was executed by giving prior one to four observations. The factors influencing the model predictability, including the impact of structural models, were assessed. Results: A total of 440 concentrations (110 patients) were obtained for analysis. Based on prediction-based diagnostics and Bayesian forecasting, preferable predictive performance was observed in the model developed by Huang et al. The median PE% was -1.44% which was closest to 0, and the maximum F20 of 57.27% and F30 of 72.73% were achieved. Bayesian forecasting demonstrated that prior concentrations remarkably improved the prediction precision and accuracy of all models, even with only one prior concentration. Conclusion: This is the first study to comprehensively evaluate published pop PK models of BU. The model built by Huang et al. had satisfactory predictive performance, which can be used to guide individualized dosage adjustment of BU in Chinese patients.
Collapse
Affiliation(s)
- Huiping Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Qingxia Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiaohan Zhang
- College of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Helin Xie
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Xuemei Wu, ; Maobai Liu,
| | - Nupur Chaphekar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xuemei Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Xuemei Wu, ; Maobai Liu,
| |
Collapse
|
18
|
Dadkhah A, Wicha SG, Kröger N, Müller A, Pfaffendorf C, Riedner M, Badbaran A, Fehse B, Langebrake C. Population Pharmacokinetics of Busulfan and Its Metabolite Sulfolane in Patients with Myelofibrosis Undergoing Hematopoietic Stem Cell Transplantation. Pharmaceutics 2022; 14:pharmaceutics14061145. [PMID: 35745718 PMCID: PMC9229330 DOI: 10.3390/pharmaceutics14061145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
For patients with myelofibrosis, allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative treatment to date. Busulfan-based conditioning regimens are commonly used, although high inter-individual variability (IIV) in busulfan drug exposure makes individual dose selection challenging. Since data regarding the IIV in patients with myelofibrosis are sparse, this study aimed to develop a population pharmacokinetic (PopPK) model of busulfan and its metabolite sulfolane in patients with myelofibrosis. The influence of patient-specific covariates on the pharmacokinetics of drug and metabolite was assessed using non-linear mixed effects modeling in NONMEM®. We obtained 523 plasma concentrations of busulfan and its metabolite sulfolane from 37 patients with myelofibrosis. The final model showed a population clearance (CL) and volume of distribution (Vd) of 0.217 L/h/kg and 0.82 L/kg for busulfan and 0.021 L/h/kg and 0.65 L/kg for its metabolite. Total body weight (TBW) and a single-nucleotide polymorphism of glutathione-S-transferase A1 (GSTA1 SNP) displayed a significant impact on volume of distribution and metabolite clearance, respectively. This is the first PopPK-model developed to describe busulfan’s pharmacokinetics in patients with myelofibrosis. Incorporating its metabolite sulfolane into the model not only allowed the characterization of the covariate relationship between GSTA1 and the clearance of the metabolite but also improved the understanding of busulfan’s metabolic pathway.
Collapse
Affiliation(s)
- Adrin Dadkhah
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Correspondence: ; Tel.: +49-40-7410-58517
| | - Sebastian Georg Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany; (S.G.W.); (C.P.)
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (N.K.); (A.B.); (B.F.)
| | - Alexander Müller
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Christoph Pfaffendorf
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany; (S.G.W.); (C.P.)
| | - Maria Riedner
- Technology Platform Mass Spectrometry, University of Hamburg, 20146 Hamburg, Germany;
| | - Anita Badbaran
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (N.K.); (A.B.); (B.F.)
| | - Boris Fehse
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (N.K.); (A.B.); (B.F.)
| | - Claudia Langebrake
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (N.K.); (A.B.); (B.F.)
| |
Collapse
|
19
|
van der Stoep MYEC, Oostenbrink LVE, Bredius RGM, Moes DJAR, Guchelaar HJ, Zwaveling J, Lankester AC. Therapeutic Drug Monitoring of Conditioning Agents in Pediatric Allogeneic Stem Cell Transplantation; Where do We Stand? Front Pharmacol 2022; 13:826004. [PMID: 35330826 PMCID: PMC8940165 DOI: 10.3389/fphar.2022.826004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is an established curative treatment that has significantly improved clinical outcome of pediatric patients with malignant and non-malignant disorders. This is partly because of the use of safer and more effective combinations of chemo- and serotherapy prior to HSCT. Still, complications due to the toxicity of these conditioning regimens remains a major cause of transplant-related mortality (TRM). One of the most difficult challenges to further improve HSCT outcome is reducing toxicity while maintaining efficacy. The use of personalized dosing of the various components of the conditioning regimen by means of therapeutic drug monitoring (TDM) has been the topic of interest in the last decade. TDM could play an important role, especially in children who tend to show greater pharmacokinetic variability. However, TDM should only be performed when it has clear added value to improve clinical outcome or reduce toxicity. In this review, we provide an overview of the available evidence for the relationship between pharmacokinetic parameters and clinical outcome or toxicities of the most commonly used conditioning agents in pediatric HSCT.
Collapse
Affiliation(s)
- M. Y. Eileen C. van der Stoep
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: M. Y. Eileen C. van der Stoep,
| | - Lisa V. E. Oostenbrink
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Robbert G. M. Bredius
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Juliette Zwaveling
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjan C. Lankester
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Boulad F, Maggio A, Wang X, Moi P, Acuto S, Kogel F, Takpradit C, Prockop S, Mansilla-Soto J, Cabriolu A, Odak A, Qu J, Thummar K, Du F, Shen L, Raso S, Barone R, Di Maggio R, Pitrolo L, Giambona A, Mingoia M, Everett JK, Hokama P, Roche AM, Cantu VA, Adhikari H, Reddy S, Bouhassira E, Mohandas N, Bushman FD, Rivière I, Sadelain M. Lentiviral globin gene therapy with reduced-intensity conditioning in adults with β-thalassemia: a phase 1 trial. Nat Med 2022; 28:63-70. [PMID: 34980909 PMCID: PMC9380046 DOI: 10.1038/s41591-021-01554-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/23/2021] [Indexed: 01/05/2023]
Abstract
β-Thalassemias are inherited anemias that are caused by the absent or insufficient production of the β chain of hemoglobin. Here we report 6-8-year follow-up of four adult patients with transfusion-dependent β-thalassemia who were infused with autologous CD34+ cells transduced with the TNS9.3.55 lentiviral globin vector after reduced-intensity conditioning (RIC) in a phase 1 clinical trial ( NCT01639690) . Patients were monitored for insertional mutagenesis and the generation of a replication-competent lentivirus (safety and tolerability of the infusion product after RIC-primary endpoint) and engraftment of genetically modified autologous CD34+ cells, expression of the transduced β-globin gene and post-transplant transfusion requirements (efficacy-secondary endpoint). No unexpected safety issues occurred during conditioning and cell product infusion. Hematopoietic gene marking was very stable but low, reducing transfusion requirements in two patients, albeit not achieving transfusion independence. Our findings suggest that non-myeloablative conditioning can achieve durable stem cell engraftment but underscore a minimum CD34+ cell transduction requirement for effective therapy. Moderate clonal expansions were associated with integrations near cancer-related genes, suggestive of non-erythroid activity of globin vectors in stem/progenitor cells. These correlative findings highlight the necessity of cautiously monitoring patients harboring globin vectors.
Collapse
Affiliation(s)
- Farid Boulad
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aurelio Maggio
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Xiuyan Wang
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Moi
- Ospedale Pediatrico Microcitemie 'A.Cao', A.O. 'G.Brotzu', Cagliari, Italy
| | - Santina Acuto
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Friederike Kogel
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chayamon Takpradit
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Susan Prockop
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Annalisa Cabriolu
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashlesha Odak
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinrong Qu
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Keyur Thummar
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fang Du
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lingbo Shen
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simona Raso
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Rita Barone
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Rosario Di Maggio
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Lorella Pitrolo
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Antonino Giambona
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Maura Mingoia
- Ospedale Pediatrico Microcitemie 'A.Cao', A.O. 'G.Brotzu', Cagliari, Italy
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pascha Hokama
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aoife M Roche
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vito Adrian Cantu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hriju Adhikari
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, New York, NY, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Zhao D, Liu XF, Tian YG, Dong HR, Feng SX, Li JS. The pharmacokinetic study of Tanreqing and the interaction with cefixime in rat model of pneumonia by validated UPLC-MS/MS. J Pharm Biomed Anal 2021; 209:114484. [PMID: 34891004 DOI: 10.1016/j.jpba.2021.114484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 11/27/2022]
Abstract
Combining traditional Chinese medicine and chemical drugs with antimicrobial activities has become more popular, but there is insufficient relevant research on such combinations. The Tanreqing injection (TRQI), a Chinese compound medicine, exhibits therapeutic effects in treating upper respiratory tract infections, severe influenza, and pneumonia. This research investigates the pharmacokinetics of TRQI in pneumonia model rats and explores the effect of the antibiotic cefixime on its metabolism. The pneumonia model rats were randomly divided into six groups: low, medium, and high (3, 6, and 12 mL kg-1) dose TRQI group, and a medium dose TRQI combined with cefixime (14.4 mg kg-1) group, with the remainder two groups were control group. Blood samples were collected from the tail vein at different time points between 0 and 24 h after injection. A sensitive and quick method based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established for the simultaneous determination of the 13 TRQI components in the blood samples. The analytes were separated on an XBridge™C18 column (2.1 mm × 150 mm, 5 µm), with the flow phase consisting of methanol and 0.1% formic acid water at a flow rate of 0.3 mL/min. The assay method met the biological sample determination requirements, demonstrating good adaptability and practicability for application in the pharmacokinetic study of TRQI in pneumonia model rats. Moreover, the method was used successfully in the interaction study of TRQI with cefixime. The results indicated that co-administration results in a significant change in the pharmacokinetic parameters of the main TRQI components. However, the changes in the pharmacokinetic characteristics of multiple TRQI components were inconsistent. Thus, the results of this drug combination under different pathological conditions in clinical applications were unpredictable. Therefore, more attention should be paid to the combined use of cefixime and TRQI in clinical applications to avoid the risk of adverse drug reactions in future studies.
Collapse
Affiliation(s)
- Di Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, 450046, China
| | - Xue-Fang Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, 450046, China
| | - Yan-Ge Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, 450046, China
| | - Hao-Ran Dong
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, 450046, China
| | - Su-Xiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, 450046, China; Zhengzhou Key Laboratory of Chinese Medicine Quality Control and Evaluation, Zhengzhou 450046, China.
| | - Jian-Sheng Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, 450046, China; Zhengzhou Key Laboratory of Chinese Medicine Quality Control and Evaluation, Zhengzhou 450046, China.
| |
Collapse
|
22
|
Huang H, Liu M, Ren J, Hu J, Lin S, Li D, Huang W, Chen S, Yang T, Wu X. Can Published Population Pharmacokinetic Models of Busulfan Be Used for Individualized Dosing in Chinese Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation? An External Evaluation. J Clin Pharmacol 2021; 62:609-619. [PMID: 34695225 DOI: 10.1002/jcph.1992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/20/2021] [Indexed: 02/02/2023]
Abstract
Busulfan is a bifunctional alkylating agent that is widely used before hematopoietic stem cell transplantation (HSCT), in combination with other chemotherapeutic drugs. As of 2020, there is no population pharmacokinetic (popPK) model for busulfan in Chinese pediatric patients. A systemic external evaluation of 11 published popPK models was conducted in Chinese pediatric patients undergoing HSCT. Forty pediatric patients were enrolled in this study, with a total of 183 blood concentrations. The relative prediction error (PE%), median PE%, median absolute PE%, and percentage of PE% within ±20% and ±30% were calculated in prediction-based diagnostics. Simulation-based diagnostics were conducted through a prediction- and variability-corrected visual predictive check and the normalized prediction distribution error. The relative individual prediction error was calculated using Bayesian forecasting with 1 to 3 concentration points. The 1-compartment open linear popPK model, which was built by Su-jin Rhee et al (model H), incorporating the patient's body surface area, age, dosing day, and aspartate aminotransferase as significant covariates had preferable predictability than other popPK models. In prediction-based diagnostics, the median PE%, percentage of PE% within ±20%, and percentage of PE% within ±30% of model H were 8.48%, 45.35%, and 59.56%, respectively. The normalized prediction distribution error of model H showed that it followed the normal distribution. Based on Bayesian forecasting, model H showed good predictive performance. Thus, model H was the most appropriate model that can be used clinically for individualized dosage adjustments in Chinese pediatric HSCT patients.
Collapse
Affiliation(s)
- Huiping Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jinhua Ren
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shenglu Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Dandan Li
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Weikun Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Shaozhen Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Ting Yang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xuemei Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
23
|
Fast and reliable quantification of busulfan in blood plasma using two-channel liquid chromatography tandem mass spectrometry: Validation of assay performance in the presence of drug formulation excipients. J Pharm Biomed Anal 2021; 203:114216. [PMID: 34182411 DOI: 10.1016/j.jpba.2021.114216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022]
Abstract
A fast and reliable method based on two-channel liquid chromatography coupled to tandem mass spectrometry was developed and successfully validated for quantification of busulfan. The drug vehicle polyethylene glycol 400 was quantified simultaneously in patient samples. The sample preparation consisted of simple protein precipitation using a mixture of methanol and zinc sulphate containing busulfan-d8 as internal standard. Chromatographic separation was performed on a short biphenyl column (30 mm × 3.0 mm, 5 μm particles) using a step gradient from 30 % to 85 % methanol, ensuring co-elution of the analyte and internal standard. Quantification was performed using the mass transition of 264.1 > 151.1 for busulfan and 272.1 > 159.1 for the internal standard. Using only 20 μL of plasma sample, the lower limit of quantification was 25 ng/mL. Signal to noise ratio at the lower limit of quantification exceeded 300. The assay performance was not adversely affected by matrix effects originating from drug formulation excipients or other sample components. The coefficient of variation was ≤4 % and the mean accuracy 101-108 % across the calibration range 25-5 000 ng/mL. Chromatographic run time was 2 min and 8 s, allowing an effective run-time of 1 min and 10 s when using two alternating LC-channels. The assay has been implemented in routine practice with accreditation according to the ISO 15189 standard, and performs well in external quality control assessments. We present for the first time that shortly after an IV infusion of busulfan, the plasma levels of polyethylene glycol 400 may be in the range of 400-800 mg/L. The presence of these levels of detergent in patient samples may have detrimental effects on assay performance in LC-MS/MS, not limited to busulfan assays. This may be a concern for any LC-MS/MS analysis performed on samples collected within the first 24 h after an IV infusion of busulfan.
Collapse
|
24
|
Lawson R, Paterson L, Fraser CJ, Hennig S. Evaluation of two software using Bayesian methods for monitoring exposure and dosing once-daily intravenous busulfan in paediatric patients receiving haematopoietic stem cell transplantation. Cancer Chemother Pharmacol 2021; 88:379-391. [PMID: 34021809 DOI: 10.1007/s00280-021-04288-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/22/2021] [Indexed: 11/24/2022]
Abstract
AIM To assess the ability of model-based personalised dosing tools to estimate busulfan exposure (i) in comparison to clinically used intensive sampling exposure estimation procedure, (ii) using limited sampling strategies and (iii) to predict changes in busulfan clearance during busulfan treatment. METHODS Data on intravenous busulfan dosing for patients with 4 consecutive days were entered into Bayesian forecasting software, InsightRX and NextDose. Prediction of busulfan cumulative exposure was compared to current clinical practice estimation, aiming for pre-defined individualised target of cumulative exposure. Estimation performance was tested given several limited sampling strategies. RESULTS Thirty-two paediatric patients (0.2-16.5 years) provided a total of 103 daily exposure measurements estimated using 7 samples taken per day (full sampling), with 19 patients having sampling following all doses administered. Both software tools utilising Bayesian methods provided acceptable relative bias and precision of cumulative exposure estimations under the tested sampling scenarios. Relative bias ranged from median RE of 0.1-14.6% using InsightRX and from 3.4-7.8% using NextDose. Precision ranged from median RMSE of 0.19-0.32 mg·h·L-1 for InsightRX and 0.08-0.1 mg·h·L-1 for NextDose. A median reduction in busulfan clearance from day 1 to day 4 was observed in the clinical data (-10.9%), when using InsightRX (-18.6%) and with NextDose (-14.7%). CONCLUSION Bayesian methods were shown to have relatively low bias and precisely estimate busulfan exposure using intensive sampling and several limited sampling strategies, which provides evidence for prospective studies to evaluate these tools in clinical practice. A trend to overestimation of exposure using Bayesian methods was observed compared to clinical practice. Reduction of busulfan clearance from day 1 to 4 of once daily dosing was confirmed and should be considered when adjusting doses.
Collapse
Affiliation(s)
- Rachael Lawson
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia. .,Pharmacy Department, Queensland Children's Hospital, Brisbane, QLD, Australia. .,Pharmacy Australia Centre of Excellence (PACE), University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| | - Lachlan Paterson
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.,School of Medicine, Griffith University, Southport, QLD, Australia
| | - Christopher J Fraser
- Blood and Marrow Transplant Service, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Stefanie Hennig
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.,Certara, Inc, Princeton, NJ, USA.,Department of Clinical Pharmacy, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.,School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
25
|
The Interaction of the Flavonoid Fisetin with Human Glutathione Transferase A1-1. Metabolites 2021; 11:metabo11030190. [PMID: 33806779 PMCID: PMC8004991 DOI: 10.3390/metabo11030190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
Glutathione transferases (GSTs) are a family of Phase II detoxification enzymes that are involved in the development of the multidrug resistance (MDR) mechanism in cancer cells and therefore affect the clinical outcome of cancer chemotherapy. The discovery of nontoxic natural compounds as inhibitors for GSTs is a promising approach for chemosensitizing and reversing MDR. Fisetin (7,3′,4′-flavon-3-ol) is a plant flavonol present in many plants and fruits. In the present work, the interaction of fisetin with human glutathione transferase A1-1 (hGSTA1-1) was investigated. Kinetic analysis revealed that fisetin is a reversible inhibitor for hGSTA1-1 with IC50 1.2 ± 0.1 μΜ. It functions as a mixed-type inhibitor toward glutathione (GSH) and as a noncompetitive inhibitor toward the electrophile substrate 1-chloro-2,4-dinitrobenzene (CDNB). In silico molecular modeling and docking predicted that fisetin binds at a distinct location, in the solvent channel of the enzyme, and occupies the entrance of the substrate-binding sites. Treatment of proliferating human epithelial colorectal adenocarcinoma cells (CaCo-2) with fisetin causes a reduction in the expression of hGSTA1-1 at the mRNA and protein levels. In addition, fisetin inhibits GST activity in CaCo-2 cell crude extract with an IC50 (2.5 ± 0.1 μΜ), comparable to that measured using purified recombinant hGSTA1-1. These actions of fisetin can provide a synergistic role toward the suppression and chemosensitization of cancer cells. The results of the present study provide insights into the development of safe and effective GST-targeted cancer chemosensitizers.
Collapse
|