1
|
Gogikar SK, Sen S, Pathinti S, Samanthula G, Dikundwar AG. Forced Degradation Study of an Anti-Diabetic Drug Imeglimin: Impurity Profiling and Structure Elucidation Using LC-Q-ToF-MS/MS and NMR. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9960. [PMID: 39658818 DOI: 10.1002/rcm.9960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024]
Abstract
RATIONALE The present study aims to establish structures of the degradation products of an anti-diabetic drug, Imeglimin (IMG) approved for the treatment of type 2 diabetes mellitus in the year 2021. Degradation pathways are proposed along with in silico toxicity assessments of the observed degradation products (DPs) of the drug. METHODS A reversed-phase high-performance liquid chromatography (RP-HPLC), equipped with a photodiode array detector, was used to separate the observed DPs with a Phenomenex Luna PFP (250 × 4.6 mm, 5 μm) column, using 10 mM ammonium formate (pH 4.5) and methanol as mobile phase. Liquid chromatography quadrupole time of flight mass spectrometry (LC-Q-ToF-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy were employed for structural elucidation. Zeneth and Derek suites were used for in silico assessments. RESULTS A total of four degradation products were observed, which were successfully separated on an RP-HPLC. The structural characterization of three of the four DPs was achieved using LC-Q-TOF-MS/MS by employing electro spray ionization as well as atmospheric pressure chemical ionization. Additionally, DP-3 was isolated using a preparative HPLC and was characterized by NMR. Computationally predicted structures were compared with the experimental observations. CONCLUSION An HPLC method, capable of separating the Imeglimin and its four DPs, was developed and validated as per the ICH Q2(R1) guideline. Structure elucidation reveals a variety of products with metformin as one of the identified DPs along with a metabolite. The toxicity potential of DPs was assessed through docking studies.
Collapse
Affiliation(s)
- Shiva Kumar Gogikar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sibu Sen
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shivashankar Pathinti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
2
|
Sultan J, Agarwal N, Sharma S. Characteristics and Biological Properties of Imeglimin Hydrochlo ride, A Novel Antidiabetic Agent: A Systematic Review. Curr Diabetes Rev 2024; 20:e171023222286. [PMID: 37855361 DOI: 10.2174/0115733998260331231009104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 08/23/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND WHO indicates that diabetes will become the 7th leading reason for death by 2030. The physiopathology of dysfunctioning is associated with obesity, weight gain and predominantly insulin resistance in insulin-sensitive cells and continuous deterioration of pancreatic beta cell function..Imeglimin is an investigational novel oral anti-diabetic drug. OBJECTIVES The motive of the review is to comprehensively explore the chemistry, biological and analytical analysis of the Imeglimin hydrochloride. METHODS To enhance the understanding, a systematic review was conducted by forming a database of relevant existing studies from electronic resources like Web of Science, ScienceDirect and PubMed. The methodology is reflected in the PRISMA design. RESULT The drug was approved in the year 2021 for therapeutic purposes in Japan. It is the novel and first approved drug for this type of Anti-diabetic treatment. It is a small molecular drug whose molecular weight is 191.6 grams per mole utilized for oral administration. Imeglimin is thought to have both activities, as the amount of glucose is dependent on insulin secretory impact and insulin sensitivity is increased. CONCLUSION Therapeutic, pharmacological, and analytical considerations for the novel drug Imeglimin hydrochloride are discussed in this review.
Collapse
Affiliation(s)
- Jasira Sultan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Nikhil Agarwal
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle West, Mumbai, Maharashtra 400056, India
| |
Collapse
|
3
|
Arvanitakis K, Koufakis T, Kalopitas G, Papadakos SP, Kotsa K, Germanidis G. Management of type 2 diabetes in patients with compensated liver cirrhosis: Short of evidence, plenty of potential. Diabetes Metab Syndr 2024; 18:102935. [PMID: 38163417 DOI: 10.1016/j.dsx.2023.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND AIMS Treatment of type 2 diabetes (T2D) in patients with compensated cirrhosis is challenging due to hypoglycemic risk, altered pharmacokinetics, and the lack of robust evidence on the risk/benefit ratio of various drugs. Suboptimal glycemic control accelerates the progression of cirrhosis, while the frequent coexistence of nonalcoholic fatty liver disease (NAFLD) with T2D highlights the need for a multifactorial therapeutic approach. METHODS A literature search was performed in Medline, Google Scholar and Scopus databases till July 2023, using relevant keywords to extract studies regarding the management of T2D in patients with compensated cirrhosis. RESULTS Metformin, sodium-glucose co-transporter-2 inhibitors (SGLT2i), and glucagon-like peptide-1 receptor agonists (GLP-1 RA) are promising treatment options for patients with T2D and compensated liver cirrhosis, offering good glycemic control with minimal risk of hypoglycemia, while their pleiotropic actions confer benefits on NAFLD and body weight, and decrease cardiorenal risk. Sulfonylureas cause hypoglycemia, thus should be avoided, while in specific studies, dipeptidyl peptidase-4 inhibitors have been correlated with increased risk of decompensation and variceal bleeding. Despite the benefits of thiazolidinediones in nonalcoholic steatohepatitis, concerns about edema and weight gain limit their use in compensated cirrhosis. Insulin does not exert hepatotoxic effects and can be administered safely in combination with other drugs; however, the risk of hypoglycemia should be considered. CONCLUSIONS The introduction of new hepatoprotective diabetes drugs into clinical practice, including tirzepatide, SGLT2i, and GLP-1 RA, sets the stage for future trials to investigate the ideal therapeutic regimen for people with T2D and compensated cirrhosis.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642, Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Stavros P Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636, Thessaloniki, Greece
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece.
| |
Collapse
|
4
|
Chevalier C, Fouqueray P, Bolze S. Imeglimin: A Clinical Pharmacology Review. Clin Pharmacokinet 2023; 62:1393-1411. [PMID: 37713097 DOI: 10.1007/s40262-023-01301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Imeglimin (PXL008, EMD-387008, Twymeeg®) is a first-in-class novel oral hypoglycemic agent, launched in Japan, for the treatment of type 2 diabetes mellitus. Its mechanism of action targets mitochondrial bioenergetics to ameliorate insulin resistance and to enhance β-cell function. This review summarizes the properties underlying the pharmacokinetic profile of imeglimin, a small cationic drug belonging to the tetrahydrotriazine chemical class, with a complex mechanism of absorption involving an active transport through organic cation transporters (OCTs). Imeglimin absorption decreases when dose increases due to the saturation of the active uptake transport. Post absorption, imeglimin is rapidly and primarily distributed to organs and tissues, and has a half-life ranging from 9.03 to 20.2 h. Plasma protein binding of imeglimin is low, which explains the rapid distribution to the organs observed in all species. Imeglimin is excreted unchanged in urine, indicating a low extent of metabolism. Imeglimin is a substrate of multidrug and toxic compound extrusion (MATE) 2-K and a substrate and inhibitor of OCT1, OCT2, and MATE1. Clinical drug-drug interaction studies confirmed the absence of relevant clinical interaction with substrates or inhibitors of these transporters. Overall, the drug-drug interaction potential of imeglimin is low. Its pharmacokinetics profile has also been characterized in special populations, showing no influence of mild and moderate hepatic impairment but an impact of renal function on imeglimin renal clearance. Dosage adjustment is thus required in moderately and severely renally impaired patients. Imeglimin pharmacokinetics was shown to be insensitive to ethnicity and food intake and to have no effect on QTcF interval.
Collapse
|
5
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Glucose-Lowering Effects of Imeglimin and Its Possible Beneficial Effects on Diabetic Complications. BIOLOGY 2023; 12:biology12050726. [PMID: 37237539 DOI: 10.3390/biology12050726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Mitochondrial dysfunction is a prominent pathological feature of type 2 diabetes, which contributes to β-cell mass reduction and insulin resistance. Imeglimin is a novel oral hypoglycemic agent with a unique mechanism of action targeting mitochondrial bioenergetics. Imeglimin reduces reactive oxygen species production, improves mitochondrial function and integrity, and also improves the structure and function of endoplasmic reticulum (ER), changes which enhance glucose-stimulated insulin secretion and inhibit the apoptosis of β-cells, leading to β-cell mass preservation. Further, imeglimin inhibits hepatic glucose production and ameliorates insulin sensitivity. Clinical trials into the effects of imeglimin monotherapy and combination therapy exhibited an excellent hypoglycemic efficacy and safety profile in type 2 diabetic patients. Mitochondrial impairment is closely associated with endothelial dysfunction, which is a very early event in atherosclerosis. Imeglimin improved endothelial dysfunction in patients with type 2 diabetes via both glycemic control-dependent and -independent mechanisms. In experimental animals, imeglimin improved cardiac and kidney function via an improvement in mitochondrial and ER function or/and an improvement in endothelial function. Furthermore, imeglimin reduced ischemia-induced brain damage. In addition to glucose-lowering effects, imeglimin can be a useful therapeutic option for diabetic complications in type 2 diabetic patients.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| |
Collapse
|
6
|
Nagamine J. [Pharmacological profile and clinical efficacy of imeglimin hydrochloride (TWYMEEG ®Tablets), the orally drug for type 2 diabetes mellitus with the first dual mode of action in the world]. Nihon Yakurigaku Zasshi 2023; 158:193-202. [PMID: 36858505 DOI: 10.1254/fpj.22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Imeglimin hydrochloride (imeglimin) is an orally drug for type 2 diabetes mellitus, which was approved in Japan for the first in the world, with dual mode of actions: pancreatic action means amplifying glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells, and extrapancreatic action means improving insulin sensitivity by which gluconeogenesis suppresses in hepatocytes and glucose uptake increases in skeletal muscles. Although the molecular target of imeglimin is still unknown, imeglimin exerts some of its actions through modulation of the mitochondrial function. In pancreatic islets, imeglimin enhanced adenosine triphosphate and Ca2+ under high-glucose conditions. Furthermore, imeglimin induced the synthesis of oxidized form nicotinamide adenine dinucleotide (NAD+) via the 'salvage pathway', and NAD+ metabolites may contribute to the increase in intracellular Ca2+. The in vivo studies indicated that imeglimin enhanced the sensitivity to insulin and modulated the mitochondrial function (restoring the deficient Complex III activity, decreasing Complex I activity and reactive oxygen species production), which contribute to the improvement of glucose metabolism in hepatocytes and skeletal muscles. In clinical trials, imeglimin's dual effects were demonstrated in foreign type 2 diabetic patients who received 1500 mg bid, which is different from the domestic approved dose. Imeglimin has been shown to evidence of statistically significant glucose lowering, a generally favorable safety and tolerability profile in patients with type 2 diabetes by monotherapy and combination therapy with 1,000 mg bid in four Japanese trials. Since imeglimin has dual effects, it may have shown a newly effective option, regardless of the pathophysiology of type 2 diabetic patients.
Collapse
|
7
|
Doupis J, Baris N, Avramidis K. Imeglimin: A New Promising and Effective Weapon in the Treatment of Type 2 Diabetes. TOUCHREVIEWS IN ENDOCRINOLOGY 2022; 17:88-91. [PMID: 35118453 DOI: 10.17925/ee.2021.17.2.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 11/24/2022]
Abstract
Imeglimin is a novel molecule currently under development for the treatment of type 2 diabetes mellitus, and is the first agent of the 'glimin' class of glucose-lowering medication. It has a unique mechanism of action that targets the three main pathophysiologic components of type 2 diabetes: impaired glucose uptake by muscle tissue, excess hepatic gluconeogenesis and increased β-cell apoptosis. To date, imeglimin has been evaluated in many preclinical and clinical trials and has shown to have notable antihyperglycaemic effects, such as statistically significant reductions in glycated haemoglobin, fasting plasma glucose and other glycaemic parameters. The encouraging tolerability profile, combined with its efficacy, could make it suitable as a monotherapy or in combination with other classes of antidiabetic agents, hopefully in the near future.
Collapse
Affiliation(s)
- John Doupis
- Department of Internal Medicine and Diabetes, Salamis Naval and Veterans Hospital, Salamis Naval Base, Attiki, Greece
| | - Neoklis Baris
- Department of Internal Medicine and Diabetes, Salamis Naval and Veterans Hospital, Salamis Naval Base, Attiki, Greece
| | - Konstantinos Avramidis
- Department of Internal Medicine and Diabetes, Salamis Naval and Veterans Hospital, Salamis Naval Base, Attiki, Greece
| |
Collapse
|
8
|
Abstract
Imeglimin hydrochloride (TWYMEEG®; hereafter referred to as imeglimin) is an orally administered, first-in-class glimin being developed by Poxel and, in several Asian countries, Sumitomo Dainippon Pharma for the treatment of type 2 diabetes (T2D). The glimins are a novel class of glucose-lowering agents that target multiple components of diabetes-associated pathology. In June 2021, imeglimin received its first approval for use in T2D in Japan. The Japanese approval was based on extensive preclinical and clinical data, including positive results from the pivotal phase III TIMES programme. This article summarizes the milestones in the development of imeglimin leading to this first approval for T2D.
Collapse
Affiliation(s)
- Yvette N Lamb
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|