1
|
Zhou J, Rao R, Shapiro ME, Tania N, Herron C, Musante CJ, Hughes JH. Model-Informed Drug Development Applications and Opportunities in mRNA-LNP Therapeutics. Clin Pharmacol Ther 2025. [PMID: 40083288 DOI: 10.1002/cpt.3641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
The utilization of lipid nanoparticles (LNP) for encapsulating mRNA has revolutionized the field of therapeutics, enabling the rapid development of COVID-19 vaccines and cancer vaccines. However, the clinical development of mRNA-LNP therapeutics faces numerous challenges due to their complex mechanisms of action and limited clinical experience. To overcome these hurdles, Model-Informed Drug Development (MIDD) emerges as a valuable tool that can be applied to mRNA-LNP therapeutics, facilitating the evaluation of their safety and efficacy through the integration of data from all stages into appropriate modeling and simulation techniques. In this review, we provide an overview of current MIDD applications in mRNA-LNP therapeutics clinical development using in vivo data. A variety of modeling methods are reviewed, including quantitative system pharmacology (QSP), physiologically based pharmacokinetics (PBPK), mechanistic pharmacokinetics/pharmacodynamics (PK/PD), population PK/PD, and model-based meta-analysis (MBMA). Additionally, we compare the differences between mRNA-based therapeutics, small interfering RNA, and adeno-associated virus-based gene therapies in terms of their clinical pharmacology, and discuss the potential for mutual sharing of MIDD knowledge between these therapeutics. Furthermore, we highlight the promising future opportunities for applying MIDD approaches in the development of mRNA-LNP drugs. By emphasizing the importance of applying MIDD knowledge throughout mRNA-LNP therapeutics development, this review aims to encourage stakeholders to recognize the value of MIDD and its potential to enhance the safety and efficacy evaluation of mRNA-LNP therapeutics.
Collapse
Affiliation(s)
| | - Rohit Rao
- Pfizer Inc, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
2
|
Ivaturi V, Attarwala H, Deng W, Ding B, Schnyder Ghamloush S, Girard B, Iqbal J, Minnikanti S, Zhou H, Miller J, Das R. Immunostimulatory/Immunodynamic model of mRNA-1273 to guide pediatric vaccine dose selection. CPT Pharmacometrics Syst Pharmacol 2025; 14:42-51. [PMID: 39327773 PMCID: PMC11706428 DOI: 10.1002/psp4.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
COVID-19 vaccines, including mRNA-1273, have been rapidly developed and deployed. Establishing the optimal dose is crucial for developing a safe and effective vaccine. Modeling and simulation have the potential to play a key role in guiding the selection and development of the vaccine dose. In this context, we have developed an immunostimulatory/immunodynamic (IS/ID) model to quantitatively characterize the neutralizing antibody titers elicited by mRNA-1273 obtained from three clinical studies. The developed model was used to predict the optimal vaccine dose for future pediatric trials. A 25-μg primary vaccine series was predicted to meet non-inferiority criteria in young children (aged 2-5 years) and infants (aged 6-23 months). The geometric mean titers and geometric mean ratios for this dose level predicted using the IS/ID model a priori matched those observed in the pediatric clinical study. These findings demonstrate that IS/ID models represent a novel approach to guide data-driven clinical dose selection of vaccines.
Collapse
Affiliation(s)
- Vijay Ivaturi
- Pumas‐AI, IncDoverDelawareUSA
- Centre for Pharmacometrics, MCOPS, Manipal Academy of Higher EducationManipalIndia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Huang HW, Wu S, Chowdhury EA, Shah DK. Expansion of platform physiologically-based pharmacokinetic model for monoclonal antibodies towards different preclinical species: cats, sheep, and dogs. J Pharmacokinet Pharmacodyn 2024; 51:621-638. [PMID: 37947924 DOI: 10.1007/s10928-023-09893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Monoclonal antibodies (mAbs) are becoming an important therapeutic option in veterinary medicine, and understanding the pharmacokinetic (PK) of mAbs in higher-order animal species is also important for human drug development. To better understand the PK of mAbs in these animals, here we have expanded a platform physiological-based pharmacokinetic (PBPK) model to characterize the disposition of mAbs in three different preclinical species: cats, sheep, and dogs. We obtained PK data for mAbs and physiological parameters for the three different species from the literature. We were able to describe the PK of mAbs following intravenous (IV) or subcutaneous administration in cats, IV administration in sheep, and IV administration dogs reasonably well by fixing the physiological parameters and just estimating the parameters related to the binding of mAbs to the neonatal Fc receptor. The platform PBPK model presented here provides a quantitative tool to predict the plasma PK of mAbs in dogs, cats, and sheep. The model can also predict mAb PK in different tissues where the site of action might be located. As such, the mAb PBPK model presented here can facilitate the discovery, development, and preclinical-to-clinical translation of mAbs for veterinary and human medicine. The model can also be modified in the future to account for more detailed compartments for certain organs, different pathophysiology in the animals, and target-mediated drug disposition.
Collapse
Affiliation(s)
- Hsien-Wei Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Ekram A Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
4
|
Sembada AA, Theda Y, Faizal A. Duckweeds as edible vaccines in the animal farming industry. 3 Biotech 2024; 14:222. [PMID: 39247453 PMCID: PMC11379843 DOI: 10.1007/s13205-024-04074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Animal diseases are among the most debilitating issues in the animal farming industry, resulting in decreased productivity and product quality worldwide. An emerging alternative to conventional injectable vaccines is edible vaccines, which promise increased delivery efficiency while maintaining vaccine effectiveness. One of the most promising platforms for edible vaccines is duckweeds, due to their high growth rate, ease of transformation, and excellent nutritional content. This review explores the potential, feasibility, and advantages of using duckweeds as platforms for edible vaccines. Duckweeds have proven to be superb feed sources, as evidenced by numerous improvements in both quantity (e.g., weight gain) and quality (e.g., yolk pigmentation). In terms of heterologous protein production, duckweeds, being plants, are capable of expressing proteins with complex structures and post-translational modifications. Research efforts have focused on the development of duckweed-based edible vaccines, including those against avian influenza, tuberculosis, Newcastle disease, and mastitis, among others. As with any emerging technology, the development of duckweeds as a platform for edible vaccines is still in its early stages compared to well-established injectable vaccines. It is evident that more proof-of-concept studies are required to bring edible vaccines closer to the current standards of conventional vaccines. Specifically, the duckweed expression system needs further development in areas such as yield and growth rate, especially when compared to bacterial and mammalian expression systems. Continued efforts in this field could lead to breakthroughs that significantly improve the resilience of the animal farming industry against disease threats.
Collapse
Affiliation(s)
- Anca Awal Sembada
- Research Center for New and Renewable Energy, Bandung Institute of Technology, Bandung, 40132 Indonesia
- Forestry Technology Research Group, School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, 40132 Indonesia
| | - Yohanes Theda
- Department of Biochemical Engineering, University College London, London, WC1E 6BT UK
| | - Ahmad Faizal
- Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, 40132 Indonesia
| |
Collapse
|
5
|
Costa B, Gouveia MJ, Vale N. Safety and Efficacy of Antiviral Drugs and Vaccines in Pregnant Women: Insights from Physiologically Based Pharmacokinetic Modeling and Integration of Viral Infection Dynamics. Vaccines (Basel) 2024; 12:782. [PMID: 39066420 PMCID: PMC11281481 DOI: 10.3390/vaccines12070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Addressing the complexities of managing viral infections during pregnancy is essential for informed medical decision-making. This comprehensive review delves into the management of key viral infections impacting pregnant women, namely Human Immunodeficiency Virus (HIV), Hepatitis B Virus/Hepatitis C Virus (HBV/HCV), Influenza, Cytomegalovirus (CMV), and SARS-CoV-2 (COVID-19). We evaluate the safety and efficacy profiles of antiviral treatments for each infection, while also exploring innovative avenues such as gene vaccines and their potential in mitigating viral threats during pregnancy. Additionally, the review examines strategies to overcome challenges, encompassing prophylactic and therapeutic vaccine research, regulatory considerations, and safety protocols. Utilizing advanced methodologies, including PBPK modeling, machine learning, artificial intelligence, and causal inference, we can amplify our comprehension and decision-making capabilities in this intricate domain. This narrative review aims to shed light on diverse approaches and ongoing advancements, this review aims to foster progress in antiviral therapy for pregnant women, improving maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
| | - Maria João Gouveia
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, 4051-401 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
6
|
Zhang H, Liu Z, Lihe H, Lu L, Zhang Z, Yang S, Meng N, Xiong Y, Fan X, Chen Z, Lu W, Xie C, Liu M. Intranasal G5-BGG/pDNA Vaccine Elicits Protective Systemic and Mucosal Immunity against SARS-CoV-2 by Transfecting Mucosal Dendritic Cells. Adv Healthc Mater 2024; 13:e2303261. [PMID: 37961920 DOI: 10.1002/adhm.202303261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Indexed: 11/15/2023]
Abstract
Infectious disease pandemics, including the coronavirus disease 2019 pandemic, have heightened the demand for vaccines. Although parenteral vaccines induce robust systemic immunity, their effectiveness in respiratory mucosae is limited. Considering the crucial role of nasal-associated lymphoid tissue (NALT) in mucosal immune responses, in this study, the intranasal complex composed of G5-BGG and antigen-expressing plasmid DNA (pSP), named G5-BGG/pSP complex, is developed to activate NALT and to promote both systemic and mucosal immune defense. G5-BGG/pSP could traverse mucosal barriers and deliver DNA to the target cells because of its superior nasal retention and permeability characteristics. The intranasal G5-BGG/pSP complex elicits robust antigen-specific immune responses, such as the notable production of IgG antibody against several virus variants. More importantly, it induces elevated levels of antigen-specific IgA antibody and a significant expansion of the lung-resident T lymphocyte population. Notably, the intranasal G5-BGG/pSP complex results in antigen expression and maturation of dendritic cells in nasal mucosae. These findings exhibit the potential of G5-BGG, a novel cationic material, as an effective gene carrier for intranasal vaccines to obtain robust systemic and mucosal immunity.
Collapse
Affiliation(s)
- Han Zhang
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zezhong Liu
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hongye Lihe
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 201203, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, China
| | - Zongxu Zhang
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shengmin Yang
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Nana Meng
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yin Xiong
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xingyan Fan
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhikai Chen
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Shanghai Engineering Technology Research Center for Pharmaceutica Intelligent Equipment, Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA Institute for Frontier Medical Technology Shanghai University of Engineering Science, Shanghai, 201203, China
- Shanghai Tayzen Pharmlab Co., Ltd., Shanghai, 201203, China
| | - Cao Xie
- Shanghai Tayzen Pharmlab Co., Ltd., Shanghai, 201203, China
| | - Min Liu
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
7
|
Lee HD, Chun J, Kim S, Aleksandra N, Lee C, Yoon D, Lee HJ, Kim YB. Comparative Biodistribution Study of Baculoviral and Adenoviral Vector Vaccines against SARS-CoV-2. J Microbiol Biotechnol 2024; 34:185-191. [PMID: 37830223 PMCID: PMC10840461 DOI: 10.4014/jmb.2308.08042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Various types of vaccines have been developed against COVID-19, including vector vaccines. Among the COVID-19 vaccines, AstraZeneca's chimpanzee adenoviral vaccine was the first to be commercialized. For viral vector vaccines, biodistribution studies are critical to vaccine safety, gene delivery, and efficacy. This study compared the biodistribution of the baculoviral vector vaccine (AcHERV-COVID19) and the adenoviral vector vaccine (Ad-COVID19). Both vaccines were administered intramuscularly to mice, and the distribution of the SARS-CoV-2 S gene in each tissue was evaluated for up to 30 days. After vaccination, serum and various tissue samples were collected from the mice at each time point, and IgG levels and DNA copy numbers were measured using an enzyme-linked immunosorbent assay and a quantitative real-time polymerase chain reaction. AcHERV-COVID19 and Ad-COVID19 distribution showed that the SARS-CoV-2 spike gene remained predominantly at the injection site in the mouse muscle. In kidney, liver, and spleen tissues, the AcHERV-COVID19 group showed about 2-4 times higher persistence of the SARS-CoV-2 spike gene than the Ad-COVID19 group. The distribution patterns of AcHERV-COVID19 and Ad-COVID19 within various organs highlight their contrasting biodistribution profiles, with AcHERV-COVID19 exhibiting a broader and prolonged presence in the body compared to Ad-COVID19. Understanding the biodistribution profile of AcHERV-COVID19 and Ad-COVID19 could help select viral vectors for future vaccine development.
Collapse
Affiliation(s)
- Hyeon Dong Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jungmin Chun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sehyun Kim
- KR BioTech Co. Ltd., Seoul 05029, Republic of Korea
| | - Nowakowska Aleksandra
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Chanyeong Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Doyoung Yoon
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee-jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
- KR BioTech Co. Ltd., Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Jha SK, Imran M, Jha LA, Hasan N, Panthi VK, Paudel KR, Almalki WH, Mohammed Y, Kesharwani P. A Comprehensive review on Pharmacokinetic Studies of Vaccines: Impact of delivery route, carrier-and its modulation on immune response. ENVIRONMENTAL RESEARCH 2023; 236:116823. [PMID: 37543130 DOI: 10.1016/j.envres.2023.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The lack of knowledge about the absorption, distribution, metabolism, and excretion (ADME) of vaccines makes former biopharmaceutical optimization difficult. This was shown during the COVID-19 immunization campaign, where gradual booster doses were introduced.. Thus, understanding vaccine ADME and its effects on immunization effectiveness could result in a more logical vaccine design in terms of formulation, method of administration, and dosing regimens. Herein, we will cover the information available on vaccine pharmacokinetics, impacts of delivery routes and carriers on ADME, utilization and efficiency of nanoparticulate delivery vehicles, impact of dose level and dosing schedule on the therapeutic efficacy of vaccines, intracellular and endosomal trafficking and in vivo fate, perspective on DNA and mRNA vaccines, new generation sequencing and mathematical models to improve cancer vaccination and pharmacology, and the reported toxicological study of COVID-19 vaccines. Altogether, this review will enhance the reader's understanding of the pharmacokinetics of vaccines and methods that can be implied in delivery vehicle design to improve the absorption and distribution of immunizing agents and estimate the appropriate dose to achieve better immunogenic responses and prevent toxicities.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea; Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney, 2007, Australia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
9
|
Perrotta C, Fenizia C, Carnovale C, Pozzi M, Trabattoni D, Cervia D, Clementi E. Updated Considerations for the Immunopharmacological Aspects of the "Talented mRNA Vaccines". Vaccines (Basel) 2023; 11:1481. [PMID: 37766157 PMCID: PMC10534931 DOI: 10.3390/vaccines11091481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Messenger RNA (mRNA) vaccines belong to a new class of medications, RNA therapeutics, including both coding and non-coding RNAs. The use of mRNA as a therapy is based on the biological role of mRNA itself, namely its translation into a functional protein. The goal of mRNA vaccines is to produce a specific antigen in cells to elicit an immune response that might be prophylactic or therapeutic. The potential of mRNA as vaccine has been envisaged for years but its efficacy has been clearly demonstrated with the approval of COVID-19 vaccines in 2021. Since then, mRNA vaccines have been in the pipeline for diseases that are still untreatable. There are many advantages of mRNA vaccines over traditional vaccines, including easy and cost-effective production, high safety, and high-level antigen expression. However, the nature of mRNA itself and some technical issues pose challenges associated with the vaccines' development and use. Here we review the immunological and pharmacological features of mRNA vaccines by discussing their pharmacokinetics, mechanisms of action, and safety, with a particular attention on the advantages and challenges related to their administration. Furthermore, we present an overview of the areas of application and the clinical trials that utilize a mRNA vaccine as a treatment.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milano, Italy;
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| |
Collapse
|
10
|
Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, "long COVID") and post-COVID-19 vaccination syndrome (PCVS, "post-COVIDvac-syndrome"): Similarities and differences. Pathol Res Pract 2023; 246:154497. [PMID: 37192595 DOI: 10.1016/j.prp.2023.154497] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Worldwide there have been over 760 million confirmed coronavirus disease 2019 (COVID-19) cases, and over 13 billion COVID-19 vaccine doses have been administered as of April 2023, according to the World Health Organization. An infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to an acute disease, i.e. COVID-19, but also to a post-acute COVID-19 syndrome (PACS, "long COVID"). Currently, the side effects of COVID-19 vaccines are increasingly being noted and studied. Here, we summarise the currently available indications and discuss our conclusions that (i) these side effects have specific similarities and differences to acute COVID-19 and PACS, that (ii) a new term should be used to refer to these side effects (post-COVID-19 vaccination syndrome, PCVS, colloquially "post-COVIDvac-syndrome"), and that (iii) there is a need to distinguish between acute COVID-19 vaccination syndrome (ACVS) and post-acute COVID-19 vaccination syndrome (PACVS) - in analogy to acute COVID-19 and PACS ("long COVID"). Moreover, we address mixed forms of disease caused by natural SARS-CoV-2 infection and COVID-19 vaccination. We explain why it is important for medical diagnosis, care and research to use the new terms (PCVS, ACVS and PACVS) in order to avoid confusion and misinterpretation of the underlying causes of disease and to enable optimal medical therapy. We do not recommend to use the term "Post-Vac-Syndrome" as it is imprecise. The article also serves to address the current problem of "medical gaslighting" in relation to PACS and PCVS by raising awareness among the medical professionals and supplying appropriate terminology for disease.
Collapse
Affiliation(s)
- Felix Scholkmann
- University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Christian-Albrecht May
- Department of Anatomy, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|