1
|
Forst T, De Block C, Del Prato S, Frias J, Lautenbach A, Ludvik B, Marinez M, Mathieu C, Müller TD, Schnell O. Novel pharmacotherapies for weight loss: Understanding the role of incretins to enable weight loss and improved health outcomes. Diabetes Obes Metab 2025; 27 Suppl 2:48-65. [PMID: 39931897 DOI: 10.1111/dom.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 04/17/2025]
Abstract
Obesity and type 2 diabetes mellitus (T2D) are widespread diseases that significantly impact cardiovascular and renal morbidity and mortality. In the recent years, intensive research has been performed to assess the role of adipose tissue and body fat distribution in the development of metabolic and non-metabolic complications in individuals with obesity. In addition to lifestyle modifications, glucagon-like peptide-1 receptor agonists (GLP-1-RA) have become a meaningful treatment expansion for the management of both disorders. In addition to improving metabolic control and reducing body weight, treatment with GLP-1-RAs reduces cardiovascular and renal events in individuals with obesity with and without diabetes. These important benefits of GLP-1-RAs have triggered new interest in other enteroendocrine and enteropancreatic peptides for treating obesity and its metabolic and non-metabolic consequences. The first peptide dual-agonist targeting glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 receptors has been approved for the treatment of T2D and obesity. GIP/GLP-1 dual-agonism appear to provide better metabolic control and greater weight reduction compared with GLP-1-R mono-agonism. Other peptide and non-peptide co-agonists are in clinical development for obesity, T2D, metabolic dysfunction-associated steatotic liver disease (MASLD) and other metabolic disorders. This narrative review aims to summarize the available data on approved and emerging enteroendocrine and enteropancreatic based treatment approaches for obesity and metabolic disorders. In addition to available clinical efficacy measures, side effects, limitations and open challenges will also be addressed.
Collapse
Affiliation(s)
- Thomas Forst
- CRS Clinical Research Services GmbH, Mannheim, Germany
| | - Christophe De Block
- Department of Endocrinology-Diabetology, Antwerp University Hospital and University of Antwerp, Belgium
| | - Stefano Del Prato
- Interdisciplinary Research Center "Health Science," Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Juan Frias
- Biomea Fusion, Redwood City, California, USA
| | - Anne Lautenbach
- University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard Ludvik
- Landstrasse Clinic and Karl Landsteiner Institute for Obesity and Metabolic Disorders, Vienna, Austria
| | | | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Oliver Schnell
- Forschergruppe Diabetes E.V. at the Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
2
|
Gresham J, Bruin G, Picci M, Bechtold-Peters K, Dimke T, Davies E, Błażejczyk K, Willekens W, Fehervary H, Velde GV. Visualisation and quantification of subcutaneous injections of different volumes, viscosities and injection rates: An ex-vivo micro-CT study. J Pharm Sci 2024; 113:3447-3456. [PMID: 39306036 DOI: 10.1016/j.xphs.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 10/11/2024]
Abstract
The effects of subcutaneous (SC) injection parameters such as drug formulation volume, viscosity and injection rate on therapeutic performance and tolerability have not been established for any drug product. In this study four groups of SC injections were performed on fresh ex vivo minipig abdominal tissue samples, varying volume (0.5-1 mL), viscosity (1-11 cP) and rate (0.02-0.1 mL/s). Micro-CT provided high resolution (50 micron) imaging of the SC tissues before and after injection, enabling a detailed 3D visualisation and analysis of how both injection parameters and tissue microstructure influence spatial distribution of injectables. We found that volume was the only significant factor for spatial distribution of injectate within our design space, and there were no significant factors for tissue backpressure. Variability within test groups was typically greater than differences between group means. Accordingly, whilst the higher viscosity formulations consistently exhibited reduced spatial distribution, the sample size was not large enough to establish confidence in this result. Comparing our findings to clinical evidence, we conclude that injection site and depth are more likely to influence PK and bioavailability than volume, viscosity and rate within our experimental space.
Collapse
Affiliation(s)
| | - Gerard Bruin
- Pharmacokinetic Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Marie Picci
- Clinical Development Excellence, Global Drug Development, Novartis Pharma AG, Switzerland
| | | | - Thomas Dimke
- Pharmacokinetic Sciences, Novartis Biomedical Research, Basel, Switzerland
| | | | - Kasia Błażejczyk
- Molecular Small Animal Imaging Center (MoSAIC), Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Willekens
- FIBER, KU Leuven Core Facility for Biomechanical Experimentation, Leuven, Belgium
| | - Heleen Fehervary
- FIBER, KU Leuven Core Facility for Biomechanical Experimentation, Leuven, Belgium; Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Molecular Small Animal Imaging Center (MoSAIC), Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium; Biomedical MRI, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Kaur M, Misra S. Bimagrumab: an investigational human monoclonal antibody against activin type II receptors for treating obesity. J Basic Clin Physiol Pharmacol 2024; 35:325-334. [PMID: 39385353 DOI: 10.1515/jbcpp-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Bimagrumab is a human monoclonal antibody that prevents activin type II receptors (ActRII) from functioning. This antibody has a higher affinity for muscle activin-2 receptors than natural ligands such as activin and myostatin, which act as negative muscle growth regulators. Blocking the activin receptor with bimagrumab could be a new pharmaceutical approach for managing patients with obesity and type 2 diabetes mellitus (T2DM). Bimagrumab has anabolic effects on skeletal muscle mass by preventing myostatin binding and other negative muscle growth regulators. Preclinical animal models have also shown that ActRII blockade promotes actions beyond skeletal muscle, including effects on brown adipose tissue (BAT) differentiation and activity. In a phase 2 randomized clinical trial, ActRII blockade with bimagrumab led to significant loss of total body fat mass (FM), lean mass (LM) gain, and metabolic improvements over 48 weeks in overweight or obese patients with type 2 diabetes. The trial involved [number of participants], and the results showed [specific findings]. Currently, Bimagrumab is being evaluated for its potential to treat muscle wasting, functional loss in hip fractures and sarcopenia, as well as obesity. However, it is essential to note that Bimagrumab also blocks the effects of other ActRII ligands, which play a role in the neurohormonal axes, pituitary, gonads, and adrenal glands. These observations suggest that bimagrumab might represent a new approach for treating patients with obesity and related metabolic disturbances.
Collapse
MESH Headings
- Humans
- Activin Receptors, Type II/antagonists & inhibitors
- Obesity/drug therapy
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Diabetes Mellitus, Type 2/drug therapy
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
Collapse
Affiliation(s)
- Manmeet Kaur
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India
| | - Saurav Misra
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India
| |
Collapse
|
4
|
Bryniarski MA, Tuhin MTH, Shomin CD, Nasrollahi F, Ko EC, Soto M, Chung K, Poon-Andersen C, Primack R, Wong D, Ojeda E, Chung J, Cook KD, Conner KP. Utility of Cellular Measurements of Non-Specific Endocytosis to Assess the Target-Independent Clearance of Monoclonal Antibodies. J Pharm Sci 2024; 113:3100-3111. [PMID: 39009346 DOI: 10.1016/j.xphs.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Past studies have demonstrated higher clearance for monoclonal antibodies possessing increased rates of non-specific endocytosis. However, this metric is oftentimes evaluated indirectly using biophysical techniques or cell surface binding studies that may not provide insight into the specific rates of cellular turnover. Furthermore, few examples evaluating non-specific endocytosis have been reported for a therapeutic antibody that reached clinical assessment. In the current report, we evaluated a therapeutic human immunoglobulin G2 monoclonal antibody targeted against the interleukin-4 receptor alpha chain (IL-4Rα) that exhibited elevated target independent clearance in previous Phase 1 and 2 studies. We confirmed high non-specific clearance of the anti-IL-4Rα antibody as compared to a reference antibody during pharmacokinetic assessments in wild type mice where target-mediated disposition was absent. We then developed a cell-based method capable of measuring cellular protein endocytosis and demonstrated the anti-IL-4Rα antibody exhibited marked non-specific uptake relative to the reference compound. Antibody homology modeling identified the anti-IL-4Rα antibody possessed positive charge patches whose removal via targeted mutations substantially reduced its non-specific endocytosis. We then expanded the scope of the study by evaluating panels of both preclinical and clinically relevant monoclonal antibodies and demonstrate those with the highest rates of non-specific uptake in vitro exhibited elevated target independent clearance, low subcutaneous bioavailability, or both. Our results support the observation that high non-specific endocytosis is a negative attribute in monoclonal antibody development and demonstrate the utility of a generic cell-based screen as a quantitative tool to measure non-specific endocytosis of protein therapeutics at the single-cell level.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 750 Gateway Blvd, Suite 100, South San Francisco, CA, 94080, USA.
| | - Md Tariqul Haque Tuhin
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 750 Gateway Blvd, Suite 100, South San Francisco, CA, 94080, USA
| | - Carolyn D Shomin
- Department of Biologics, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Fatemeh Nasrollahi
- Process Development; Pre-Pivotal Drug Product Technologies, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Eunkyung Clare Ko
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 750 Gateway Blvd, Suite 100, South San Francisco, CA, 94080, USA
| | - Marcus Soto
- Pharmacokinetics & Drug Metabolism, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Kyu Chung
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 750 Gateway Blvd, Suite 100, South San Francisco, CA, 94080, USA
| | - Carrie Poon-Andersen
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 750 Gateway Blvd, Suite 100, South San Francisco, CA, 94080, USA
| | - Ronya Primack
- Pharmacokinetics & Drug Metabolism, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Diana Wong
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 750 Gateway Blvd, Suite 100, South San Francisco, CA, 94080, USA
| | - Esperanza Ojeda
- Pharmacokinetics & Drug Metabolism, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - John Chung
- Process Development; Pre-Pivotal Drug Product Technologies, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Kevin D Cook
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 750 Gateway Blvd, Suite 100, South San Francisco, CA, 94080, USA
| | - Kip P Conner
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 750 Gateway Blvd, Suite 100, South San Francisco, CA, 94080, USA.
| |
Collapse
|
5
|
Pocai A. G protein-coupled receptors and obesity. Front Endocrinol (Lausanne) 2023; 14:1301017. [PMID: 38161982 PMCID: PMC10757641 DOI: 10.3389/fendo.2023.1301017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity and diabetes. Obesity is a complex chronic disease that requires long term management predisposing to type 2 diabetes, heart disease, and some cancers. The therapeutic landscape for GPCR as targets of anti-obesity medications has undergone significant changes with the approval of semaglutide, the first peptide glucagon like peptide 1 receptor agonist (GLP-1RA) achieving double digit weight loss (≥10%) and cardiovascular benefits. The enhanced weight loss, with the expected beneficial effect on obesity-related complications and reduction of major adverse cardiovascular events (MACE), has propelled the commercial opportunity for the obesity market leading to new players entering the space. Significant progress has been made on approaches targeting GPCRs such as single peptides that simultaneously activate GIP and/or GCGR in addition to GLP1, oral tablet formulation of GLP-1, small molecules nonpeptidic oral GLP1R and fixed-dose combination as well as add-on therapy for patients already treated with a GLP-1 agonist.
Collapse
Affiliation(s)
- Alessandro Pocai
- Cardiovascular and Metabolic Disease, Johnson & Johnson Innovative Medicine Research & Development, Spring House, PA, United States
| |
Collapse
|