1
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK, Klionsky DJ, Rafeeq MF. Epilepsy and autophagy modulators: a therapeutic split. Autophagy 2025. [PMID: 40375490 DOI: 10.1080/15548627.2025.2506292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
Epilepsy is a neurological disease characterized by repeated unprovoked seizure. Epilepsy is controlled by anti-epileptic drugs (AEDs); however, one third of epileptic patients have symptoms that are not controlled by AEDs in a condition called refractory epilepsy. Dysregulation of macroautophagy/autophagy is involved in the pathogenesis of epilepsy. Autophagy prevents the development and progression of epilepsy through regulating the balance between inhibitory and excitatory neurotransmitters. Induction of autophagy and autophagy-related proteins could be a novel therapeutic strategy in the management of epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus is perplexing and might reflect its nature as a double-edged sword. Autophagy inducers play a critical role in reducing seizure frequency and severity, and could be an adjuvant treatment in the management of epilepsy. However, autophagy inhibitors also have an anticonvulsant effect. Therefore, the aim of the present mini-review is to discuss the potential role of autophagy in the pathogenesis of epileptogenesis and epilepsy, and how autophagy modulators affect epileptogenesis and epilepsy.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology-Iraq, Baghdad, Iraq
| | | | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | | - Mayyadah F Rafeeq
- Department of Applied Science, University of Technology-Iraq, Baghdad, Iraq
| |
Collapse
|
2
|
Liu J, Huang R, Tang F, Ma Y, Kwan P. A missense variant in DEPDC5 resulted in abnormal morphology and increased seizure susceptibility and mortality through regulating mTOR signaling. Neurobiol Dis 2025; 207:106842. [PMID: 39954744 DOI: 10.1016/j.nbd.2025.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Dishevelled, Egl-10 and Pleckstrin domain-containing 5 (DEPDC5), a key inhibitor of the mammalian/mechanistic target of rapamycin (mTOR) pathway, is frequently associated with epilepsy. However, the functional consequences of most DEPDC5 variants rely on in silico predictions and have not been experimentally confirmed.This study aimed to determine the functional consequences of a DEPDC5 variant identified in patients with epilepsy across multiple generations in a Chinese family. We identified a missense heterozygous variant (c. 2055C > A; p. Phe685Leu) in DEPDC5 in Chinese family affected by epilepsy across three generations. This variant has not been previously reported in the Chinese population. Primary neuron cultures transfected with the mutant plasmid exhibited altered subcellular localization. To explore the mechanisms of epilepsy linked to this variant, we created nervous system-specific conditional human DEPDC5 knock-in mouse using Cre-recombination under the Nestin promotor (hDEPDC5WT mice, hDEPDC5F685L mice). Compared to wildtype (WT) and hDEPDC5WT mice, hDEPDC5F685L mice exhibited histological signs of mTOR hyperactivation, enlarged neuronal soma, abnormal neurons, and heightened susceptibility to seizures and mortality. Administering rapamycin to hDEPDC5F685L mice starting two weeks after birth normalized neuronal size and mTOR activity, decreased seizure susceptibility and mortality, and showed no effects in the WT or hDEPDC5WT mice. Collectively, these results indicate that the DEPDC5 variant causes abnormal morphology and increased seizure vulnerability through modulation of mTOR signaling.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Rui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Fenglin Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, 402160, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
| | - Patrick Kwan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Epilepsy Unit, Brain Program, Alfred Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Moloney PB, Delanty N. An overview of the value of mTOR inhibitors to the treatment of epilepsy: the evidence to date. Expert Rev Neurother 2025:1-17. [PMID: 39903448 DOI: 10.1080/14737175.2025.2462280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
INTRODUCTION Dysregulated mechanistic target of rapamycin (mTOR) activity is implicated in seizure development in epilepsies caused by variants in mTOR pathway genes. Sirolimus and everolimus, allosteric mTOR inhibitors, are widely used in transplant medicine and oncology. Everolimus is approved for treating seizures in tuberous sclerosis complex (TSC), the prototype mTORopathy. Emerging evidence suggests that mTOR inhibitors could also be effective in other mTORopathies, such as DEPDC5-related epilepsy and focal cortical dysplasia type 2 (FCD2). AREAS COVERED This narrative review summarizes key regulatory proteins in the mTOR cascade and outlines epilepsy syndromes linked to variants in genes encoding these proteins, particularly TSC, GATOR1-related epilepsies, and FCD2. It discusses the clinical pharmacology of mTOR inhibitors and the evidence supporting their efficacy as antiseizure medications (ASM) in mTORopathies. Lastly, potential benefits of next-generation mTOR inhibitors for CNS indications are evaluated. EXPERT OPINION The therapeutic benefits of mTOR inhibitors in TSC are well-established, but their value in other mTORopathies remains uncertain. Despite targeting the underlying disease biology, their efficacy in TSC is not significantly different from other ASM, likely due in part to pharmacokinetic constraints. Next-generation mTOR inhibitors that address these limitations may offer improved response rates, but they are in the preclinical development phase.
Collapse
Affiliation(s)
- Patrick B Moloney
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Epilepsy, Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Norman Delanty
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Research Ireland FutureNeuro Centre, Dublin, Ireland
| |
Collapse
|
4
|
Tsai CW, Ho SY, Chen IC, Chang KC, Chen HJ, Tsai FC, Liou HH. Abnormal increased mTOR signaling regulates seizure threshold in Dravet syndrome. Neuropharmacology 2025; 262:110166. [PMID: 39374769 DOI: 10.1016/j.neuropharm.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Excessive activation of mTOR has been observed in the brains of mouse models for Dravet syndrome. We aim to confirm whether that the overactivation of mTOR contributes to the neuropathological changes leading to epileptogenesis and neurobehavior deficits to support a novel pharmacological therapeutic approach for Dravet syndrome. The mTOR inhibitor everolimus, as a clinical antiseizure medication, was utilized to investigate whether mTOR is involved in hyperthermia-induced seizures, anxiety-like, and autism-like behaviors, as well as to explore potential pathogenic mechanisms in Scn1aE1099X/+ mice, a model of Dravet syndrome. First, we found that mTOR signaling was upregulated in hippocampus tissues and neural cultures derived from Scn1aE1099X/+ mice prior to seizure onset. Behaviorally, everolimus increased the seizure threshold and improved anxiety-like and autism-like behaviors in Scn1aE1099X/+ mice. Electrophysiologically, everolimus reduced the frequency of spontaneous excitatory postsynaptic currents in dentate granule neurons from Scn1aE1099X/+ mice. Biochemically, everolimus prevented hyperthermia-induced phosphorylation of hippocampal S6 ribosome in hippocampus, and it delayed hyperthermia-induced increase of cytosolic Ca2+ level in primary neuronal cultures derived from Scn1aE1099X/+ mice. Our results provide the evidence that overactivated mTOR as an important neuropathological change which regulates seizure threshold, impairments of neurobehavior, neuronal glutamatergic transmission and intracellular Ca2+ levels in Scn1aE1099X/+ mice. Inhibition of mTOR is a potential pharmacological therapeutic approach.
Collapse
Affiliation(s)
- Che-Wen Tsai
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Shih-Yin Ho
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Neurology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - I Chun Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Kai-Chieh Chang
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| | - Hou-Jen Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Feng-Chiao Tsai
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Horng-Huei Liou
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Neurology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Qin L, Xiao L, Zhu H, Du Y, Tang Y, Feng L. Translocator protein (18 kDa) positron emission tomography imaging as a biomarker of neuroinflammation in epilepsy. Neurol Sci 2024; 45:5201-5211. [PMID: 38879831 DOI: 10.1007/s10072-024-07648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 10/13/2024]
Abstract
Increasing evidence indicate that neuroinflammation triggered by glial cells plays a significant role in epileptogenesis. To this effect, the overexpression of translocator protein 18 kDa (TSPO) in activated microglia and astrocytes has been identified as an inflammatory biomarker in epilepsy. It is now possible to quantify neuroinflammation using non-invasive positron emission tomography (PET) imaging of TSPO. With the advancement of radiotracers, TSPO PET has become an innovative tool in elucidating the "neuroinflammatory machinery" of drug-resistant epilepsy. Furthermore, TSPO PET has demonstrated potential in detecting MRI-negative epileptogenic zones (EZ) and provided an innovative perspective in epileptic medical treatment. This manuscript presents a comprehensive exploration of the neuroinflammatory mechanisms of epilepsy, alongside a thorough review of TSPO PET studies conducted in clinical and preclinical settings. The primary objective is to deepen our understanding of epilepsy progression and to establish TSPO PET as an effective monitoring tool for treatment efficacy.
Collapse
Affiliation(s)
- Li Qin
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haoyue Zhu
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yangsa Du
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Li Feng
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
6
|
Zafra-Puerta L, Iglesias-Cabeza N, Burgos DF, Sciaccaluga M, González-Fernández J, Bellingacci L, Canonichesi J, Sánchez-Martín G, Costa C, Sánchez MP, Serratosa JM. Gene therapy for Lafora disease in the Epm2a -/- mouse model. Mol Ther 2024; 32:2130-2149. [PMID: 38796707 PMCID: PMC11286821 DOI: 10.1016/j.ymthe.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. The disease results from mutations in the EPM2A gene, encoding laforin, or the EPM2B gene, encoding malin. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein cause alterations in this complex, leading to the formation of Lafora bodies containing abnormal, insoluble, and hyperphosphorylated forms of glycogen. We used the Epm2a-/- knockout mouse model of Lafora disease to apply gene therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment through neuropathological studies, behavioral tests, video-electroencephalography, electrophysiological recordings, and proteomic/phosphoproteomic analysis. Gene therapy ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Moreover, differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Our results represent proof of principle for gene therapy with the coding region of the human EPM2A gene as a treatment for EPM2A-related Lafora disease.
Collapse
Affiliation(s)
- Luis Zafra-Puerta
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare (VI), Italy
| | - Nerea Iglesias-Cabeza
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Daniel F Burgos
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare (VI), Italy
| | - Juan González-Fernández
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; Departament of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, University of Perugia, 06132 Perugia, Italy
| | - Laura Bellingacci
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Jacopo Canonichesi
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Gema Sánchez-Martín
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Cinzia Costa
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marina P Sánchez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| | - José M Serratosa
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| |
Collapse
|
7
|
Zhai J, Wang C, Jin L, Liu M, Chen Y. Research progress on the relationship between epilepsy and circRNA. Brain Res 2024; 1830:148823. [PMID: 38403039 DOI: 10.1016/j.brainres.2024.148823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE This review aims to provide a comprehensive summary of the latest research progress regarding the relationship between epilepsy and circular RNA (circRNA). METHODS Relevant literature from the PubMed database was meticulously searched and reviewed. The selected articles focused on investigating the association between epilepsy and circRNA, including studies on expression patterns, diagnostic markers, therapeutic targets, and functional mechanisms. RESULTS Epilepsy, characterized by recurrent seizures, is a neurological disorder. Numerous studies have demonstrated significant alterations in the expression profiles of circRNA in epileptic brain tissues, animal models, and peripheral blood samples. These differential expressions of circRNA are believed to be closely linked with the occurrence and development of epilepsy. Moreover, circRNA has shown promising potential as diagnostic markers for epilepsy, as well as prognostic indicators for predicting disease outcomes. Furthermore, circRNA has emerged as a potential therapeutic target for epilepsy treatment, offering prospects for gene therapy interventions. CONCLUSION The dysregulation of circRNA expression in epilepsy suggests its potential involvement in the pathogenesis and progression of this disorder. Identifying specific circRNA molecules associated with epilepsy may pave the way for novel diagnostic approaches and therapeutic strategies. However, further investigations are imperative to elucidate the precise functional mechanisms of circRNA in epilepsy and validate its clinical utility.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liang Jin
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mingjie Liu
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
8
|
Chen Y, Guan W, Wang ML, Lin XY. PI3K-AKT/mTOR Signaling in Psychiatric Disorders: A Valuable Target to Stimulate or Suppress? Int J Neuropsychopharmacol 2024; 27:pyae010. [PMID: 38365306 PMCID: PMC10888523 DOI: 10.1093/ijnp/pyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Economic development and increased stress have considerably increased the prevalence of psychiatric disorders in recent years, which rank as some of the most prevalent diseases globally. Several factors, including chronic social stress, genetic inheritance, and autogenous diseases, lead to the development and progression of psychiatric disorders. Clinical treatments for psychiatric disorders include psychotherapy, chemotherapy, and electric shock therapy. Although various achievements have been made researching psychiatric disorders, the pathogenesis of these diseases has not been fully understood yet, and serious adverse effects and resistance to antipsychotics are major obstacles to treating patients with psychiatric disorders. Recent studies have shown that the mammalian target of rapamycin (mTOR) is a central signaling hub that functions in nerve growth, synapse formation, and plasticity. The PI3K-AKT/mTOR pathway is a critical target for mediating the rapid antidepressant effects of these pharmacological agents in clinical and preclinical research. Abnormal PI3K-AKT/mTOR signaling is closely associated with the pathogenesis of several neurodevelopmental disorders. In this review, we focused on the role of mTOR signaling and the related aberrant neurogenesis in psychiatric disorders. Elucidating the neurobiology of the PI3K-AKT/mTOR signaling pathway in psychiatric disorders and its actions in response to antidepressants will help us better understand brain development and quickly identify new therapeutic targets for the treatment of these mental illnesses.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China
| | - Mei-Lan Wang
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xiao-Yun Lin
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
9
|
Varlamova EG, Borisova EV, Evstratova YA, Newman AG, Kuldaeva VP, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Socrates: A Novel N-Ethyl-N-nitrosourea-Induced Mouse Mutant with Audiogenic Epilepsy. Int J Mol Sci 2023; 24:17104. [PMID: 38069426 PMCID: PMC10707124 DOI: 10.3390/ijms242317104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Ekaterina V. Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Yuliya A. Evstratova
- Federal State Budgetary Educational Institution of Higher Education “MIREA—Russian Technological University”, 78, Vernadskogo Ave., 119454 Moscow, Russia;
| | - Andrew G. Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Victor S. Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Alexey A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| |
Collapse
|
10
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 2023; 29:142. [PMID: 37880579 PMCID: PMC10598971 DOI: 10.1186/s10020-023-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran university, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
11
|
Dhamne SC, Modi ME, Gray A, Bonazzi S, Craig L, Bainbridge E, Lalani L, Super CE, Schaeffer S, Capre K, Lubicka D, Liang G, Burdette D, McTighe SM, Gurnani S, Vermudez SAD, Curtis D, Wilson CJ, Hameed MQ, D'Amore A, Rotenberg A, Sahin M. Seizure reduction in TSC2-mutant mouse model by an mTOR catalytic inhibitor. Ann Clin Transl Neurol 2023; 10:1790-1801. [PMID: 37545094 PMCID: PMC10578885 DOI: 10.1002/acn3.51868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023] Open
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder caused by autosomal-dominant pathogenic variants in either the TSC1 or TSC2 gene, and it is characterized by hamartomas in multiple organs, such as skin, kidney, lung, and brain. These changes can result in epilepsy, learning disabilities, and behavioral complications, among others. The mechanistic link between TSC and the mechanistic target of the rapamycin (mTOR) pathway is well established, thus mTOR inhibitors can potentially be used to treat the clinical manifestations of the disorder, including epilepsy. METHODS In this study, we tested the efficacy of a novel mTOR catalytic inhibitor (here named Tool Compound 1 or TC1) previously reported to be more brain-penetrant compared with other mTOR inhibitors. Using a well-characterized hypomorphic Tsc2 mouse model, which displays a translationally relevant seizure phenotype, we tested the efficacy of TC1. RESULTS Our results show that chronic treatment with this novel mTOR catalytic inhibitor (TC1), which affects both the mTORC1 and mTORC2 signaling complexes, reduces seizure burden, and extends the survival of Tsc2 hypomorphic mice, restoring species typical weight gain over development. INTERPRETATION Novel mTOR catalytic inhibitor TC1 exhibits a promising therapeutic option in the treatment of TSC.
Collapse
Affiliation(s)
- Sameer C. Dhamne
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Meera E. Modi
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Audrey Gray
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Simone Bonazzi
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Lucas Craig
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Elizabeth Bainbridge
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lahin Lalani
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Chloe E. Super
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Samantha Schaeffer
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Ketthsy Capre
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Danuta Lubicka
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Guiqing Liang
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Doug Burdette
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | | | - Sarika Gurnani
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Sheryl Anne D. Vermudez
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Daniel Curtis
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | | | - Mustafa Q. Hameed
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Angelica D'Amore
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
12
|
Śmiałek D, Kotulska K, Duda A, Jóźwiak S. Effect of mTOR Inhibitors in Epilepsy Treatment in Children with Tuberous Sclerosis Complex Under 2 Years of Age. Neurol Ther 2023; 12:931-946. [PMID: 37085686 DOI: 10.1007/s40120-023-00476-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
INTRODUCTION Mechanistic target of rapamycin (mTOR) inhibitors sirolimus and everolimus are an effective therapy for subependymal giant cell astrocytomas, cardiac rhabdomyomas, renal angiomyolipomas, and lymphangioleiomyomatosis associated with tuberous sclerosis complex (TSC). Everolimus was recently approved in the EU and the USA for the treatment of refractory focal-onset seizures. Despite frequent use of mTOR inhibitors, there are only a few studies on their effect on epilepsy control in children under 2 years of age. This study aims to assess the effect of adjunctive mTOR inhibitor treatment on seizure frequency in this age group. METHODS We performed retrospective data analysis of medical records of patients with TSC who initiated sirolimus or everolimus under the age of 2 years. Participants' antiseizure medication was adjusted according to their epilepsy control independently from mTOR inhibitor administration. The data was assessed separately for patients treated with mTOR inhibitors before and after the onset of seizures. We also compared the treatment group with a matched control group. The follow-up duration was up to 24 months. RESULTS Twenty-one patients with TSC from two clinical centers were included in the study. Nine participants had no history of seizures before mTOR inhibitor initiation. Twelve reported active epilepsy in the month prior to treatment initiation. Most patients treated preventively with mTOR inhibitors did not report active epilepsy at the end of their follow-up. In the second group, the mean frequency of seizures decreased with time. According to the comparative analysis, seizure control was better in the groups treated with mTOR inhibitors. CONCLUSION Patients with TSC treated with mTOR inhibitors demonstrated better seizure control than individuals without this treatment. Adjunctive pharmacotherapy with mTOR inhibitors appears to have a beneficial effect on epilepsy outcome in young children. Further prospective clinical trials should be conducted to determine the efficacy of mTOR inhibitors on epilepsy in patients with TSC under the age of 2 years.
Collapse
Affiliation(s)
- Dominika Śmiałek
- Department of Pediatric Neurology, Medical University of Warsaw, Warsaw, Poland.
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Sergiusz Jóźwiak
- Department of Pediatric Neurology, Medical University of Warsaw, Warsaw, Poland
- Research Department, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
13
|
Li J, Sha L, Xu Q. Long-term outcomes of classic and novel anti-seizure medication in a kainate-induced model of chronic epilepsy. Epilepsy Res 2023; 191:107095. [PMID: 36812803 DOI: 10.1016/j.eplepsyres.2023.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Intrahippocampal injection of kainate (KA) is a reliable model of temporal lobe epilepsy (TLE) that replicates spontaneous recurrent seizures. Both electrographic seizures and electroclinical seizure (most generalized seizure) can be detected in KA model. Electrographic seizures such as high-voltage sharp waves (HVSWs) and hippocampal paroxysmal discharges (HPDs) are far more common and attracting much attention. A comprehensive study on the anticonvulsant effects of classic and novel antiseizure medications (ASMs) on spontaneous electroclinical seizures, especially during long-term treatment, is still lacking. Here, we evaluated the effects of six ASMs in this model on electroclinical seizures over eight weeks. METHODS Using 24-hour continuous electroencephalographical (EEG) monitoring in free-moving mice, we tested the effectiveness of six ASMs (valproic acid, VPA; carbamazepine, CBZ; lamotrigine, LTG; perampanel, PER; brivaracetam, BRV; and everolimus, EVL) on the electroclinical seizures over eight weeks in the intrahippocampal kainate mouse model. RESULTS VPA, CBZ, LTG, PER and BRV significantly suppressed electroclinical seizures in the early stages of treatment, but the mice gradually developed resistance to these drugs. Overall, the mean frequency of electroclinical seizures was not significantly lower during the 8-week treatment than that at baseline in any ASM-treated group. The individual responses to ASMs varied widely. CONCLUSION Long-term treatment with VPA, LTG, CBZ, PER, BRV and EVL did not relieve electroclinical seizures in this TLE model. Additionally, the window for screening new ASMs in this model should be set to at least 3 weeks to account for drug resistance.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Longze Sha
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Neuroscience Center of Chinese Academy of Medical Sciences, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Neuroscience Center of Chinese Academy of Medical Sciences, China.
| |
Collapse
|
14
|
Łukasiuk K, Lasoń W. Emerging Molecular Targets for Anti-Epileptogenic and Epilepsy Modifying Drugs. Int J Mol Sci 2023; 24:ijms24032928. [PMID: 36769250 PMCID: PMC9917847 DOI: 10.3390/ijms24032928] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The pharmacological treatment of epilepsy is purely symptomatic. Despite many decades of intensive research, causal treatment of this common neurologic disorder is still unavailable. Nevertheless, it is expected that advances in modern neuroscience and molecular biology tools, as well as improved animal models may accelerate designing antiepileptogenic and epilepsy-modifying drugs. Epileptogenesis triggers a vast array of genomic, epigenomic and transcriptomic changes, which ultimately lead to morphological and functional transformation of specific neuronal circuits resulting in the occurrence of spontaneous convulsive or nonconvulsive seizures. Recent decades unraveled molecular processes and biochemical signaling pathways involved in the proepileptic transformation of brain circuits including oxidative stress, apoptosis, neuroinflammatory and neurotrophic factors. The "omics" data derived from both human and animal epileptic tissues, as well as electrophysiological, imaging and neurochemical analysis identified a plethora of possible molecular targets for drugs, which could interfere with various stages of epileptogenetic cascade, including inflammatory processes and neuroplastic changes. In this narrative review, we briefly present contemporary views on the neurobiological background of epileptogenesis and discuss the advantages and disadvantages of some more promising molecular targets for antiepileptogenic pharmacotherapy.
Collapse
Affiliation(s)
- Katarzyna Łukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Władysław Lasoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
- Correspondence:
| |
Collapse
|
15
|
El-Sayed RM, Fawzy MN, Zaki HF, Abd El-Haleim EA. Neuroprotection impact of biochanin A against pentylenetetrazol-kindled mice: Targeting NLRP3 inflammasome/TXNIP pathway and autophagy modulation. Int Immunopharmacol 2023; 115:109711. [PMID: 36640710 DOI: 10.1016/j.intimp.2023.109711] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Recurrent seizures characterize epilepsy, a complicated and multifaceted neurological disease. Several neurological alterations, such as cell death and the growth of gorse fibers, have been linked to epilepsy. The dentate gyrus of the hippocampus is particularly vulnerable to neuronal loss and abnormal neuroplastic changes in the pentylenetetrazol (PTZ) kindling model. Biochanin A has potent anti-inflammatory and antioxidant properties, according to previous evidence and its possible impact in epilepsy has never previously been claimed. The current work aimed to investigate biochanin A's anti-epileptic potential in PTZ-induced kindling model in mice. Chronic epilepsy was established in mice by giving PTZ (35 mg/kg, i.p) every other day for 21 days. Biochanin A (20 mg/kg) was given daily till the end of the experiment. Biochanin A pretreatment significantly reduced the severity of epileptogenesis by 51.7% and downregulated the histological changes in the CA3 region of the hippocampus by 42% along with displaying antioxidant/anti-inflammatory efficacy through upregulated hemeoxygenase-1 (HO-1) and, erythroid 2-related factor 2 (Nrf2) levels in the brain by 1.9-fold and 2-fold respectively, parallel to reduction of malondialdehyde (MDA), myeloperoxidase (MPO), glial fibrillary acidic protein (GFAP) and L-glutamate/IL-1β/TXNIB/NLRP3 axis. Moreover, biochanin A suppressed neuronal damage by reducing the astrocytes' activation and significantly attenuated the PTZ-induced increase in LC3 levels by 55.5%. Furthermore, molecular docking findings revealed that BIOCHANIN A has a higher affinity for phosphoinositide 3-kinase (PI3k), threonine kinase2 (AKT2), and mammalian target of rapamycin complex 1 (mTORC1) indicating the neuroprotective and anti-epileptic characteristics of biochanin A in the brain tissue of PTZ-kindled mice.
Collapse
Affiliation(s)
- Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish, Egypt
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish, Egypt.
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Enas A Abd El-Haleim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Developing Novel Experimental Models of m-TORopathic Epilepsy and Related Neuropathologies: Translational Insights from Zebrafish. Int J Mol Sci 2023; 24:ijms24021530. [PMID: 36675042 PMCID: PMC9866103 DOI: 10.3390/ijms24021530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an important molecular regulator of cell growth and proliferation. Brain mTOR activity plays a crucial role in synaptic plasticity, cell development, migration and proliferation, as well as memory storage, protein synthesis, autophagy, ion channel expression and axonal regeneration. Aberrant mTOR signaling causes a diverse group of neurological disorders, termed 'mTORopathies'. Typically arising from mutations within the mTOR signaling pathway, these disorders are characterized by cortical malformations and other neuromorphological abnormalities that usually co-occur with severe, often treatment-resistant, epilepsy. Here, we discuss recent advances and current challenges in developing experimental models of mTOR-dependent epilepsy and other related mTORopathies, including using zebrafish models for studying these disorders, as well as outline future directions of research in this field.
Collapse
|
17
|
Hyder Pottoo F, Salahuddin M, Khan FA, Albaqshi BT, Gomaa MS, Abdulla FS, AlHajri N, Alomary MN. Trio-Drug Combination of Sodium Valproate, Baclofen and Thymoquinone Exhibits Synergistic Anticonvulsant Effects in Rats and Neuro-Protective Effects in HEK-293 Cells. Curr Issues Mol Biol 2022; 44:4350-4366. [PMID: 36286014 PMCID: PMC9601194 DOI: 10.3390/cimb44100299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 10/04/2023] Open
Abstract
Epilepsy is a chronic brain disorder, with anti-epileptic drugs (AEDs) providing relief from hyper-excitability of neurons, but largely failing to restrain neurodegeneration. We investigated a progressive preclinical trial in rats, whereby the test drugs; sodium valproate (SVP; 150 and 300 mg/kg), baclofen (BFN; 5 and 10 mg/kg), and thymoquinone (THQ; 40 and 80 mg/kg) were administered (i.p, once/day for 15 days) alone, and as low dose combinations, and subsequently tested for antiseizure and neuroprotective potential using electrical stimulation of neurons by Maximal electroshock (MES). The seizure stages were monitored, and hippocampal levels of m-TOR, IL-1β, IL-6 were measured. Hippocampal histopathology was also performed. Invitro and Insilco studies were run to counter-confirm the results from rodent studies. We report the synergistic effect of trio-drug combination; SVP (150 mg/kg), BFN (5 mg/kg) and THQ (40 mg/kg) against generalized seizures. The Insilco results revealed that trio-drug combination binds the Akt active site as a supramolecular complex, which could have served as a delivery system that affects the penetration and the binding to the new target. The potential energy of the ternary complex in the Akt active site after dynamics simulation was found to be -370.426 Kcal/mol, while the supramolecular ternary complex alone was -38.732 Kcal/mol, with a potential energy difference of -331.694 Kcal/mol, which favors the supramolecular ternary complex at Akt active site binding. In addition, the said combination increased cell viability by 267% and reduced morphological changes induced by Pentylenetetrazol (PTZ) in HEK-293 cells, which indicates the neuroprotective property of said combination. To conclude, we are the first to report the anti-convulsant and neuroprotective potential of the trio-drug combination.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Batool Taleb Albaqshi
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Fatima S. Abdulla
- College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Noora AlHajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad N. Alomary
- National Centre for Biotechnology, Kind Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
18
|
El-Megiri N, Mostafa YM, Ahmed A, Mehanna ET, El-Azab MF, Alshehri F, Alahdal H, El-Sayed NM. Pioglitazone Ameliorates Hippocampal Neurodegeneration, Disturbances in Glucose Metabolism and AKT/mTOR Signaling Pathways in Pentyelenetetrazole-Kindled Mice. Pharmaceuticals (Basel) 2022; 15:ph15091113. [PMID: 36145334 PMCID: PMC9506442 DOI: 10.3390/ph15091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Disturbance of glucose metabolism, nerve growth factor (NGF) and m-TOR signaling have been associated with the pathophysiology of epilepsy. Pioglitazone (PGZ) is an anti-diabetic drug that shows a protective effect in neurodegenerative diseases including epilepsy; however, its exact mechanism is not fully elucidated. The present study aimed to investigate the potential neuroprotective effect of PGZ in pentylenetetrazole (PTZ) kindled seizure in mice. Swiss male albino mice were randomly distributed into four groups, each having six mice. Group 1 was considered the control. Epilepsy was induced by PTZ (35 mg/kg i.p.) thrice a week for a total of 15 injections in all other groups. Group 2 was considered the untreated PTZ group while Group 3 and Group 4 were treated by PGZ prior to PTZ injection at two dose levels (5 and 10 mg/kg p.o., respectively). Seizure activity was evaluated after each PTZ injection according to the Fischer and Kittner scoring system. At the end of the experiment, animals were sacrificed under deep anesthesia and the hippocampus was isolated for analysis of glucose transporters by RT-PCR, nerve growth factor (NGF) by ELISA and mTOR by western blotting, in addition to histopathological investigation. The PTZ-treated group showed a significant rise in seizure score, NGF and m-TOR hyperactivation, along with histological abnormalities compared to the control group. Treatment with PGZ demonstrated a significant decrease in NGF, seizure score, m-TOR, GLUT-1 and GLUT-3 in comparison to the PTZ group. In addition, improvement of histological features was observed in both PGZ treated groups. These findings suggest that PGZ provides its neuroprotective effect through modulating m-TOR signaling, glucose metabolism and NGF levels.
Collapse
Affiliation(s)
- Nada El-Megiri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Yasser M. Mostafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University, Badr 11829, Egypt
| | - Amal Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (E.T.M.); (N.M.E.-S.)
| | - Mona F. El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Fatma Alshehri
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hadil Alahdal
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Norhan M. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (E.T.M.); (N.M.E.-S.)
| |
Collapse
|
19
|
A review on role of metformin as a potential drug for epilepsy treatment and modulation of epileptogenesis. Seizure 2022; 101:253-261. [PMID: 36116284 DOI: 10.1016/j.seizure.2022.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Available anti-seizure medications (ASMs) target the symptomatology of the disease rather than any significant disease/epileptogenesis modifying actions. There are critical concerns of drug resistance and seizure recurrence during epilepsy management. So, drug repurposing is evolving as a paradigm change in the quest for novel epilepsy treatment strategies. Metformin, a well-known anti-diabetic drug has shown multiple pieces of evidence of its potential antiepileptic action. OBJECTIVE This review elucidates various mechanisms underlying the beneficial role of metformin in seizure control and modulation of the epileptogenesis process. METHODS Preclinical and clinical evidence involving metformin's role in epilepsy and special conditions like tuberous sclerosis have been reviewed in this paper. The putative mechanisms of epileptogenesis modulation through the use of metformin are also summarised. RESULTS This review found the efficacy of metformin in different seizure models including genetic knockout model, chemical induced, and kindling models. Only one clinical study of metformin in tuberous sclerosis has shown a reduction in seizure frequency and tumor volume compared to placebo. The suggested mechanisms of metformin relevant to epileptogenesis modulation mainly encompass AMPK activation, mTOR inhibition, protection against blood-brain-barrier disruption, inhibition of neuronal apoptosis, and reduction of oxidative stress. In addition to seizure protection, metformin has a potential role in attenuating adverse effects associated with epilepsy and ASMs such as cognition and memory impairment. CONCLUSION Metformin has shown promising utility in epilepsy management and epileptogenesis modulation. The evidence in this review substantiates the need for a robust clinical trial to explore the efficacy and safety of metformin in persons with epilepsy.
Collapse
|
20
|
Siang LH, Arulsamy A, Yoon YK, Shaikh MF. Fruits for Seizures? A Systematic Review on the Potential Anti-Convulsant Effects of Fruits and their Phytochemicals. Curr Neuropharmacol 2022; 20:1925-1940. [PMID: 34517803 PMCID: PMC9886799 DOI: 10.2174/1570159x19666210913120637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is a devastating neurological disorder. Current anti-convulsant drugs are only effective in about 70% of patients, while the rest remain drug-resistant. Thus, alternative methods have been explored to control seizures in these drug-resistant patients. One such method may be through the utilization of fruit phytochemicals. These phytochemicals have been reported to have beneficial properties such as anti-convulsant, anti-oxidant, and anti-inflammatory activities. However, some fruits may also elicit harmful effects. This review aims to summarize and elucidate the anti- or pro-convulsant effects of fruits used in relation to seizures in hopes of providing a good therapeutic reference to epileptic patients and their carers. Three databases, SCOPUS, ScienceDirect, and PubMed, were utilized for the literature search. Based on the PRISMA guidelines, a total of 40 articles were selected for critical appraisal in this review. Overall, the extracts and phytochemicals of fruits managed to effectively reduce seizure activities in various preclinical seizure models, acting mainly through the activation of the inhibitory neurotransmission and blocking the excitatory neurotransmission. Only star fruit has been identified as a pro-convulsant fruit due to its caramboxin and oxalate compounds. Future studies should focus more on utilizing these fruits as possible treatment strategies for epilepsy.
Collapse
Affiliation(s)
| | | | | | - Mohd. Farooq Shaikh
- Address correspondence to this author at the Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia; Tel/Fax: +60 3 5514 4483; E-mail:
| |
Collapse
|
21
|
Pedroso J, Schneider SE, Lima-Rezende CA, Aguiar GPS, Müller LG, Oliveira JV, Piato A, Siebel AM. Evaluation of Resveratrol and Piceatannol Anticonvulsant Potential in Adult Zebrafish (Danio rerio). Neurochem Res 2022; 47:3250-3260. [PMID: 35750876 DOI: 10.1007/s11064-022-03656-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/14/2023]
Abstract
Epilepsy is a common neurological disorder which affects 50 million people worldwide. Patients with epilepsy may present cognitive deficits and psychological impairment. Currently, 30% of patients fail to respond to any available antiseizure drug, and a significant number of patients do not well tolerate the offered treatments. Then, it is necessary to find out alternatives for controlling epileptic seizures. Studies have shown that despite its neuroprotective effects, resveratrol shows poor anticonvulsant properties. Resveratrol analog, piceatannol, possesses higher biological activity than resveratrol and could be an alternative to control seizure. Thus, the present study investigated the effects of resveratrol and piceatannol in pentylenetetrazole-induced seizures in adult zebrafish (Danio rerio). Only the experimental positive control (diazepam) showed anticonvulsant effect in this study. In addition, no behavioral changes were observed 24 h after seizure occurrence. Finally, the expression of genes related to neuronal activity (c-fos), neurogenesis (p70S6Ka and p70S6Kb), inflammatory response (interleukin 1β), and cell apoptosis (caspase-3) did not change by pentylenetetrazole-induced seizures. Therefore, we failed to observe any anticonvulsant and neuroprotective potential of resveratrol and piceatannol in adult zebrafish. However, resveratrol and piceatannol benefits in epilepsy are not discharged, and more studies are necessary.
Collapse
Affiliation(s)
- Jefferson Pedroso
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Sabrina Ester Schneider
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Cássia Alves Lima-Rezende
- División Ornitología, Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina.,Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Gean Pablo S Aguiar
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Liz Girardi Müller
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - J Vladimir Oliveira
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.,Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Angelo Piato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anna Maria Siebel
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil. .,Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.
| |
Collapse
|
22
|
Nguyen LH, Xu Y, Mahadeo T, Zhang L, Lin TV, Born HA, Anderson AE, Bordey A. Expression of 4E-BP1 in juvenile mice alleviates mTOR-induced neuronal dysfunction and epilepsy. Brain 2022; 145:1310-1325. [PMID: 34849602 PMCID: PMC9128821 DOI: 10.1093/brain/awab390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hyperactivation of the mTOR pathway during foetal neurodevelopment alters neuron structure and function, leading to focal malformation of cortical development and intractable epilepsy. Recent evidence suggests a role for dysregulated cap-dependent translation downstream of mTOR signalling in the formation of focal malformation of cortical development and seizures. However, it is unknown whether modifying translation once the developmental pathologies are established can reverse neuronal abnormalities and seizures. Addressing these issues is crucial with regards to therapeutics because these neurodevelopmental disorders are predominantly diagnosed during childhood, when patients present with symptoms. Here, we report increased phosphorylation of the mTOR effector and translational repressor, 4E-BP1, in patient focal malformation of cortical development tissue and in a mouse model of focal malformation of cortical development. Using temporally regulated conditional gene expression systems, we found that expression of a constitutively active form of 4E-BP1 that resists phosphorylation by focal malformation of cortical development in juvenile mice reduced neuronal cytomegaly and corrected several neuronal electrophysiological alterations, including depolarized resting membrane potential, irregular firing pattern and aberrant expression of HCN4 ion channels. Further, 4E-BP1 expression in juvenile focal malformation of cortical development mice after epilepsy onset resulted in improved cortical spectral activity and decreased spontaneous seizure frequency in adults. Overall, our study uncovered a remarkable plasticity of the juvenile brain that facilitates novel therapeutic opportunities to treat focal malformation of cortical development-related epilepsy during childhood with potentially long-lasting effects in adults.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Youfen Xu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Travorn Mahadeo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tiffany V Lin
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Heather A Born
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne E Anderson
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angélique Bordey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
23
|
Soltani Khaboushan A, Yazdanpanah N, Rezaei N. Neuroinflammation and Proinflammatory Cytokines in Epileptogenesis. Mol Neurobiol 2022; 59:1724-1743. [PMID: 35015252 DOI: 10.1007/s12035-022-02725-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence corroborates the fundamental role of neuroinflammation in the development of epilepsy. Proinflammatory cytokines (PICs) are crucial contributors to the inflammatory reactions in the brain. It is evidenced that epileptic seizures are associated with elevated levels of PICs, particularly interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), which underscores the impact of neuroinflammation and PICs on hyperexcitability of the brain and epileptogenesis. Since the pathophysiology of epilepsy is unknown, determining the possible roles of PICs in epileptogenesis could facilitate unraveling the pathophysiology of epilepsy. About one-third of epileptic patients are drug-resistant, and existing treatments only resolve symptoms and do not inhibit epileptogenesis; thus, treatment of epilepsy is still challenging. Accordingly, understanding the function of PICs in epilepsy could provide us with promising targets for the treatment of epilepsy, especially drug-resistant type. In this review, we outline the role of neuroinflammation and its primary mediators, including IL-1β, IL-1α, IL-6, IL-17, IL-18, TNF-α, and interferon-γ (IFN-γ) in the pathophysiology of epilepsy. Furthermore, we discuss the potential therapeutic targeting of PICs and cytokine receptors in the treatment of epilepsy.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
| |
Collapse
|
24
|
Kim SH, Yu HS, Huh S, Kang UG, Kim YS. Electroconvulsive seizure inhibits the mTOR signaling pathway via AMPK in the rat frontal cortex. Psychopharmacology (Berl) 2022; 239:443-454. [PMID: 34716784 DOI: 10.1007/s00213-021-06015-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023]
Abstract
RATIONALE Accumulating evidence indicates critical involvement of mammalian target of rapamycin (mTOR) in the treatment of depressive disorders, epilepsy, and neurodegenerative disorders through its signal transduction mechanisms related to protein translation, autophagy, and synaptic remodeling. Electroconvulsive seizure (ECS) treatment is a potent antidepressive, anti-convulsive, and neuroprotective therapeutic modality; however, its effects on mTOR signaling have not yet been clarified. METHODS The effect of ECS on the mTOR complex 1 (mTORC1) pathway was investigated in the rat frontal cortex. ECS or sham treatment was administered once per day for 10 days (E10X or sham), and compound C was administered through the intracerebroventricular cannula. Changes in mTORC1-associated signaling molecules and their interactions were analyzed. RESULTS E10X reduced phosphorylation of mTOR downstream substrates, including p70S6K, S6, and 4E-BP1, and increased inhibitory phosphorylation of mTOR at Thr2446 compared to the sham group in the rat frontal cortex, indicating E10X-induced inhibition of mTORC1 activity. Akt and ERK1/2, upstream kinases that activate mTORC1, were not inhibited; however, AMPK, which can inhibit mTORC1, was activated. AMPK-responsive phosphorylation of Raptor at Ser792 and TSC2 at Ser1387 inhibiting mTORC1 was increased by E10X. Moreover, intrabrain inhibition of AMPK restored E10X-induced changes in the phosphorylation of S6, Raptor, and TSC2, indicating mediation of AMPK in E10X-induced mTOR inhibition. CONCLUSIONS Repeated ECS treatments inhibit mTORC1 signaling by interactive crosstalk between mTOR and AMPK pathways, which could play important roles in the action of ECS via autophagy induction.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Hyun Sook Yu
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seonghoo Huh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ung Gu Kang
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Sik Kim
- Department of Psychiatry, NowonEulji Medical Center, Eulji University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Kato M, Kada A, Shiraishi H, Tohyama J, Nakagawa E, Takahashi Y, Akiyama T, Kakita A, Miyake N, Fujita A, Saito AM, Inoue Y. Sirolimus for epileptic seizures associated with focal cortical dysplasia type II. Ann Clin Transl Neurol 2022; 9:181-192. [PMID: 35040598 PMCID: PMC8862414 DOI: 10.1002/acn3.51505] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 01/16/2023] Open
Abstract
Objective To determine whether sirolimus, a mechanistic target of rapamycin (mTOR) inhibitor, reduces epileptic seizures associated with focal cortical dysplasia (FCD) type II. Methods Sixteen patients (aged 6–57 years) with FCD type II received sirolimus at an initial dose of 1 or 2 mg/day based on body weight (FCDS‐01). In 15 patients, the dose was adjusted to achieve target trough ranges of 5–15 ng/mL, followed by a 12‐week maintenance therapy period. The primary endpoint was a lower focal seizure frequency during the maintenance therapy period. Further, we also conducted a prospective cohort study (RES‐FCD) in which 60 patients with FCD type II were included as an external control group. Results The focal seizure frequency reduced by 25% in all patients during the maintenance therapy period and by a median value of 17%, 28%, and 23% during the 1–4‐, 5–8‐, and 9–12‐week periods. The response rate was 33%. The focal seizure frequency in the external control group reduced by 0.5%. However, the background characteristics of external and sirolimus‐treated groups differed. Adverse events were consistent with those of mTOR inhibitors reported previously. The blood KL‐6 level was elevated over time. Interpretation The reduction of focal seizures did not meet the predetermined level of statistical significance. The safety profile of the drug was tolerable. The potential for a reduction of focal seizures over time merit further investigations.
Collapse
Affiliation(s)
- Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Akiko Kada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Jun Tohyama
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yukitoshi Takahashi
- National Hospital Organization, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Human Genetics, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yushi Inoue
- National Hospital Organization, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| |
Collapse
|
26
|
Vyas P, Tulsawani R, Vohora D. Dual Targeting by Inhibition of Phosphoinositide-3-Kinase and Mammalian Target of Rapamycin Attenuates the Neuroinflammatory Responses in Murine Hippocampal Cells and Seizures in C57BL/6 Mice. Front Immunol 2021; 12:739452. [PMID: 34887852 PMCID: PMC8650161 DOI: 10.3389/fimmu.2021.739452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence suggests the association of seizures and inflammation; however, underlying cell signaling mechanisms are still not fully understood. Overactivation of phosphoinositide-3-kinases is associated with both neuroinflammation and seizures. Herein, we speculate the PI3K/Akt/mTOR pathway as a promising therapeutic target for neuroinflammation-mediated seizures and associated neurodegeneration. Firstly, we cultured HT22 cells for detection of the downstream cell signaling events activated in a lipopolysaccharide (LPS)-primed pilocarpine (PILO) model. We then evaluated the effects of 7-day treatment of buparlisib (PI3K inhibitor, 25 mg/kg p.o.), dactolisib (PI3K/mTOR inhibitor, 25 mg/kg p.o.), and rapamycin (mTORC1 inhibitor, 10 mg/kg p.o.) in an LPS-primed PILO model of seizures in C57BL/6 mice. LPS priming resulted in enhanced seizure severity and reduced latency. Buparlisib and dactolisib, but not rapamycin, prolonged latency to seizures and reduced neuronal loss, while all drugs attenuated seizure severity. Buparlisib and dactolisib further reduced cellular redox, mitochondrial membrane potential, cleaved caspase-3 and p53, nuclear integrity, and attenuated NF-κB, IL-1β, IL-6, TNF-α, and TGF-β1 and TGF-β2 signaling both in vitro and in vivo post-PILO and LPS+PILO inductions; however, rapamycin mitigated the same only in the PILO model. Both drugs protected against neuronal cell death demonstrating the contribution of this pathway in the seizure-induced neuronal pyknosis; however, rapamycin showed resistance in a combination model. Furthermore, LPS and PILO exposure enhanced pAkt/Akt and phospho-p70S6/total-p70S6 kinase activity, while buparlisib and dactolisib, but not rapamycin, could reduce it in a combination model. Partial rapamycin resistance was observed possibly due to the reactivation of the pathway by a functionally different complex of mTOR, i.e., mTORC2. Our study substantiated the plausible involvement of PI3K-mediated apoptotic and inflammatory pathways in LPS-primed PILO-induced seizures and provides evidence that its modulation constitutes an anti-inflammatory mechanism by which seizure inhibitory effects are observed. We showed dual inhibition by dactolisib as a promising approach. Targeting this pathway at two nodes at a time may provide new avenues for antiseizure therapies.
Collapse
Affiliation(s)
- Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rajkumar Tulsawani
- Defense Institute of Physiology & Allied Science, Defense Research and Development Organization, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
27
|
Pottoo FH, Salahuddin M, Khan FA, Alomar F, AL Dhamen MA, Alhashim AF, Alqattan HH, Gomaa MS, Alomary MN. Thymoquinone Potentiates the Effect of Phenytoin against Electroshock-Induced Convulsions in Rats by Reducing the Hyperactivation of m-TOR Pathway and Neuroinflammation: Evidence from In Vivo, In Vitro and Computational Studies. Pharmaceuticals (Basel) 2021; 14:1132. [PMID: 34832914 PMCID: PMC8618888 DOI: 10.3390/ph14111132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a chronic neurodegenerative disease characterized by multiple seizures, hereto 35% of patients remain poor responders. Phenytoin (PHT; 20 and 40 mg/kg) and thymoquinone (THQ; 40 and 80 mg/kg) were given alone and as a low dose combination for 14 days (p.o), prior to challenge with maximal electroshock (MES; 180 mA, 220 V, 0.2 s). Apart from observing convulsions, hippocampal mTOR, IL-1β, IL-6 and TNF-α levels were measured. Hippocampal histomorphological analysis was also conducted. In vitro cell line studies and molecular docking studies were run in parallel. The results revealed the synergistic potential of the novel duo-drug combination regimen: PHT (20 mg/kg) and THQ (40 mg/kg) against MES-induced convulsions. MES amplified signaling through mTOR, and inflated the levels of proinflammatory markers (IL-1β, IL-6 and TNF-α), which was significantly averted (p < 0.001) with the said drug combination. The computational studies revealed that PHT and THQ cooperatively bind the active site on Akt (upstream target of m-TOR) and establish a good network of intermolecular interactions, which indicates the sequential inhibition of PI3K/Akt/m-TOR signaling with the combination. The combination also increased cell viability by 242.81% compared to 85.66% viability from the the toxic control. The results suggest that the PHT and THQ in combination possesses excellent anticonvulsant and neuroprotective effects.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (F.A.); (M.A.A.D.); (A.F.A.); (H.H.A.)
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Fadhel Alomar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (F.A.); (M.A.A.D.); (A.F.A.); (H.H.A.)
| | - Marwa Abdullah AL Dhamen
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (F.A.); (M.A.A.D.); (A.F.A.); (H.H.A.)
| | - Abrar Fouad Alhashim
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (F.A.); (M.A.A.D.); (A.F.A.); (H.H.A.)
| | - Hawra Hussain Alqattan
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (F.A.); (M.A.A.D.); (A.F.A.); (H.H.A.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, Kind Abdulaziz City for Science and Technology (KACST), P.O. Box 1982, Riyadh 11442, Saudi Arabia
| |
Collapse
|
28
|
Vasic V, Jones MSO, Haslinger D, Knaus LS, Schmeisser MJ, Novarino G, Chiocchetti AG. Translating the Role of mTOR- and RAS-Associated Signalopathies in Autism Spectrum Disorder: Models, Mechanisms and Treatment. Genes (Basel) 2021; 12:genes12111746. [PMID: 34828352 PMCID: PMC8624393 DOI: 10.3390/genes12111746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Mutations affecting mTOR or RAS signaling underlie defined syndromes (the so-called mTORopathies and RASopathies) with high risk for Autism Spectrum Disorder (ASD). These syndromes show a broad variety of somatic phenotypes including cancers, skin abnormalities, heart disease and facial dysmorphisms. Less well studied are the neuropsychiatric symptoms such as ASD. Here, we assess the relevance of these signalopathies in ASD reviewing genetic, human cell model, rodent studies and clinical trials. We conclude that signalopathies have an increased liability for ASD and that, in particular, ASD individuals with dysmorphic features and intellectual disability (ID) have a higher chance for disruptive mutations in RAS- and mTOR-related genes. Studies on rodent and human cell models confirm aberrant neuronal development as the underlying pathology. Human studies further suggest that multiple hits are necessary to induce the respective phenotypes. Recent clinical trials do only report improvements for comorbid conditions such as epilepsy or cancer but not for behavioral aspects. Animal models show that treatment during early development can rescue behavioral phenotypes. Taken together, we suggest investigating the differential roles of mTOR and RAS signaling in both human and rodent models, and to test drug treatment both during and after neuronal development in the available model systems.
Collapse
Affiliation(s)
- Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
| | - Mattson S. O. Jones
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Denise Haslinger
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Lisa S. Knaus
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Michael J. Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Andreas G. Chiocchetti
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-80658
| |
Collapse
|
29
|
Decanoic Acid Stimulates Autophagy in D. discoideum. Cells 2021; 10:cells10112946. [PMID: 34831171 PMCID: PMC8616062 DOI: 10.3390/cells10112946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Ketogenic diets, used in epilepsy treatment, are considered to work through reduced glucose and ketone generation to regulate a range of cellular process including autophagy induction. Recent studies into the medium-chain triglyceride (MCT) ketogenic diet have suggested that medium-chain fatty acids (MCFAs) provided in the diet, decanoic acid and octanoic acid, cause specific therapeutic effects independent of glucose reduction, although a role in autophagy has not been investigated. Both autophagy and MCFAs have been widely studied in Dictyostelium, with findings providing important advances in the study of autophagy-related pathologies such as neurodegenerative diseases. Here, we utilize this model to analyze a role for MCFAs in regulating autophagy. We show that treatment with decanoic acid but not octanoic acid induces autophagosome formation and modulates autophagic flux in high glucose conditions. To investigate this effect, decanoic acid, but not octanoic acid, was found to induce the expression of autophagy-inducing proteins (Atg1 and Atg8), providing a mechanism for this effect. Finally, we demonstrate a range of related fatty acid derivatives with seizure control activity, 4BCCA, 4EOA, and Epilim (valproic acid), also function to induce autophagosome formation in this model. Thus, our data suggest that decanoic acid and related compounds may provide a less-restrictive therapeutic approach to activate autophagy.
Collapse
|
30
|
Pain E, Shinhmar S, Williams RSB. Using Dictyostelium to Advance Our Understanding of the Role of Medium Chain Fatty Acids in Health and Disease. Front Cell Dev Biol 2021; 9:722066. [PMID: 34589488 PMCID: PMC8473879 DOI: 10.3389/fcell.2021.722066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022] Open
Abstract
Ketogenic diets have been utilized for many years to improve health, and as a dietary approach for the treatment of a range of diseases, where the mechanism of these low carbohydrate and high fat diets is widely considered to be through the production of metabolic products of fat breakdown, called ketones. One of these diets, the medium chain triglyceride ketogenic diet, involves high fat dietary intake in the form of medium chain fatty acids (MCFAs), decanoic and octanoic acid, and is commonly used in endurance and high intensity exercises but has also demonstrated beneficial effects in the treatment of numerous pathologies including drug resistant epilepsy, cancer, and diabetes. Recent advances, using Dictyostelium discoideum as a model, have controversially proposed several direct molecular mechanisms for decanoic acid in this diet, independent of ketone generation. Studies in this model have identified that decanoic acid reduces phosphoinositide turnover, diacylglycerol kinase (DGK) activity, and also inhibits the mechanistic target of rapamycin complex 1 (mTORC1). These discoveries could potentially impact the treatment of a range of disorders including epilepsy, cancer and bipolar disorder. In this review, we summarize the newly proposed mechanisms for decanoic acid, identified using D. discoideum, and highlight potential roles in health and disease treatment.
Collapse
Affiliation(s)
| | | | - Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
31
|
Romero-Ibarguengoitia ME, Cantú-Reyna C, Gutierrez-González D, Cruz-Camino H, González-Cantú A, Sanz Sánchez MA. Comparison of Genetic Variants and Manifestations of OTUD6B-Related Disorder: The First Mexican Case. J Investig Med High Impact Case Rep 2021; 8:2324709620957777. [PMID: 32924626 PMCID: PMC7493228 DOI: 10.1177/2324709620957777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The intellectual disability syndrome characterized by seizures and dysmorphic features was initially described in 2017 and was associated with genetic variants in the OTUD6B gene, identified by exome sequencing (ES) in a large cohort. This multisystem disorder primarily affects the central nervous system, the gastrointestinal, and the skeletal systems. In this article, we describe the first Mexican patient diagnosed by ES. The homozygous c.433C>T (p.Arg145*) variant of the OTUD6B gene confirmed this intellectual disability syndrome. In addition to seizures and other more frequently reported manifestations of this condition, this is the third patient with associated hypothyroidism and hypogammaglobulinemia, underscoring the value of screening for these conditions in other patients. The current challenge with this patient is to ensure medical management of his seizures and provide him with a better quality of life. The possibilities of additional therapeutic approaches may increase by understanding the physiopathology of the involved pathways.
Collapse
Affiliation(s)
| | - Consuelo Cantú-Reyna
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico.,Genomi-k SAPI de CV, Monterrey, Nuevo Leon, Mexico
| | | | - Héctor Cruz-Camino
- Genomi-k SAPI de CV, Monterrey, Nuevo Leon, Mexico.,Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | | | | |
Collapse
|
32
|
Arribas-Blázquez M, Piniella D, Olivos-Oré LA, Bartolomé-Martín D, Leite C, Giménez C, Artalejo AR, Zafra F. Regulation of the voltage-dependent sodium channel Na V1.1 by AKT1. Neuropharmacology 2021; 197:108745. [PMID: 34375627 DOI: 10.1016/j.neuropharm.2021.108745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
The voltage-sensitive sodium channel NaV1.1 plays a critical role in regulating excitability of GABAergic neurons and mutations in the corresponding gene are associated to Dravet syndrome and other forms of epilepsy. The activity of this channel is regulated by several protein kinases. To identify novel regulatory kinases we screened a library of activated kinases and we found that AKT1 was able to directly phosphorylate NaV1.1. In vitro kinase assays revealed that the phosphorylation site was located in the C-terminal part of the large intracellular loop connecting domains I and II of NaV1.1, a region that is known to be targeted by other kinases like PKA and PKC. Electrophysiological recordings revealed that activated AKT1 strongly reduced peak Na+ currents and displaced the inactivation curve to more negative potentials in HEK-293 cell stably expressing NaV1.1. These alterations in current amplitude and steady-state inactivation were mimicked by SC79, a specific activator of AKT1, and largely reverted by triciribine, a selective inhibitor. Neurons expressing endogenous NaV1.1 in primary cultures were identified by expressing a fluorescent protein under the NaV1.1 promoter. There, we also observed a strong decrease in the current amplitude after addition of SC79, but small effects on the inactivation parameters. Altogether, we propose a novel mechanism that might regulate the excitability of neural networks in response to AKT1, a kinase that plays a pivotal role under physiological and pathological conditions, including epileptogenesis.
Collapse
Affiliation(s)
- Marina Arribas-Blázquez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Luis A Olivos-Oré
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - David Bartolomé-Martín
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristiana Leite
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cecilio Giménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio R Artalejo
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
33
|
Garbinato C, Lima-Rezende CA, Schneider SE, Pedroso J, Dos Santos AE, Petry F, Aguiar GPS, Müller LG, Lanza M, Piato A, Vladimir Oliveira J, Siebel AM. Investigation on the Anticonvulsant Potential of Luteolin and Micronized Luteolin in Adult Zebrafish (Danio rerio). Neurochem Res 2021; 46:3025-3034. [PMID: 34309774 DOI: 10.1007/s11064-021-03409-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy affects around 50 million people worldwide, and an important number of patients (30%) fail to respond to any available antiepileptic drug. Previous studies have shown that luteolin presents a promising potential as an anticonvulsant. On the other hand, different studies showed that luteolin does not promote anticonvulsant effects. Therefore, there is a lack of consensus about the use of luteolin for seizure control. Luteolin low bioavailability could be a limiting factor to obtain better results. Attractively, micronization technology has been applied to improve flavonoids bioavailability. Thus, the present study aimed to investigate the effects of luteolin on its raw form and micronized luteolin in a PTZ-induced seizure model in adult zebrafish (Danio rerio). Our results demonstrate that luteolin and micronized luteolin did not block PTZ-induced seizures in adult zebrafish. Also, luteolin and micronized luteolin did not provoke behavioral changes. Finally, our results show that 24 h after seizure occurrence, no changes were detected for p70S6Kb, interleukin 1β, and caspase-3 transcript levels. Altogether, we failed to observe an anticonvulsant potential of luteolin in adult zebrafish, even in its micronized form. However, we recommend new studies to investigate luteolin benefits in epilepsy.
Collapse
Affiliation(s)
- Cristiane Garbinato
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Cássia Alves Lima-Rezende
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.,División Ornitología, Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina
| | - Sabrina Ester Schneider
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Jefferson Pedroso
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Aline E Dos Santos
- Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fernanda Petry
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Gean Pablo S Aguiar
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Liz Girardi Müller
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Marcelo Lanza
- Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Angelo Piato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - J Vladimir Oliveira
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.,Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Anna Maria Siebel
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil. .,Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.
| |
Collapse
|
34
|
Khatoon S, Agarwal NB, Samim M, Alam O. Neuroprotective Effect of Fisetin Through Suppression of IL-1R/TLR Axis and Apoptosis in Pentylenetetrazole-Induced Kindling in Mice. Front Neurol 2021; 12:689069. [PMID: 34354662 PMCID: PMC8333701 DOI: 10.3389/fneur.2021.689069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Epilepsy is a complex neurological disorder, characterized by frequent electrical activity in brain regions. Inflammation and apoptosis cascade activation are serious neurological sequelae during seizures. Fisetin (3, 3',4',7-tetrahydroxyflavone), a flavonoid molecule, is considered for its effective anti-inflammatory and anti-apoptotic properties. This study investigated the neuroprotective effect of fisetin on experimental epilepsy. For acute studies, increasing current electroshock (ICES) and pentylenetetrazole (PTZ)-induced seizure tests were performed to evaluate the antiseizure activity of fisetin. For the chronic study, the kindling model was established by the administration of PTZ in subconvulsive dose (25 mg/kg, i.p.). Mice were treated with fisetin (5, 10, and 20 mg/kg, p.o.) to study its probable antiseizure mechanism. The kindled mice were evaluated for seizure scores. Their hippocampus and cortex were assessed for neuronal damage, inflammation, and apoptosis. Histological alterations were observed in the hippocampus of the experimental mice. Levels of high mobility group box 1 (HMGB1), Toll-like receptor-4 (TLR-4), interleukin-1 receptor 1 (IL-1R1), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed in the hippocampus and cortex by ELISA. The immunoreactivity and mRNA expressions of nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), cytochrome C, and caspase-3 were quantified by immunohistochemical analysis and real-time PCR. Phosphorylation ELISA was performed to evaluate AkT/mTOR (mammalian target of rapamycin) activation in the hippocampus and cortex of the kindled mice. The results showed that fisetin administration increased the seizure threshold current (STC) in the ICES test. In PTZ-induced seizures, fisetin administration increased the latency for myoclonic jerks (MJs) and generalized seizures (GSs). In the PTZ-induced kindling model, fisetin administration dose-dependently suppressed the development of kindling and the associated neuronal damage in the experimental mice. Further, fisetin administration ameliorated kindling-induced neuroinflammation as evident from decreased levels of HMGB1, TLR-4, IL-1R1, IL-1β, IL-6, and TNF-α in the hippocampus and cortex of the kindled mice. Also, the immunoreactivity and mRNA expressions of inflammatory molecules, NF-κB, and COX-2 were decreased with fisetin administration in the kindled animals. Decreased phosphorylation of the AkT/mTOR pathway was reported with fisetin administration in the hippocampus and cortex of the kindled mice. The immunoreactivity and mRNA expressions of apoptotic molecules, cytochrome C, and caspase-3 were attenuated upon fisetin administration. The findings suggest that fisetin shows a neuroprotective effect by suppressing the release of inflammatory and apoptosis molecules and attenuating histological alterations during experimental epilepsy.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nidhi Bharal Agarwal
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
35
|
Feyissa AM, Carrano A, Wang X, Allen M, Ertekin-Taner N, Dickson DW, Jentoft ME, Rosenfeld SS, Tatum WO, Ritaccio AL, Guerrero-Cázares H, Quiñones-Hinojosa A. Analysis of intraoperative human brain tissue transcriptome reveals putative risk genes and altered molecular pathways in glioma-related seizures. Epilepsy Res 2021; 173:106618. [PMID: 33765507 PMCID: PMC9356713 DOI: 10.1016/j.eplepsyres.2021.106618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pathogenesis of glioma-related seizures (GRS) is poorly understood. Here in, we aim to identify putative molecular pathways that lead to the development of GRS. METHODS We determined brain transcriptome from intraoperative human brain tissue of patients with either GRS, glioma without seizures (non-GRS), or with idiopathic temporal lobe epilepsy (iTLE). We performed transcriptome-wide comparisons between disease groups tissue from non-epileptic controls (non-EC) to identify differentially-expressed genes (DEG). We compared DEGs to identify those that are specific or common to the groups. Through a gene ontology analysis, we identified molecular pathways enriched for genes with a Log-fold change ≥1.5 or ≤-1.5 and p-value <0.05 compared to non-EC. RESULTS We identified 110 DEGs that are associated with GRS vs. non-GRS: 80 genes showed high and 30 low expression in GRS. There was significant overexpression of genes involved in cell-to-cell and glutamatergic signaling (CELF4, SLC17A7, and CAMK2A) and down-regulation of genes involved immune-trafficking (CXCL8, H19, and VEGFA). In the iTLE vs GRS analysis, there were 1098 DEGs: 786 genes were overexpressed and 312 genes were underexpressed in the GRS samples. There was significant enrichment for genes considered markers of oncogenesis (GSC, MYBL2, and TOP2A). Further, there was down-regulation of genes involved in the glutamatergic neurotransmission (vesicular glutamate transporter-2) in the GRS vs. iTLE samples. CONCLUSIONS We identified a number of altered processes such as cell-to-cell signaling and interaction, inflammation-related, and glutamatergic neurotransmission in the pathogenesis of GRS. Our findings offer a new landscape of targets to further study in the fields of brain tumors and seizures.
Collapse
Affiliation(s)
| | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Mariet Allen
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Mark E Jentoft
- Department of Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Steven S Rosenfeld
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA; Department of Pharmacology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | |
Collapse
|
36
|
Huang XY, Hu QP, Shi HY, Zheng YY, Hu RR, Guo Q. Everolimus inhibits PI3K/Akt/mTOR and NF-kB/IL-6 signaling and protects seizure-induced brain injury in rats. J Chem Neuroanat 2021; 114:101960. [PMID: 33915267 DOI: 10.1016/j.jchemneu.2021.101960] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Epilepsy is a common chronic neurological disease caused by the over-synchronization of neurons leading to brain dysfunction. Recurrent seizures can lead to cognitive and behavioral deficits, and irreversible brain damage. While the PI3K/Akt/mTOR pathway regulates various physiological processes of neurons and glia, it may also lead to abnormal neuronal signal transduction under pathological conditions, including that of epilepsy. Everolimus (Eve), an mTOR inhibitor, may modulate neuronal excitability and therefore exert protection against epilepsy. Therefore, this study aimed to investigate the neuroprotective effect of Everolimus on seizure-induced brain injury and its regulation of the PI3K/Akt/mTOR and NF-kB/IL-6 signaling pathway. Kainic acid (KA) 15 mg/kg was used to induce seizures and Everolimus (1, 2, 5 mg/kg) was administered as a pretreatment. Hippocampal tissue was extracted 24 h post-seizure. RESULTS The protein and mRNA expression levels of PI3K、p-AKt、p-mTOR、NF-kB and IL-6 as well as neuronal apoptosis and microglia activation, significantly increased after KA-induced seizures, however, these effects were inhibited by Everolimus treatment. Furthermore, pretreatment with Everolimus decreased seizure scores and increased seizure latency. CONCLUSIONS Everolimus can decrease the PI3K/Akt/mTOR and NF-kB/IL-6 signaling pathway, reduce neuronal apoptosis and microglia activation, and attenuate seizure susceptibility and intensity, thus having a protective effect on seizure-induced brain damage.
Collapse
Affiliation(s)
- Xiang-Yi Huang
- Department of Function Examination, The Second Hospital, University of South China, Hengyang, Hunan, 421001, China.
| | - Qing-Peng Hu
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan, 421001, China.
| | - Hong-Yun Shi
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Ya-Yu Zheng
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Rong-Rong Hu
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Qian Guo
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
37
|
Hodges SL, Womble PD, Kwok EM, Darner AM, Senger SS, Binder MS, Faust AM, Condon SM, Nolan SO, Quintero SI, Lugo JN. Rapamycin, but not minocycline, significantly alters ultrasonic vocalization behavior in C57BL/6J pups in a flurothyl seizure model. Behav Brain Res 2021; 410:113317. [PMID: 33910029 DOI: 10.1016/j.bbr.2021.113317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Epilepsy is one of the most common neurological disorders, with individuals having an increased susceptibility of seizures in the first few years of life, making children at risk of developing a multitude of cognitive and behavioral comorbidities throughout development. The present study examined the role of PI3K/Akt/mTOR pathway activity and neuroinflammatory signaling in the development of autistic-like behavior following seizures in the neonatal period. Male and female C57BL/6J mice were administered 3 flurothyl seizures on postnatal (PD) 10, followed by administration of minocycline, the mTOR inhibitor rapamycin, or a combined treatment of both therapeutics. On PD12, isolation-induced ultrasonic vocalizations (USVs) of mice were examined to determine the impact of seizures and treatment on communicative behaviors, a component of the autistic-like phenotype. Seizures on PD10 increased the quantity of USVs in female mice and reduced the amount of complex call types emitted in males compared to controls. Inhibition of mTOR with rapamycin significantly reduced the quantity and duration of USVs in both sexes. Changes in USVs were associated with increases in mTOR and astrocyte levels in male mice, however, three PD10 seizures did not result in enhanced proinflammatory cytokine expression in either sex. Beyond inhibition of mTOR activity by rapamycin, both therapeutics did not demonstrate beneficial effects. These findings emphasize the importance of differences that may exist across preclinical seizure models, as three flurothyl seizures did not induce as drastic of changes in mTOR activity or inflammation as observed in other rodent models.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA.
| | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Eliesse M Kwok
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Alyssa M Darner
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Savannah S Senger
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Amanda M Faust
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Siena M Condon
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Saul I Quintero
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, Waco, TX, 76798, USA
| |
Collapse
|
38
|
Nguyen LH, Bordey A. Convergent and Divergent Mechanisms of Epileptogenesis in mTORopathies. Front Neuroanat 2021; 15:664695. [PMID: 33897381 PMCID: PMC8064518 DOI: 10.3389/fnana.2021.664695] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
Hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) due to mutations in genes along the PI3K-mTOR pathway and the GATOR1 complex causes a spectrum of neurodevelopmental disorders (termed mTORopathies) associated with malformation of cortical development and intractable epilepsy. Despite these gene variants’ converging impact on mTORC1 activity, emerging findings suggest that these variants contribute to epilepsy through both mTORC1-dependent and -independent mechanisms. Here, we review the literature on in utero electroporation-based animal models of mTORopathies, which recapitulate the brain mosaic pattern of mTORC1 hyperactivity, and compare the effects of distinct PI3K-mTOR pathway and GATOR1 complex gene variants on cortical development and epilepsy. We report the outcomes on cortical pyramidal neuronal placement, morphology, and electrophysiological phenotypes, and discuss some of the converging and diverging mechanisms responsible for these alterations and their contribution to epileptogenesis. We also discuss potential therapeutic strategies for epilepsy, beyond mTORC1 inhibition with rapamycin or everolimus, that could offer personalized medicine based on the gene variant.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Angélique Bordey
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
39
|
4E-BP2-dependent translation in parvalbumin neurons controls epileptic seizure threshold. Proc Natl Acad Sci U S A 2021; 118:2025522118. [PMID: 33876772 DOI: 10.1073/pnas.2025522118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals to regulate critical cellular processes such as mRNA translation, lipid biogenesis, and autophagy. Germline and somatic mutations in mTOR and genes upstream of mTORC1, such as PTEN, TSC1/2, AKT3, PIK3CA, and components of GATOR1 and KICSTOR complexes, are associated with various epileptic disorders. Increased mTORC1 activity is linked to the pathophysiology of epilepsy in both humans and animal models, and mTORC1 inhibition suppresses epileptogenesis in humans with tuberous sclerosis and animal models with elevated mTORC1 activity. However, the role of mTORC1-dependent translation and the neuronal cell types mediating the effect of enhanced mTORC1 activity in seizures remain unknown. The eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 2 (4E-BP2) are translational repressors downstream of mTORC1. Here we show that the ablation of 4E-BP2, but not 4E-BP1, in mice increases the sensitivity to pentylenetetrazole (PTZ)- and kainic acid (KA)-induced seizures. We demonstrate that the deletion of 4E-BP2 in inhibitory, but not excitatory neurons, causes an increase in the susceptibility to PTZ-induced seizures. Moreover, mice lacking 4E-BP2 in parvalbumin, but not somatostatin or VIP inhibitory neurons exhibit a lowered threshold for seizure induction and reduced number of parvalbumin neurons. A mouse model harboring a human PIK3CA mutation that enhances the activity of the PI3K-AKT pathway (Pik3ca H1047R-Pvalb ) selectively in parvalbumin neurons shows susceptibility to PTZ-induced seizures. Our data identify 4E-BP2 as a regulator of epileptogenesis and highlight the central role of increased mTORC1-dependent translation in parvalbumin neurons in the pathophysiology of epilepsy.
Collapse
|
40
|
In Silico Strategy for Targeting the mTOR Kinase at Rapamycin Binding Site by Small Molecules. Molecules 2021; 26:molecules26041103. [PMID: 33669763 PMCID: PMC7922000 DOI: 10.3390/molecules26041103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
Computer aided drug-design methods proved to be powerful tools for the identification of new therapeutic agents. We employed a structure-based workflow to identify new inhibitors targeting mTOR kinase at rapamycin binding site. By combining molecular dynamics (MD) simulation and pharmacophore modelling, a simplified structure-based pharmacophore hypothesis was built starting from the FKBP12-rapamycin-FRB ternary complex retrieved from RCSB Protein Data Bank (PDB code 1FAP). Then, the obtained model was used as filter to screen the ZINC biogenic compounds library, containing molecules derived from natural sources or natural-inspired compounds. The resulting hits were clustered according to their similarity; moreover, compounds showing the highest pharmacophore fit-score were chosen from each cluster. The selected molecules were subjected to docking studies to clarify their putative binding mode. The binding free energy of the obtained complexes was calculated by MM/GBSA method and the hits characterized by the lowest ΔGbind values were identified as potential mTOR inhibitors. Furthermore, the stability of the resulting complexes was studied by means of MD simulation which revealed that the selected compounds were able to form a stable ternary complex with FKBP12 and FRB domain, thus underlining their potential ability to inhibit mTOR with a rapamycin-like mechanism.
Collapse
|
41
|
Shi Z, Lei Z, Wu F, Xia L, Ruan Y, Xu ZC. Increased Sestrin3 Contributes to Post-ischemic Seizures in the Diabetic Condition. Front Neurosci 2021; 14:591207. [PMID: 33519354 PMCID: PMC7843462 DOI: 10.3389/fnins.2020.591207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Seizures are among the most common neurological sequelae of stroke, and diabetes notably increases the incidence of post-ischemic seizures. Recent studies have indicated that Sestrin3 (SESN3) is a regulator of a proconvulsant gene network in human epileptic hippocampus. But the association of SESN3 and post-ischemic seizures in diabetes remains unclear. The present study aimed to reveal the involvement of SESN3 in seizures following transient cerebral ischemia in diabetes. Diabetes was induced in adult male mice and rats via intraperitoneal injection of streptozotocin (STZ). Forebrain ischemia (15 min) was induced by bilateral common carotid artery occlusion, the 2-vessel occlusion (2VO) in mice and 4-vessel occlusion (4VO) in rats. Our results showed that 59% of the diabetic wild-type mice developed seizures after ischemia while no seizures were observed in non-diabetic mice. Although no apparent cell death was detected in the hippocampus of seizure mice within 24 h after the ischemic insult, the expression of SESN3 was significantly increased in seizure diabetic mice after ischemia. The post-ischemic seizure incidence significantly decreased in SESN3 knockout mice. Furthermore, all diabetic rats suffered from post-ischemic seizures and non-diabetic rats have no seizures. Electrophysiological recording showed an increased excitatory synaptic transmission and intrinsic membrane excitability in dentate granule cells of the rat hippocampus, together with decreased I A currents and Kv4.2 expression levels. The above results suggest that SESN3 up-regulation may contribute to neuronal hyperexcitability and seizure generation in diabetic animals after ischemia. Further studies are needed to explore the molecular mechanism of SESN3 in seizure generation after ischemia in diabetic conditions.
Collapse
Affiliation(s)
- Zhongshan Shi
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States.,Guangdong-Hongkong-Macau Institute for CNS Regeneration, Jinan University, Guangzhou, China.,Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhigang Lei
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fan Wu
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luoxing Xia
- Guangdong-Hongkong-Macau Institute for CNS Regeneration, Jinan University, Guangzhou, China
| | - Yiwen Ruan
- Guangdong-Hongkong-Macau Institute for CNS Regeneration, Jinan University, Guangzhou, China.,Jiangsu Province Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zao C Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
42
|
Vaisfeld A, Spartano S, Gobbi G, Vezzani A, Neri G. Chromosome 14 deletions, rings, and epilepsy genes: A riddle wrapped in a mystery inside an enigma. Epilepsia 2020; 62:25-40. [PMID: 33205446 DOI: 10.1111/epi.16754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
The ring 14 syndrome is a rare condition caused by the rearrangement of one chromosome 14 into a ring-like structure. The formation of the ring requires two breakpoints and loss of material from the short and long arms of the chromosome. Like many other chromosome syndromes, it is characterized by multiple congenital anomalies and developmental delays. Typical of the condition are retinal anomalies and drug-resistant epilepsy. These latter manifestations are not found in individuals who are carriers of comparable 14q deletions without formation of a ring (linear deletions). To find an explanation for this apparent discrepancy and gain insight into the mechanisms leading to seizures, we reviewed and compared literature cases of both ring and linear deletion syndrome with respect to both their clinical manifestations and the role and function of potentially epileptogenic genes. Knowledge of the epilepsy-related genes in chromosome 14 is an important premise for the search of new and effective drugs to combat seizures. Current clinical and molecular evidence is not sufficient to explain the known discrepancies between ring and linear deletions.
Collapse
Affiliation(s)
- Alessandro Vaisfeld
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Serena Spartano
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Giuseppe Gobbi
- Residential Center for Rehabilitation Luce Sul Mare, Rimini, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Giovanni Neri
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy.,J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA
| |
Collapse
|
43
|
Novel brain permeant mTORC1/2 inhibitors are as efficacious as rapamycin or everolimus in mouse models of acquired partial epilepsy and tuberous sclerosis complex. Neuropharmacology 2020; 180:108297. [PMID: 32890589 DOI: 10.1016/j.neuropharm.2020.108297] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022]
Abstract
Mechanistic target of rapamycin (mTOR) regulates cell proliferation, growth and survival, and is activated in cancer and neurological disorders, including epilepsy. The rapamycin derivative ("rapalog") everolimus, which allosterically inhibits the mTOR pathway, is approved for the treatment of partial epilepsy with spontaneous recurrent seizures (SRS) in individuals with tuberous sclerosis complex (TSC). In contrast to the efficacy in TSC, the efficacy of rapalogs on SRS in other types of epilepsy is equivocal. Furthermore, rapalogs only poorly penetrate into the brain and are associated with peripheral adverse effects, which may compromise their therapeutic efficacy. Here we compare the antiseizure efficacy of two novel, brain-permeable ATP-competitive and selective mTORC1/2 inhibitors, PQR620 and PQR626, and the selective dual pan-PI3K/mTORC1/2 inhibitor PQR530 in two mouse models of chronic epilepsy with SRS, the intrahippocampal kainate (IHK) mouse model of acquired temporal lobe epilepsy and Tsc1GFAP CKO mice, a well-characterized mouse model of epilepsy in TSC. During prolonged treatment of IHK mice with rapamycin, everolimus, PQR620, PQR626, or PQR530; only PQR620 exerted a transient antiseizure effect on SRS, at well tolerated doses whereas the other compounds were ineffective. In contrast, all of the examined compounds markedly suppressed SRS in Tsc1GFAP CKO mice during chronic treatment at well tolerated doses. Thus, against our expectation, no clear differences in antiseizure efficacy were found across the three classes of mTOR inhibitors examined in mouse models of genetic and acquired epilepsies. The main advantage of the novel 1,3,5-triazine derivatives is their excellent tolerability compared to rapalogs, which would favor their development as new therapies for TORopathies such as TSC.
Collapse
|
44
|
Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling. Proc Natl Acad Sci U S A 2020; 117:23617-23625. [PMID: 32879008 PMCID: PMC7519326 DOI: 10.1073/pnas.2008980117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mTORC1 complex provides a critical role in cell function, regulating a variety of processes including growth and autophagy. mTORC1 signaling is hyperactivated in a range of common diseases including cancer, epilepsy, and neurodegenerative disorders. Hence, mTORC1 signaling provides an important target for regulation in many contexts. Here, we show that decanoic acid, a key component of a widely used medicinal diet, reduces mTORC1 activity. We identify this in a tractable model system, and validate it in ex vivo rat brain tissue and in human iPSC-derived astrocytes from patients with a clinically relevant disease. Thus, we provide insight into an easily accessible therapeutic approach for a range of diseases. Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, Dictyostelium, we show that decanoic acid can decrease mTORC1 activity, under conditions of constant glucose and in the absence of insulin, measured by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). We determine that this effect of decanoic acid is dependent on a ubiquitin regulatory X domain-containing protein, mediating inhibition of a conserved Dictyostelium AAA ATPase, p97, a homolog of the human transitional endoplasmic reticulum ATPase (VCP/p97) protein. We then demonstrate that decanoic acid decreases mTORC1 activity in the absence of insulin and under high-glucose conditions in ex vivo rat hippocampus and in tuberous sclerosis complex (TSC) patient-derived astrocytes. Our data therefore indicate that dietary decanoic acid may provide a new therapeutic approach to down-regulate mTORC1 signaling.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Seizures can arise in neocortical, thalamocortical, limbic or brainstem networks. Here, we review recent genetic mechanisms implicated in focal and genetic generalized epilepsies (GGEs). RECENT FINDINGS Pathogenic variation in GAP activity toward RAGs 1 (GATOR1) complex genes (i.e., DEPDC5, NPRL2 and NPRL3) mainly result in focal epilepsies. They are associated with high rates of sudden unexpected death in epilepsy and malformations of cortical development (MCD), where "two-hits" in GATOR1-related pathways are also found in MCDs. Large-scale sequencing studies continue to reveal new genetic risk (germline or somatic) variants, and new genes relevant to epileptic encephalopathies (EEs). Genes previously associated with EEs, including GABAA receptor genes, are now known to play a role in both common focal and GGEs in individuals without intellectual disabilities. These findings suggest that there may be a common pathophysiological mechanism in GGEs and focal epilepsies. Finally, polygenic risk scores, based on common genetic variation, offer promise in helping to differentiate between GGEs and common forms of focal epilepsies. Genetic abnormalities are a significant cause of common sporadic epilepsies, epilepsies associated with inflammatory markers, and focal epilepsies with or without MCD. Future studies using genome sequencing may provide more answers to the remaining unresolved epilepsy cases.
Collapse
|
46
|
Anti-epileptic activity of daidzin in PTZ-induced mice model by targeting oxidative stress and BDNF/VEGF signaling. Neurotoxicology 2020; 79:150-163. [PMID: 32450180 DOI: 10.1016/j.neuro.2020.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
Epilepsy is a complex and multifactorial neurodegenerative disease described by recurrent seizures. Oxidative stress and dysregulation of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) are critical factors for the development of epilepsy. Daidzin is well-known for its effective anti-inflammatory and antioxidant potential for centuries. The present study was focused on exploring the anti-epileptic potential of daidzin in the pentylenetetrazole-induced mice model. Daidzin (1, 5, and 10 mg/kg) was administered in the acute study and the dose was optimized. Pretreatment with daidzin remarkably reduced the severity of epileptogenesis in a dose-dependent manner. Moreover, chronic epilepsy was induced in mice by administration of PTZ (35 mg/kg, i.p) every alternative day for 21 days. Results demonstrated that daidzin significantly prevented epileptogenesis and reversed histopathological changes in the hippocampus. It remarkably improved antioxidant (glutathione, glutathione sulfotransferase, superoxide dismutase, and catalase) levels while decreased MDA (malondialdehyde) and nitrite production in the brain. It remarkably improved the expressions of heme oxygenase-1 (HO-1) and BDNF while reduced the expression of VEGF. It remarkably prevented the neuronal apoptosis in the brain tissue. Additionally, spectroscopic analysis such as FTIR (Fourier transform infrared spectroscopy) and DSC (differential scanning calorimetry) revealed that daidzin remarkably prevented PTZ-induced protein damage. HPLC-UV spectrophotometry results demonstrated that there was no peak of aglycone daidzin (metabolite) in the brain sample which specify that the anticonvulsant effect of the compound is due to its direct entry into the brain tissue. Moreover, the molecular docking results showed that daidzin possesses a better binding affinity for ALDH2, estrogen receptor-β, P13k, AKT2, mTORC1, and HIF-1-α proteins. Taken together, the results of the present study showed that daidzin has remarkable neuroprotective and anti-epileptic properties through modulation of oxidative stress, BDNF/VEGF, and apoptotic signaling in the brain tissue of PTZ-kindled mice.
Collapse
|
47
|
Hodges SL, Lugo JN. Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res 2020; 161:106282. [PMID: 32036255 PMCID: PMC9205332 DOI: 10.1016/j.eplepsyres.2020.106282] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
Abstract
Existing therapies for epilepsy are primarily symptomatic and target mechanisms of neuronal transmission in order to restore the excitatory/inhibitory imbalance in the brain after seizures. However, approximately one third of individuals with epilepsy have medically refractory epilepsy and do not respond to available treatments. There is a critical need for the development of therapeutics that extend beyond manipulation of excitatory neurotransmission and target pathological changes underlying the cause of the disease. Epilepsy is a multifaceted condition, and it could be that effective treatment involves the targeting of several mechanisms. There is evidence for both dysregulated PI3K/Akt/mTOR (mTOR) signaling and heightened neuroinflammatory processes following seizures in the brain. Signaling via mTOR has been implicated in several epileptogenic processes, including synaptic plasticity mechanisms and changes in ion channel expression following seizures. Inflammatory signaling, such as increased synthesis of cytokines and other immune molecules, has also shown to play a significant role in the development of chronic epilepsy. mTOR pathway activation and immune signaling are known to interact in normal physiological states, as well as influence one another following seizures. Simultaneous inhibition of both processes could be a promising therapeutic avenue to prevent the development of chronic epilepsy by targeting two key pathological mechanisms implicated in epileptogenesis.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
48
|
Chen CJ, Sgritta M, Mays J, Zhou H, Lucero R, Park J, Wang IC, Park JH, Kaipparettu BA, Stoica L, Jafar-Nejad P, Rigo F, Chin J, Noebels JL, Costa-Mattioli M. Therapeutic inhibition of mTORC2 rescues the behavioral and neurophysiological abnormalities associated with Pten-deficiency. Nat Med 2019; 25:1684-1690. [PMID: 31636454 PMCID: PMC7082835 DOI: 10.1038/s41591-019-0608-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023]
Abstract
Dysregulation of the mammalian target of rapamycin (mTOR) signaling, which is mediated by two structurally and functionally distinct complexes, mTORC1 and mTORC2, has been implicated in several neurological disorders1-3. Individuals carrying loss-of-function mutations in the phosphatase and tensin homolog (PTEN) gene, a negative regulator of mTOR signaling, are prone to developing macrocephaly, autism spectrum disorder (ASD), seizures and intellectual disability2,4,5. It is generally believed that the neurological symptoms associated with loss of PTEN and other mTORopathies (for example, mutations in the tuberous sclerosis genes TSC1 or TSC2) are due to hyperactivation of mTORC1-mediated protein synthesis1,2,4,6,7. Using molecular genetics, we unexpectedly found that genetic deletion of mTORC2 (but not mTORC1) activity prolonged lifespan, suppressed seizures, rescued ASD-like behaviors and long-term memory, and normalized metabolic changes in the brain of mice lacking Pten. In a more therapeutically oriented approach, we found that administration of an antisense oligonucleotide (ASO) targeting mTORC2's defining component Rictor specifically inhibits mTORC2 activity and reverses the behavioral and neurophysiological abnormalities in adolescent Pten-deficient mice. Collectively, our findings indicate that mTORC2 is the major driver underlying the neuropathophysiology associated with Pten-deficiency, and its therapeutic reduction could represent a promising and broadly effective translational therapy for neurological disorders where mTOR signaling is dysregulated.
Collapse
Affiliation(s)
- Chien-Ju Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Martina Sgritta
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Jacqunae Mays
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Hongyi Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Rocco Lucero
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Jin Park
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - I-Ching Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Loredana Stoica
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey L Noebels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
49
|
Anticonvulsant action of a selective phosphatidylinositol-3-kinase inhibitor LY294002 in pentylenetetrazole-mediated convulsions in zebrafish. Epilepsy Res 2019; 157:106207. [DOI: 10.1016/j.eplepsyres.2019.106207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/18/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022]
|
50
|
Gericke B, Brandt C, Theilmann W, Welzel L, Schidlitzki A, Twele F, Kaczmarek E, Anjum M, Hillmann P, Löscher W. Selective inhibition of mTORC1/2 or PI3K/mTORC1/2 signaling does not prevent or modify epilepsy in the intrahippocampal kainate mouse model. Neuropharmacology 2019; 162:107817. [PMID: 31654704 DOI: 10.1016/j.neuropharm.2019.107817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/23/2022]
Abstract
Dysregulation of the PI3K/Akt/mTOR pathway has been implicated in several brain disorders, including epilepsy. Rapamycin and similar compounds inhibit mTOR. complex 1 and have been reported to decrease seizures, delay seizure development, or prevent epileptogenesis in different animal models of genetic or acquired epilepsies. However, data for acquired epilepsy are inconsistent, which, at least in part, may be due to the poor brain penetration and long brain persistence of rapamycin and the fact that it blocks only one of the two cellular mTOR complexes. Here we examined the antiepileptogenic or disease-modifying effects of two novel, brain-permeable and well tolerated 1,3,5-triazine derivatives, the ATP-competitive mTORC1/2 inhibitor PQR620 and the dual pan-PI3K/mTORC1/2 inhibitor PQR530 in the intrahippocampal kainate mouse model, in which spontaneous seizures develop after status epilepticus (SE). Following kainate injection, the two compounds were administered over 2 weeks at doses previously been shown to block mTORC1/2 or PI3K/mTORC1/2 in the mouse brain. When spontaneous seizures were recorded by continuous (24/7) video-EEG recording starting 6 weeks after termination of treatment, no effects on incidence or frequency of seizures were observed. Drug treatment suppressed the epilepsy-induced activation of the PI3K/Akt/mTOR pathway in the hippocampus, but granule cell dispersion in the dentate gyrus was not prevented. When epilepsy-associated behavioral alterations were determined 12-14 weeks after kainate, mice pretreated with PQR620 or PQR530 exhibited reduced anxiety-related behavior in the light-dark box, indicating a disease-modifying effect. Overall, the data indicate that mTORC1/C2 or PI3K/mTORC1/C2 inhibition may not be an antiepileptogenic strategy for SE-induced epilepsy.
Collapse
Affiliation(s)
- Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wiebke Theilmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Lisa Welzel
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Edith Kaczmarek
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Muneeb Anjum
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|