1
|
Gauffin O, Brand JS, Vidlin SH, Sartori D, Asikainen S, Català M, Chalabi E, Dedman D, Danilovic A, Duarte-Salles T, García Morales MT, Hiltunen S, Jödicke AM, Lazarevic M, Mayer MA, Miladinovic J, Mitchell J, Pistillo A, Ramírez-Anguita JM, Reyes C, Rudolph A, Sandberg L, Savage R, Schuemie M, Spasic D, Trinh NTH, Veljkovic N, Vujovic A, de Wilde M, Zekarias A, Rijnbeek P, Ryan P, Prieto-Alhambra D, Norén GN. Supporting Pharmacovigilance Signal Validation and Prioritization with Analyses of Routinely Collected Health Data: Lessons Learned from an EHDEN Network Study. Drug Saf 2023; 46:1335-1352. [PMID: 37804398 PMCID: PMC10684396 DOI: 10.1007/s40264-023-01353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Individual case reports are the main asset in pharmacovigilance signal management. Signal validation is the first stage after signal detection and aims to determine if there is sufficient evidence to justify further assessment. Throughout signal management, a prioritization of signals is continually made. Routinely collected health data can provide relevant contextual information but are primarily used at a later stage in pharmacoepidemiological studies to assess communicated signals. OBJECTIVE The aim of this study was to examine the feasibility and utility of analysing routine health data from a multinational distributed network to support signal validation and prioritization and to reflect on key user requirements for these analyses to become an integral part of this process. METHODS Statistical signal detection was performed in VigiBase, the WHO global database of individual case safety reports, targeting generic manufacturer drugs and 16 prespecified adverse events. During a 5-day study-a-thon, signal validation and prioritization were performed using information from VigiBase, regulatory documents and the scientific literature alongside descriptive analyses of routine health data from 10 partners of the European Health Data and Evidence Network (EHDEN). Databases included in the study were from the UK, Spain, Norway, the Netherlands and Serbia, capturing records from primary care and/or hospitals. RESULTS Ninety-five statistical signals were subjected to signal validation, of which eight were considered for descriptive analyses in the routine health data. Design, execution and interpretation of results from these analyses took up to a few hours for each signal (of which 15-60 minutes were for execution) and informed decisions for five out of eight signals. The impact of insights from the routine health data varied and included possible alternative explanations, potential public health and clinical impact and feasibility of follow-up pharmacoepidemiological studies. Three signals were selected for signal assessment, two of these decisions were supported by insights from the routine health data. Standardization of analytical code, availability of adverse event phenotypes including bridges between different source vocabularies, and governance around the access and use of routine health data were identified as important aspects for future development. CONCLUSIONS Analyses of routine health data from a distributed network to support signal validation and prioritization are feasible in the given time limits and can inform decision making. The cost-benefit of integrating these analyses at this stage of signal management requires further research.
Collapse
Affiliation(s)
| | | | | | | | | | - Martí Català
- Pharmaco- and Device Epidemiology, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Daniel Dedman
- Clinical Practice Research Datalink (CPRD), The Medicines and Healthcare Products Regulatory Agency, London, UK
| | | | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maria Teresa García Morales
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, CIBER de Epidemiología y Salud Pública, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Annika M Jödicke
- Pharmaco- and Device Epidemiology, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Milan Lazarevic
- Clinic for cardiac and transplant surgery, University Clinical Center Nis, Nis, Serbia
| | - Miguel A Mayer
- Hospital del Mar Medical Research Institute, Parc de Salut Mar, Barcelona, Spain
| | - Jelena Miladinovic
- Clinic for infectious diseases, University Clinical Center Nis, University Clinical Center Nis, Nis, Serbia
| | | | - Andrea Pistillo
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | | | - Carlen Reyes
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | | | | | - Ruth Savage
- Uppsala Monitoring Centre, Uppsala, Sweden
- Department of General Practice, University of Otago, Christchurch, New Zealand
| | - Martijn Schuemie
- Epidemiology Department, Johnson & Johnson, Titusville, NJ, USA
- Department of Biostatistics, UCLA, Los Angeles, CA, USA
| | - Dimitrije Spasic
- Clinic for cardiac and transplant surgery, University Clinical Center Nis, Nis, Serbia
| | - Nhung T H Trinh
- PharmacoEpidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Nevena Veljkovic
- Heliant Ltd, Belgrade, Serbia
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ankica Vujovic
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marcel de Wilde
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Peter Rijnbeek
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Patrick Ryan
- Epidemiology Department, Johnson & Johnson, Titusville, NJ, USA
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Daniel Prieto-Alhambra
- Pharmaco- and Device Epidemiology, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
2
|
Wadhwa D, Kumar K, Batra S, Sharma S. Automation in signal management in pharmacovigilance-an insight. Brief Bioinform 2020; 22:6041166. [PMID: 33333548 DOI: 10.1093/bib/bbaa363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Drugs are the imperial part of modern society, but along with their therapeutic effects, drugs can also cause adverse effects, which can be mild to morbid. Pharmacovigilance is the process of collection, detection, assessment, monitoring and prevention of adverse drug events in both clinical trials as well as in the post-marketing phase. The recent trends in increasing unknown adverse events, known as signals, have raised the need to develop an ideal system for monitoring and detecting the potential signals timely. The process of signal management comprises of techniques to identify individual case safety reports systematically. Automated signal detection is highly based upon the data mining of the spontaneous reporting system such as reports from health care professional, observational studies, medical literature or from social media. If a signal is not managed properly, it can become an identical risk associated with the drug which can be hazardous for the patient safety and may have fatal outcomes which may impact health care system adversely. Once a signal is detected quantitatively, it can be further processed by the signal management team for the qualitative analysis and further evaluations. The main components of automated signal detection are data extraction, data acquisition, data selection, and data analysis and data evaluation. This system must be developed in the correct format and context, which eventually emphasizes the quality of data collected and leads to the optimal decision-making based upon the scientific evaluation.
Collapse
Affiliation(s)
- Diksha Wadhwa
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Keshav Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sonali Batra
- Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Sumit Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
3
|
Sobel RE, Blackwell W, Fram DM, Bate A. A Novel Approach to Visualize Risk Minimization Effectiveness: Peeping at the 2012 UK Proton Pump Inhibitor Label Change Using a Rapid Cycle Analysis Tool. Drug Saf 2019; 42:1365-1376. [PMID: 31368080 DOI: 10.1007/s40264-019-00853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Evaluation of risk minimization (RM) actions is an emerging area of regulatory science, often without tools to rapidly and systematically assess their effectiveness. PURPOSE The aim of this study was to evaluate whether chronographs, typically used for rapid signal detection in observational longitudinal databases, could be used to visualize RM effectiveness. We evaluated the UK Medicines and Healthcare products Regulatory Agency (MHRA) 2012 proton-pump inhibitors (PPIs) class-wide label change that warned of increased risk of bone fracture, advocated to limit duration of use, and recommended to treat those at risk for osteoporosis according to clinical guidelines. METHODS The cohort consisted of adults aged 18 years and above prescribed one of the five PPIs available in the UK The Health Improvement Network (THIN) database through September 2015. Four chronographs were compared using drug episodes that started before (PRE) and after (POST) the 20 April 2012 MHRA warning; fracture and osteoporosis were evaluated separately. Chronographs show a measure of observed/expected events, the Information Component (IC) and 95% credibility interval (CI), calculated at monthly time intervals relative to the start date of a prescription, and summed to estimate IC over a 3-year period; IC > 0 indicates observed > expected events. We hypothesized that chronographs may assess RM effectiveness if stratified by PRE/POST an RM intervention such as a label change. RESULTS There were 1,588,973 and 664,601 PPI users in the PRE and POST periods, respectively. We observed a 4.6% reduction in the proportion of long-term PPI episodes and a 4.1% reduction in the overall proportion of the THIN population using PPIs. Compared with the PRE chronographs, when both visually comparing and when examining the summed ICs for fracture in the POST period, a significant reduction was observed overall (IC = 0.024 [95% CI 0.015 to 0.33] PRE vs - 0.141 [95% CI - 0.162 to - 0.120] POST), suggesting less observed events than expected, and prior to PPI start, suggestive of strong channeling (IC = - 0.027 [95% CI - 0.037 to - 0.017] PRE vs - 0.291 [95% CI - 0.308 to - 0.274] POST). Results were qualitatively similar for osteoporosis. CONCLUSIONS This pilot demonstrated a novel application of a visual, rapid analysis technique to assess RM effectiveness, and supported a hypothesis that prescribers altered some behaviors after the MHRA label change, such as channeling patients at risk of fracture or osteoporosis away from PPI use and potentially reducing fracture outcomes. Limitations include lack of confounding control and outcomes defined only by diagnosis code. Results demonstrate the potential to use large healthcare databases with chronographs to rapidly assess RM effectiveness, similar to signal detection in pharmacovigilance, and may help design more comprehensive RM evaluation studies.
Collapse
Affiliation(s)
- Rachel E Sobel
- Epidemiology/Worldwide Research and Development, Pfizer Inc, 235 East 42nd St. MS# 219-9-1, New York, NY, 10017, USA.
| | | | - David M Fram
- Commonwealth Informatics Inc, a Genpact Company, Waltham, MA, USA
| | - Andrew Bate
- Epidemiology/Worldwide Research and Development, Pfizer Inc, 235 East 42nd St. MS# 219-9-1, New York, NY, 10017, USA
| |
Collapse
|