1
|
Amaral J, Silva Costa I, Ribeiro J, Costa C, Palavra F, Pereira C, Robalo C. Neonatal seizures: A cohort evaluation at a pediatric referral center. Epileptic Disord 2025. [PMID: 39982217 DOI: 10.1002/epd2.20331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/04/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVE Neonatal seizures have an incidence of 1-5/1000 newborns. Their clinical, etiology, and therapeutic characterization is a clinical challenge. The objective of this study was to characterize neonatal seizures recorded over 6 years, considering the clinical presentation, management, and follow-up. METHODS A retrospective analysis of clinical, neurophysiological (video-electroencephalogram), and imaging data of all newborns who had suspected neonatal seizures with electroencephalographic findings (paroxysmal activity, electrographic-only seizures, and/or electroclinical seizures) was performed. The study considered all cases that occurred between January 2010 and December 2015, with the respective follow-up equal to or longer than 7 years. RESULTS Seizures were diagnosed in 85 newborns, 87.1% within the first 48 h of life. In 72.9% of suspected cases, only paroxysmal activity in the v-EEG was recorded, in another 16.5% electrical-only seizures were found, and in 10.6% there were electroclinical seizures. Epilepsy was diagnosed in 23.5% of cases, with 14% currently maintaining therapy. Motor sequelae occurred in 44.3% of children and 41.4% had normal neurological examination. There were also 11.4% of deaths in the neonatal period. SIGNIFICANCE Neonatal seizures occur mostly in the first 48 h of life and mainly due to hypoxic-ischemic injuries. During follow-up, we recorded epilepsy in ¼ of patients.
Collapse
Affiliation(s)
- Joana Amaral
- Center for Child Development - Neuropediatrics Unit, Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Inês Silva Costa
- Pediatrics Department, Unidade Local de Saúde de Visão Dão-Lafões, Viseu, Portugal
| | - Joana Ribeiro
- Center for Child Development - Neuropediatrics Unit, Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Cármen Costa
- Center for Child Development - Neuropediatrics Unit, Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Filipe Palavra
- Center for Child Development - Neuropediatrics Unit, Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Laboratory of Pharmocology and Experimental Therapeutics, Coimbra, Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Cristina Pereira
- Center for Child Development - Neuropediatrics Unit, Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Refractory Epilepsy Reference Unit, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Neurophisiology, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Conceição Robalo
- Center for Child Development - Neuropediatrics Unit, Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Refractory Epilepsy Reference Unit, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Neurophisiology, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Stephens CM, Proietti J, Mathieson SR, Livingstone V, McNamara B, McSweeney N, O'Mahony O, Walsh BH, Murray DM, Boylan GB. Incidence and Predictors of Later Epilepsy in Neonates with Encephalopathy: The Impact of Electrographic Seizures. Epilepsia Open 2025; 10:155-167. [PMID: 39676742 PMCID: PMC11803292 DOI: 10.1002/epi4.13089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVES To determine the incidence of later epilepsy in full-term infants with neonatal encephalopathy (NE) who undergo continuous electroencephalography (cEEG) monitoring in the neonatal period and to identify potential predictors of later epilepsy both in infants with and without electrographic neonatal seizures (ENS). METHODS This was a retrospective observational study performed at Cork University Maternity Hospital, Cork, Ireland, between 2003 and 2019. All term infants with NE had a minimum of 2 h of cEEG monitoring in the neonatal period. ENS were identified via cEEG monitoring. Pediatric medical charts were reviewed to determine if epilepsy developed after the neonatal period and to determine potential predictors of epilepsy in infants both with and without ENS. RESULTS Two hundred and eighty infants were included. The overall incidence rate of epilepsy was 17.55 per 1000 person-years (95% CI: 10.91 to 28.23). In infants with ENS (n = 82), the incidence rate was 39.27 per 1000 person-years (95% CI: 22.30 to 69.16). In infants without ENS (n = 198), the incidence rate was 7.54 per 1000 person-years (95% CI: 3.14 to 18.12). The incidence rate was significantly higher in the ENS group compared to the non-ENS group (p-value = 0.002). Several potential predictors for the development of later epilepsy were identified including infants delivered vaginally, low Apgar scores at 1 and 5 min, severe HIE diagnosis, presence of ENS, a severely abnormal EEG background and an abnormal brain MRI. SIGNIFICANCE Following NE, term infants are at risk of epilepsy with a significantly higher incidence rate in infants who experience ENS compared to those who did not. Close follow-up is required in both groups well into the childhood period. PLAIN LANGUAGE SUMMARY This study aimed to determine the occurrence of epilepsy in children who were monitored for seizures in the newborn period. The occurrence of epilepsy was higher in infants who experienced seizures in the newborn period compared to those who did not. Several potential predictors of later epilepsy were identified in both groups of infants (those with and without seizures in the newborn period). Both groups of infants require close follow-up in childhood.
Collapse
Affiliation(s)
- Carol M. Stephens
- INFANT Research CentreUniversity College CorkCorkIreland
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Jacopo Proietti
- INFANT Research CentreUniversity College CorkCorkIreland
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Sean R. Mathieson
- INFANT Research CentreUniversity College CorkCorkIreland
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Vicki Livingstone
- INFANT Research CentreUniversity College CorkCorkIreland
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Brian McNamara
- Department of NeurophysiologyCork University HospitalCorkIreland
| | - Niamh McSweeney
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
- Department of Paediatric NeurologyCork University HospitalCorkIreland
| | - Olivia O'Mahony
- Department of Paediatric NeurologyCork University HospitalCorkIreland
| | - Brian H. Walsh
- INFANT Research CentreUniversity College CorkCorkIreland
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
- Department of NeonatologyCork University Maternity HospitalCorkIreland
| | - Deirdre M. Murray
- INFANT Research CentreUniversity College CorkCorkIreland
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Geraldine B. Boylan
- INFANT Research CentreUniversity College CorkCorkIreland
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| |
Collapse
|
3
|
Kontou A, Agakidou E, Chatziioannidis I, Chotas W, Thomaidou E, Sarafidis K. Antibiotics, Analgesic Sedatives, and Antiseizure Medications Frequently Used in Critically Ill Neonates: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:871. [PMID: 39062320 PMCID: PMC11275925 DOI: 10.3390/children11070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Antibiotic, analgesic sedative, and antiseizure medications are among the most commonly used medications in preterm/sick neonates, who are at high risk of nosocomial infections, central nervous system complications, and are exposed to numerous painful/stressful procedures. These severe and potentially life-threatening complications may have serious short- and long-term consequences and should be prevented and/or promptly treated. The reported variability in the medications used in neonates indicates the lack of adequate neonatal studies regarding their effectiveness and safety. Important obstacles contributing to inadequate studies in preterm/sick infants include difficulties in obtaining parental consent, physicians' unwillingness to recruit preterm infants, the off-label use of many medications in neonates, and other scientific and ethical concerns. This review is an update on the use of antimicrobials (antifungals), analgesics (sedatives), and antiseizure medications in neonates, focusing on current evidence or knowledge gaps regarding their pharmacokinetics, indications, safety, dosage, and evidence-based guidelines for their optimal use in neonates. We also address the effects of early antibiotic use on the intestinal microbiome and its association with long-term immune-related diseases, obesity, and neurodevelopment (ND). Recommendations for empirical treatment and the emergence of pathogen resistance to antimicrobials and antifungals are also presented. Finally, future perspectives on the prevention, modification, or reversal of antibiotic resistance are discussed.
Collapse
Affiliation(s)
- Angeliki Kontou
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (E.A.); (I.C.); (K.S.)
| | - Eleni Agakidou
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (E.A.); (I.C.); (K.S.)
| | - Ilias Chatziioannidis
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (E.A.); (I.C.); (K.S.)
| | - William Chotas
- Department of Neonatology, University of Vermont, Burlington, VT 05405, USA
| | - Evanthia Thomaidou
- Department of Anesthesia and Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, 54621 Thessaloniki, Greece;
| | - Kosmas Sarafidis
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (E.A.); (I.C.); (K.S.)
| |
Collapse
|
4
|
Castro Conde JR, González Campo C, González Barrios D, Reyes Millán B, Díaz González CL, Jiménez Sosa A. High Effectiveness of Midazolam and Lidocaine in the Treatment of Acute Neonatal Seizures. J Clin Neurophysiol 2024; 41:450-457. [PMID: 37099703 PMCID: PMC11210945 DOI: 10.1097/wnp.0000000000001013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
PURPOSE To assess the clinical effectiveness of treating acute seizures with midazolam and lidocaine infusion. METHODS This single-center historical cohort study included 39 term neonates with electrographic seizures who underwent treatment with midazolam (1st line) and lidocaine (2nd line). Therapeutic response was measured using continuous video-EEG monitoring. The EEG measurements included total s eizure burden (minutes), maximum ictal fraction (minutes/hour), and EEG-background (normal/slightly abnormal vs. abnormal). Treatment response was considered good (seizure control with midazolam infusion), intermediate (need to add lidocaine to the control), or no response. Using clinical assessments supplemented by BSID-III and/or ASQ-3 at 2 to 9 years old age, neurodevelopment was classified as normal, borderline, or abnormal. RESULTS A good therapeutic response was obtained in 24 neonates, an intermediate response in 15, and no response in any of the neonates. Babies with good response showed lower values in maximum ictal fraction compared with those with intermediate response (95% CI: 5.85-8.64 vs. 9.14-19.14, P = 0.002). Neurodevelopment was considered normal in 24 children, borderline in five, and abnormal in other 10 children. Abnormal neurodevelopment was significantly associated with an abnormal EEG background, maximum ictal fraction >11 minutes, and total s eizure burden >25 minutes (odds ratio 95% CI: 4.74-1708.52, P = 0.003; 1.72-200, P = 0.016; 1.72-142.86, P = 0.026, respectively) but not with the therapeutic response. Serious adverse effects were not recorded. CONCLUSIONS This retrospective study suggests that the midazolam/lidocaine association could potentially be efficacious in decreasing seizure burden in term neonates with acute seizures. These results would justify testing the midazolam/lidocaine combination as a first-line treatment for neonatal seizures in future clinical trials.
Collapse
Affiliation(s)
- José Ramón Castro Conde
- Pediatric Department, Faculty of Medicine, Universidad de La Laguna, S/C Tenerife, Spain
- Department of Neonatology, Hospital Universitario de Canarias, S/C Tenerife, Spain
| | - Candelaria González Campo
- Pediatric Department, Faculty of Medicine, Universidad de La Laguna, S/C Tenerife, Spain
- Department of Neonatology, Hospital Universitario de Canarias, S/C Tenerife, Spain
| | - Desiré González Barrios
- Department of Neonatology, Hospital Universitario Nuestra Señora de la Candelaria, S/C Tenerife, Spain
| | - Beatriz Reyes Millán
- Neuropediatrics Unit, Department of Pediatrics, Hospital Universitario Nuestra Señora de la Candelaria, S/C Tenerife, Spain; and
| | | | | |
Collapse
|
5
|
Sandoval Karamian AG, DiGiovine MP, Massey SL. Neonatal Seizures. Pediatr Rev 2024; 45:381-393. [PMID: 38945992 DOI: 10.1542/pir.2023-006016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 07/02/2024]
Affiliation(s)
- Amanda G Sandoval Karamian
- Division of Neurology, Department of Pediatrics, University of Utah School of Medicine and Primary Children's Hospital, Salt Lake City, UT
| | - Marissa P DiGiovine
- Division of Neurology, Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Shavonne L Massey
- Division of Neurology, Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
6
|
Liddiard GT, Suryavanshi PS, Glykys J. Enhancing GABAergic Tonic Inhibition Reduces Seizure-Like Activity in the Neonatal Mouse Hippocampus and Neocortex. J Neurosci 2024; 44:e1342232023. [PMID: 38176909 PMCID: PMC10869160 DOI: 10.1523/jneurosci.1342-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Approximately one-third of neonatal seizures do not respond to first-line anticonvulsants, including phenobarbital, which enhances phasic inhibition. Whether enhancing tonic inhibition decreases seizure-like activity in the neonate when GABA is mainly depolarizing at this age is unknown. We evaluated if increasing tonic inhibition using THIP [4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, gaboxadol], a δ-subunit-selective GABAA receptor agonist, decreases seizure-like activity in neonatal C57BL/6J mice (postnatal day P5-8, both sexes) using acute brain slices. Whole-cell patch-clamp recordings showed that THIP enhanced GABAergic tonic inhibitory conductances in layer V neocortical and CA1 pyramidal neurons and increased their rheobase without altering sEPSC characteristics. Two-photon calcium imaging demonstrated that enhancing the activity of extrasynaptic GABAARs decreased neuronal firing in both brain regions. In the 4-aminopyridine and the low-Mg2+ model of pharmacoresistant seizures, THIP reduced epileptiform activity in the neocortex and CA1 hippocampal region of neonatal and adult brain slices in a dose-dependent manner. We conclude that neocortical layer V and CA1 pyramidal neurons have tonic inhibitory conductances, and when enhanced, they reduce neuronal firing and decrease seizure-like activity. Therefore, augmenting tonic inhibition could be a viable approach for treating neonatal seizures.
Collapse
Affiliation(s)
- G T Liddiard
- Stead Family Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City 52242, Iowa
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City 52242, Iowa
| | - P S Suryavanshi
- Stead Family Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City 52242, Iowa
| | - J Glykys
- Stead Family Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City 52242, Iowa
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City 52242, Iowa
- Department of Neurology, The University of Iowa, Iowa City 52242, Iowa
| |
Collapse
|
7
|
Falsaperla R, Collotta AD, Sortino V, Marino SD, Marino S, Pisani F, Ruggieri M. The Use of Midazolam as an Antiseizure Medication in Neonatal Seizures: Single Center Experience and Literature Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1285-1294. [PMID: 37291779 DOI: 10.2174/1871527322666230608105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Existing therapeutic alternatives for neonatal crises have expanded in recent decades, but no consensus has been reached on protocols based on neonatal seizures. In particular, little is known about the use of midazolam in newborns. AIM The aim of our study is to evaluate the response to midazolam, the appearance of side effects, and their impact on therapeutic decisions. METHODS This is a STROBE-conformed retrospective observational study of 10 patients with neonatal seizures unresponsive to common antiseizure drugs, admitted to San Marco University Hospital's neonatal intensive care (Catania, Italy) from September 2015 to October 2022. In our database search, 36 newborns were treated with midazolam, but only ten children met the selection criteria for this study. RESULTS Response was assessed both clinically and electrographic. Only 4 patients at the end of the treatment showed a complete electroclinical response; they were full-term infants with a postnatal age greater than 7 days. Non-responders and partial responders are all premature (4/10) or full-term neonates who started therapy in the first days of life (< 7th day) (2/10). CONCLUSION Neonatal seizures in preterm show a lower response rate to midazolam than seizures in full-term infants, with poorer prognosis. Liver and renal function and central nervous system development are incomplete in premature infants and the first days of life. In this study, we show that midazolam, a short-acting benzodiazepine, appears to be most effective in full-term infants and after 7 days of life.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
| | - Ausilia Desiree Collotta
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
| | - Vincenzo Sortino
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
| | - Simona Domenica Marino
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
| | - Silvia Marino
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
| | - Francesco Pisani
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Martino Ruggieri
- Unit of Clinical Pediatrics, Department of Clinical and Experimental Medicine, AOU Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| |
Collapse
|
8
|
Perucca E, Bialer M, White HS. New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: I. Role of GABA as a Modulator of Seizure Activity and Recently Approved Medications Acting on the GABA System. CNS Drugs 2023; 37:755-779. [PMID: 37603262 PMCID: PMC10501955 DOI: 10.1007/s40263-023-01027-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/22/2023]
Abstract
γ-Aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter in the mammalian brain and has been found to play an important role in the pathogenesis or the expression of many neurological diseases, including epilepsy. Although GABA can act on different receptor subtypes, the component of the GABA system that is most critical to modulation of seizure activity is the GABAA-receptor-chloride (Cl-) channel complex, which controls the movement of Cl- ions across the neuronal membrane. In the mature brain, binding of GABA to GABAA receptors evokes a hyperpolarising (anticonvulsant) response, which is mediated by influx of Cl- into the cell driven by its concentration gradient between extracellular and intracellular fluid. However, in the immature brain and under certain pathological conditions, GABA can exert a paradoxical depolarising (proconvulsant) effect as a result of an efflux of chloride from high intracellular to lower extracellular Cl- levels. Extensive preclinical and clinical evidence indicates that alterations in GABAergic inhibition caused by drugs, toxins, gene defects or other disease states (including seizures themselves) play a causative or contributing role in facilitating or maintaning seizure activity. Conversely, enhancement of GABAergic transmission through pharmacological modulation of the GABA system is a major mechanism by which different antiseizure medications exert their therapeutic effect. In this article, we review the pharmacology and function of the GABA system and its perturbation in seizure disorders, and highlight how improved understanding of this system offers opportunities to develop more efficacious and better tolerated antiseizure medications. We also review the available data for the two most recently approved antiseizure medications that act, at least in part, through GABAergic mechanisms, namely cenobamate and ganaxolone. Differences in the mode of drug discovery, pharmacological profile, pharmacokinetic properties, drug-drug interaction potential, and clinical efficacy and tolerability of these agents are discussed.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia.
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Welzel B, Johne M, Löscher W. Bumetanide potentiates the anti-seizure and disease-modifying effects of midazolam in a noninvasive rat model of term birth asphyxia. Epilepsy Behav 2023; 142:109189. [PMID: 37037061 DOI: 10.1016/j.yebeh.2023.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Birth asphyxia and the resulting hypoxic-ischemic encephalopathy (HIE) are highly associated with perinatal and neonatal death, neonatal seizures, and an adverse later-life outcome. Currently used drugs, including phenobarbital and midazolam, have limited efficacy to suppress neonatal seizures. There is a medical need to develop new therapies that not only suppress neonatal seizures but also prevent later-life consequences. We have previously shown that the loop diuretic bumetanide does not potentiate the effects of phenobarbital in a rat model of birth asphyxia. Here we compared the effects of bumetanide (0.3 or 10 mg/kg i.p.), midazolam (1 mg/kg i.p.), and a combination of bumetanide and midazolam on neonatal seizures and later-life outcomes in this model. While bumetanide at either dose was ineffective when administered alone, the higher dose of bumetanide markedly potentiated midazolam's effect on neonatal seizures. Median bumetanide brain levels (0.47-0.53 µM) obtained with the higher dose were in the range known to inhibit the Na-K-Cl-cotransporter NKCC1 but it remains to be determined whether brain NKCC1 inhibition was underlying the potentiation of midazolam. When behavioral and cognitive alterations were examined over three months after asphyxia, treatment with the bumetanide/midazolam combination, but not with bumetanide or midazolam alone, prevented impairment of learning and memory. Furthermore, the combination prevented the loss of neurons in the dentate hilus and aberrant mossy fiber sprouting in the CA3a area of the hippocampus. The molecular mechanisms that explain that bumetanide potentiates midazolam but not phenobarbital in the rat model of birth asphyxia remain to be determined.
Collapse
Affiliation(s)
- Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| |
Collapse
|
10
|
Welzel B, Schmidt R, Kirchhoff L, Gramer M, Löscher W. The loop diuretic torasemide but not azosemide potentiates the anti-seizure and disease-modifying effects of midazolam in a rat model of birth asphyxia. Epilepsy Behav 2023; 139:109057. [PMID: 36586153 DOI: 10.1016/j.yebeh.2022.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Loop diuretics such as furosemide and bumetanide, which act by inhibiting the Na-K-2Cl cotransporter NKCC2 at the thick ascending limb of the loop of Henle, have been shown to exert anti-seizure effects. However, the exact mechanism of this effect is not known. For bumetanide, it has been suggested that inhibition of the NKCC isoform NKCC1 in the membrane of brain neurons may be involved; however, NKCC1 is expressed by virtually all cell types in the brain, which makes any specific targeting of neuronal NKCC1 by bumetanide impossible. In addition, bumetanide only poorly penetrates the brain. We have previously shown that loop diuretics azosemide and torasemide also potently inhibit NKCC1. In contrast to bumetanide and furosemide, azosemide and torasemide lack a carboxylic group, which should allow them to better penetrate through biomembranes by passive diffusion. Because of the urgent medical need to develop new treatments for neonatal seizures and their adverse outcome, we evaluated the effects of azosemide and torasemide, administered alone or in combination with phenobarbital or midazolam, in a rat model of birth asphyxia and neonatal seizures. Neither diuretic suppressed the seizures when administered alone but torasemide potentiated the anti-seizure effect of midazolam. Brain levels of torasemide were below those needed to inhibit NKCC1. In addition to suppressing seizures, the combination of torasemide and midazolam, but not midazolam alone, prevented the cognitive impairment of the post-asphyxial rats at 3 months after asphyxia. Furthermore, aberrant mossy fiber sprouting in the hippocampus was more effectively prevented by the combination. We assume that either an effect on NKCC1 at the blood-brain barrier and/or cells in the periphery or the NKCC2-mediated diuretic effect of torasemide are involved in the present findings. Our data suggest that torasemide may be a useful option for improving the treatment of neonatal seizures and their adverse outcome.
Collapse
Affiliation(s)
- Björn Welzel
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Ricardo Schmidt
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Larsen Kirchhoff
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Martina Gramer
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| |
Collapse
|
11
|
Welzel B, Schmidt R, Johne M, Löscher W. Midazolam Prevents the Adverse Outcome of Neonatal Asphyxia. Ann Neurol 2023; 93:226-243. [PMID: 36054632 DOI: 10.1002/ana.26498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Birth asphyxia (BA) is the most frequent cause of neonatal death as well as central nervous system (CNS) injury. BA is often associated with neonatal seizures, which only poorly respond to anti-seizure medications and may contribute to the adverse neurodevelopmental outcome. Using a non-invasive rat model of BA, we have recently reported that the potent benzodiazepine, midazolam, prevents neonatal seizures in ~50% of rat pups. In addition to its anti-seizure effect, midazolam exerts anti-inflammatory actions, which is highly relevant for therapeutic intervention following BA. The 2 major aims of the present study were to examine (1) whether midazolam reduces the adverse outcome of BA, and (2) whether this effect is different in rats that did or did not exhibit neonatal seizures after drug treatment. METHODS Behavioral and cognitive tests were performed over 14 months after asphyxia, followed by immunohistochemical analyses. RESULTS All vehicle-treated rats had seizures after asphyxia and developed behavioral and cognitive abnormalities, neuroinflammation in gray and white matter, neurodegeneration in the hippocampus and thalamus, and hippocampal mossy fiber sprouting in subsequent months. Administration of midazolam (1 mg/kg i.p.) directly after asphyxia prevented post-asphyctic seizures in ~50% of the rats and resulted in the prevention or decrease of neuroinflammation and the behavioral, cognitive, and neurodegenerative consequences of asphyxia. Except for neurodegeneration in the thalamus, seizures did not seem to contribute to the adverse outcome of asphyxia. INTERPRETATION The disease-modifying effect of midazolam identified here strongly suggests that this drug provides a valuable option for improving the treatment and outcome of BA. ANN NEUROL 2023;93:226-243.
Collapse
Affiliation(s)
- Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
12
|
Pedroza-García KA, Calderón-Vallejo D, Quintanar JL. Neonatal Hypoxic-Ischemic Encephalopathy: Perspectives of Neuroprotective and Neuroregenerative Treatments. Neuropediatrics 2022; 53:402-417. [PMID: 36030792 DOI: 10.1055/s-0042-1755235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a serious condition that could have deleterious neurological outcomes, such as cerebral palsy, neuromotor disability, developmental disability, epilepsy, and sensitive or cognitive problems, and increase the risk of death in severe cases. Once HIE occurs, molecular cascades are triggered favoring the oxidative stress, excitotoxicity, and inflammation damage that promote cell death via apoptosis or necrosis. Currently, the therapeutic hypothermia is the standard of care in HIE; however, it has a small window of action and only can be used in children of more than 36 gestational weeks; for this reason, it is very important to develop new therapies to prevent the progression of the hypoxic-ischemic injury or to develop neuroregenerative therapies in severe HIE cases. The objective of this revision is to describe the emerging treatments for HIE, either preventing cell death for oxidative stress, excitotoxicity, or exacerbated inflammation, as well as describing a new therapeutic approach for neuroregeneration, such as mesenchymal stem cells, brain-derived neurotrophic factor, and gonadotropin realizing hormone agonists.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.,Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
13
|
Palaparthy V, Kumar M, Rebekah G, Thomas N. Comparing the effect of different loading doses of phenobarbitone on serum phenobarbitone levels in babies with neonatal seizures and effect of therapeutic hypothermia on phenobarbitone levels. J Trop Pediatr 2022; 68:6712682. [PMID: 36150145 DOI: 10.1093/tropej/fmac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND With current recommendation for phenobarbitone dosing, we have noted that babies are extremely sedated with elevated serum phenobarbitone levels. We postulate that asphyxiated neonates with hypoxic liver injury have impaired drug metabolism and renal injury affects drug elimination, thus elevating serum drug levels. Therapeutic hypothermia (TH) could further affect the drug levels. OBJECTIVE To determine the serum levels of the phenobarbitone in babies receiving different loading doses of phenobarbitone for neonatal seizures and to study the effect of asphyxia and TH on drug levels. DESIGN Prospective observational cohort study. MATERIAL AND METHODS Term neonates with seizures of any cause were given phenobarbitone up to a maximum loading of 40 mg/kg followed by maintenance dose of 5 mg/kg/day. Serum phenobarbitone levels were assessed after 4 h of the initial loading dose and subsequently at 24, 48 and 72 h from the time after maximum loading dose. Babies were divided into three groups Group 1 (HIE + TH-hypoxic ischemic encephalopathy undergoing TH), Group 2 (HIE - TH-hypoxic ischemic encephalopathy without TH) and Group 3 (non-HIE group). RESULTS A total of 47 babies completed the study. Twenty-three (49%) received 20 mg/kg, 14 (30%) received 30 mg/kg and 10 (21%) received 40 mg per kg of phenobarbitone as loading dose. HIE was the major cause of seizures 28 (59%) followed by hypoglycemia 7 (14%), cerebral malformations 4 (8%), inborn errors of metabolism 2 (4%) and hypocalcemia 1 (2%) while the cause of seizures was not known in 6 (13%). Median (IQR) Phenobarbitone levels at 72 h in babies who received 20 mg/kg loading dose of phenobarbitone was 46.72 (44.02-50.49) mcg/ml in HIE + TH group, 40.53 (28.66-65.09) mcg/ml in HIE - TH group and 49 (37-65) mcg/ml in non-HIE group. After a loading dose of 30 mg/kg, phenobarbitone level was 63.76 (59.5-65.94) mcg/ml in HIE + TH group, 42.5 (34.75-48.75) mcg/ml in HIE - TH group and 42.07 (40-49.05) mcg/ml in non-HIE group. After 40 mg/kg loading dose, it was 62.3 (60.2-64.9) mcg/ml in HIE + TH group, 57.0 (49.8-60.2) mcg/ml in HIE - TH group and 48.15 (40.8-50.97) mcg/ml in non-HIE group. In babies who received >20 mg/kg loading dose, 100% of HIE + TH, 80% of HIE - TH and 60% of non-HIE had supratherapeutic levels of phenobarbitone. CONCLUSION At higher loading doses of 30 and 40 mg/kg, steady state concentration of serum phenobarbitone is higher in babies with hypoxic ischemic encephalopathy who underwent TH than in babies with non-HIE causes of seizures. Loading dose beyond 20 mg/kg should be used with close monitoring of serum drug level.
Collapse
Affiliation(s)
- Vinod Palaparthy
- Department of Neonatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Manish Kumar
- Department of Neonatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Grace Rebekah
- Department of Neonatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Niranjan Thomas
- Department of Neonatology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
14
|
Diagnosis and Management of Seizures in the Preterm Infant. Semin Pediatr Neurol 2022; 42:100971. [PMID: 35868735 DOI: 10.1016/j.spen.2022.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022]
Abstract
The risk of seizure is increased in premature neonates compared to full term infants, with a distinct profile of etiologies, timing and character. Despite improvements in neonatal care, preterm infants with seizure continue to have higher risk of abnormal neurodevelopmental outcomes when compared to preterm infants without seizures, or to full term infants with seizures. Very limited evidence guides the care of this challenging population, therefore, management of the preterm neonate with seizure is largely extrapolated from the care of full-term neonates. A critical need exists for well-designed clinical trials investigating and validating the safety, efficacy, and outcomes of seizure management in this vulnerable population.
Collapse
|
15
|
Vawter-Lee M, Natarajan N, Rang K, Horn PS, Pardo AC, Thomas CW. Topiramate Is Safe for Refractory Neonatal Seizures: A Multicenter Retrospective Cohort Study of Necrotizing Enterocolitis Risk. Pediatr Neurol 2022; 129:7-13. [PMID: 35131568 DOI: 10.1016/j.pediatrneurol.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND A previously published, single-institution, case series suggested an association between topiramate administration in neonates and subsequent development of necrotizing enterocolitis (NEC). This contradicted our more extensive experiences using topiramate in this population. We therefore studied safety and tolerability of topiramate for treating refractory neonatal seizures, hypothesizing that the risk of developing NEC following topiramate exposure was low and that most infants tolerate topiramate. METHODS This multicenter retrospective cohort study included seventy-five neonates who received topiramate to treat seizures from January 2011 to October 2019 at three geographically diverse level IV neonatal intensive care units affiliated with pediatric tertiary hospitals. Data included demographics, birth history, seizure etiology, treatment response, side effects, and occurrence and details of NEC. RESULTS Three of seventy-five infants (4%) developed NEC following topiramate exposure. These infants did not differ in gestational age, birth weight, seizure etiology, postmenstrual age, weight when topiramate was initiated, or dosing of topiramate. Topiramate was well tolerated. Only three infants (4%) discontinued due to side effects. The most common side effect (20%) was weight loss (typically <5%). Topiramate was felt to be efficacious (61%). Most infants (72%) continued topiramate when discharged. CONCLUSIONS Our multicenter, 75-infant study demonstrated that development of NEC after treatment with topiramate was rare (4%) and refutes prior literature suggesting an association. Topiramate was felt to be efficacious and was well tolerated. Although limited by retrospective design, study data are broadly applicable and support thoughtful use of topiramate as a safe, reasonable option for treating refractory neonatal seizures.
Collapse
Affiliation(s)
- Marissa Vawter-Lee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Niranjana Natarajan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington; Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, Washington
| | - Kelly Rang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul S Horn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrea C Pardo
- Division of Pediatric Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Cameron W Thomas
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
16
|
Abstract
Seizures are the abnormal, excessive, synchronous discharge of cortical neurons that results in injury to the brain. Seizures presenting in the neonatal period may be the first and only clue to underlying neurological pathology. Despite advances in care, the mortality rate for infants experiencing neonatal seizures is still as high as 20 percent, with up to 65 percent of infants with seizures demonstrating significant morbidity. Early identification and treatment of the seizure or modifiable underlying etiology greatly reduces the extent of morbidity associated with neonatal seizures. Literature, including journal articles and relevant textbooks, was reviewed and condensed into a practical guide to neonatal seizures which includes the pathophysiology of injury associated with neonatal seizures, clinical manifestations, methods of diagnosis, and various options available for treatment.
Collapse
|
17
|
Kalaria SN, Kishk OA, Gopalakrishnan M, Bagdure DN. Evaluation of an ex-vivo neonatal extracorporeal membrane oxygenation circuit on antiepileptic drug sequestration. Perfusion 2021; 37:812-818. [PMID: 34192981 DOI: 10.1177/02676591211028183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antiepileptic dosing information used to manage neonatal patients receiving extracorporeal membrane oxygenation (ECMO) is limited. The objective of this study is to quantify the extent of sequestration of various antiepileptic drugs using an ex-vivo neonatal ECMO circuit. Two neonatal closed-loop ECMO circuits were prepared using a Rotaflow centrifugal pump, custom polyvinylchloride tubing and a Quadrox-i Neonatal membrane oxygenator. After 5 minutes of circuit priming and stabilization with normal saline/albumin or expired human whole blood, single boluses of levetiracetam (200 mg), lacosamide (20 mg), and phenytoin (200 mg) were injected into the circuit. To account for spontaneous drug degradation, two polyvinylchloride beakers were filled with normal saline/albumin or expired human whole blood and equivalent antiepileptic drug doses were prepared. Simultaneous pharmacokinetic samples were collected from the control solution and the pre-centrifugal pump, pre-oxygenator, and post-oxygenator sampling ports from each circuit. Similar drug recovery profiles were observed among the three sampling sites investigated. Percent drug sequestration after a 24-hour circuit flow period was relatively similar between the two different circuits and ranged between 5.5%-13.2% for levetiracetam, 18.4%-22.3% for lacosamide, and 24.5%-30.2% for phenytoin. A comparison at 12 and 24 hours demonstrated similar percent drug sequestration across all three drugs in each circuit. Percent drug sequestrations for levetiracetam and lacosamide were less than 20% and for phenytoin were as high as 30% based on the sampling following single bolus dose administration into a neonatal ECMO circuit. Careful consideration of patient clinical status should be taken in consideration when optimizing antiepileptic therapy in neonates receiving ECMO.
Collapse
Affiliation(s)
- Shamir N Kalaria
- Center for Translational Medicine, School of Pharmacy, University of Maryland, Baltimore, MD, USA.,Department of Pharmacy Services, University of Maryland Medical Center, Baltimore, MD, USA
| | - Omayma A Kishk
- Department of Pharmacy Services, University of Maryland Medical Center, Baltimore, MD, USA
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Dayanand N Bagdure
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
18
|
Pospelov AS, Ala-Kurikka T, Kurki S, Voipio J, Kaila K. Carbonic anhydrase inhibitors suppress seizures in a rat model of birth asphyxia. Epilepsia 2021; 62:1971-1984. [PMID: 34180051 DOI: 10.1111/epi.16963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Seizures are common in neonates recovering from birth asphyxia but there is general consensus that current pharmacotherapy is suboptimal and that novel antiseizure drugs are needed. We recently showed in a rat model of birth asphyxia that seizures are triggered by the post-asphyxia recovery of brain pH. Here our aim was to investigate whether carbonic anhydrase inhibitors (CAIs), which induce systemic acidosis, block the post-asphyxia seizures. METHODS The CAIs acetazolamide (AZA), benzolamide (BZA), and ethoxzolamide (EZA) were administered intraperitoneally or intravenously to 11-day-old rats exposed to intermittent asphyxia (30 min; three 7+3 min cycles of 9% and 5% O2 at 20% CO2 ). Electrode measurements of intracortical pH, Po2 , and local field potentials (LFPs) were made under urethane anesthesia. Convulsive seizures and blood acid-base parameters were examined in freely behaving animals. RESULTS The three CAIs decreased brain pH by 0.14-0.17 pH units and suppressed electrographic post-asphyxia seizures. AZA, BZA, and EZA differ greatly in their lipid solubility (EZA > AZA > BZA) and pharmacokinetics. However, there were only minor differences in the delay (range 0.8-3.7 min) from intraperitoneal application to their action on brain pH. The CAIs induced a modest post-asphyxia elevation of brain Po2 that had no effect on LFP activity. AZA was tested in freely behaving rats, in which it induced a respiratory acidosis and decreased the incidence of convulsive seizures from 9 of 20 to 2 of 17 animals. SIGNIFICANCE AZA, BZA, and EZA effectively block post-asphyxia seizures. Despite the differences in their pharmacokinetics, they had similar effects on brain pH, which indicates that their antiseizure mode of action was based on respiratory (hypercapnic) acidosis resulting from inhibition of blood-borne and extracellular vascular carbonic anhydrases. AZA has been used for several indications in neonates, suggesting that it can be safely repurposed for the treatment of neonatal seizures as an add-on to the current treatment regimen.
Collapse
Affiliation(s)
- Alexey S Pospelov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tommi Ala-Kurikka
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Samu Kurki
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| | - Kai Kaila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Idota N, Shintani-Ishida K, Ichioka H, Kondou H, Ikegaya H. Rapid infusion of excessive phenytoin: A newborn autopsy case. Leg Med (Tokyo) 2021; 53:101935. [PMID: 34182191 DOI: 10.1016/j.legalmed.2021.101935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/15/2022]
Abstract
The patient was a two-day-old female infant. The patient's mother was a primigravid in her 20 s who developed premature abruption of the normal placenta on the first day of the 33rd week of gestation. The infant was born by emergency cesarean section with severe neonatal asphyxia with a birth weight of 1928 g. Spontaneous circulation was returned 11 min after birth. The infant was treated under mechanical ventilation in the neonatal intensive care unit, and phenobarbital was administered for repeated seizures. On day 2, spontaneous respiration was observed; however, the patient developed seizures repeatedly. The dose of phenobarbital reached the maximum and was switched to midazolam. In the early morning of day 3, while midazolam was administered up to the maximum dose, the infant developed status epilepticus, and the anticonvulsant drug was changed to phenytoin. Due to a calculation error, the intravenous administration of phenytoin was started at 400 mg/30 min, which is 10-fold of the normal dose. Six minutes later, after 80 mg was administered, the administration was stopped due to a drop in blood pressure; however, the infant died of cardiac arrest. An autopsy, which was performed approximately 25 h after death, revealed the blood phenytoin concentration in the heart was 63.85 μg/mL. The cause of death was determined to be acute phenytoin toxicity. This is the first fatal case reported of the blood concentration of phenytoin caused by rapid intravenous administration.
Collapse
Affiliation(s)
- Nozomi Idota
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Kaori Shintani-Ishida
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Hiroaki Ichioka
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Hiroki Kondou
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Hiroshi Ikegaya
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
20
|
Johne M, Käufer C, Römermann K, Gailus B, Gericke B, Löscher W. A combination of phenobarbital and the bumetanide derivative bumepamine prevents neonatal seizures and subsequent hippocampal neurodegeneration in a rat model of birth asphyxia. Epilepsia 2021; 62:1460-1471. [PMID: 33955541 DOI: 10.1111/epi.16912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Bumetanide was suggested as an adjunct to phenobarbital for suppression of neonatal seizures. This suggestion was based on the idea that bumetanide, by reducing intraneuronal chloride accumulation through inhibition of the Na-K-2Cl cotransporter NKCC1, may attenuate or abolish depolarizing γ-aminobutyric acid (GABA) responses caused by birth asphyxia. However, a first proof-of-concept clinical trial failed. This could have had several reasons, including bumetanide's poor brain penetration, the wide cellular NKCC1 expression pattern in the brain, and problems with the general concept of NKCC1's role in neonatal seizures. We recently replicated the clinical failure of bumetanide to potentiate phenobarbital's effect in a novel rat model of birth asphyxia. In this study, a clinically relevant dose (0.3 mg/kg) of bumetanide was used that does not lead to NKCC1-inhibitory brain levels. The aim of the present experiments was to examine whether a much higher dose (10 mg/kg) of bumetanide is capable of potentiating phenobarbital in this rat model. Furthermore, the effects of the two lipophilic bumetanide derivatives, the ester prodrug N,N-dimethylaminoethylester of bumetanide (DIMAEB) and the benzylamine derivative bumepamine, were examined at equimolar doses. METHODS Intermittent asphyxia was induced for 30 min by exposing male and female P11 rat pups to three 7 + 3 min cycles of 9% and 5% O2 at constant 20% CO2 . All control pups exhibited neonatal seizures after the asphyxia. RESULTS Even at 10 mg/kg, bumetanide did not potentiate the effect of a submaximal dose (15 mg/kg) of phenobarbital on seizure incidence, whereas a significant suppression of neonatal seizures was determined for combinations of phenobarbital with DIMAEB or, more effectively, bumepamine, which, however, does not inhibit NKCC1. Of interest, the bumepamine/phenobarbital combination prevented the neurodegenerative consequences of asphyxia and seizures in the hippocampus. SIGNIFICANCE Both bumepamine and DIMAEB are promising tools that may help to develop more effective lead compounds for clinical trials.
Collapse
Affiliation(s)
- Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Björn Gailus
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
21
|
Falsaperla R, Scalia B, Giugno A, Pavone P, Motta M, Caccamo M, Ruggieri M. Treating the symptom or treating the disease in neonatal seizures: a systematic review of the literature. Ital J Pediatr 2021; 47:85. [PMID: 33827647 PMCID: PMC8028713 DOI: 10.1186/s13052-021-01027-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Aim The existing treatment options for neonatal seizures have expanded over the last few decades, but no consensus has been reached regarding the optimal therapeutic protocols. We systematically reviewed the available literature examining neonatal seizure treatments to clarify which drugs are the most effective for the treatment of specific neurologic disorders in newborns. Method We reviewed all available, published, literature, identified using PubMed (published between August 1949 and November 2020), that focused on the pharmacological treatment of electroencephalogram (EEG)-confirmed neonatal seizures. Results Our search identified 427 articles, of which 67 were included in this review. Current knowledge allowed us to highlight the good clinical and electrographic responses of genetic early-onset epilepsies to sodium channel blockers and the overall good response to levetiracetam, whose administration has also been demonstrated to be safe in both full-term and preterm newborns. Interpretation Our work contributes by confirming the limited availability of evidence that can be used to guide the use of anticonvulsants to treat newborns in clinical practice and examining the efficacy and potentially harmful side effects of currently available drugs when used to treat the developing newborn brain; therefore, our work might also serve as a clinical reference for future studies.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Bruna Scalia
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy.
| | - Andrea Giugno
- Post graduate programme in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Piero Pavone
- Unit of Clinical Pediatrics, A.O.U. "Policlinico", P.O. "G. Rodolico", University of Catania, Catania, Italy
| | - Milena Motta
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Martina Caccamo
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine Section of Pediatrics and Child Neuropsychiatry, A.O.U. San Marco- Policlinico, University of Catania, Catania, Italy
| |
Collapse
|
22
|
Löscher W, Kaila K. Reply to the commentary by Ben-Ari and Delpire: Bumetanide and neonatal seizures: Fiction versus reality. Epilepsia 2021; 62:941-946. [PMID: 33764535 DOI: 10.1111/epi.16866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
In this response to a commentary by Ben-Ari and Delpire on our recent study on the pharmacology of neonatal seizures in a novel, physiologically validated rat model of birth asphyxia, we wish to rectify their inaccurate descriptions of our model and data. Furthermore, because Ben-Ari and Delpire suggest that negative data on bumetanide from preclinical and clinical trials of neonatal seizures have few implications for (alleged) bumetanide actions on neurons in other brain disorders, we will discuss this topic as well. Based on the poor brain penetration of bumetanide, combined with the extremely wide cellular expression patterns of the target protein NKCC1, it is obvious that the numerous actions of systemically applied bumetanide described in the literature are not mediated by the drug's effects on central neurons.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Giva S, Boyle MA, Gorman KM. Should levetiracetam rather than phenobarbitone be the first-line treatment for neonatal seizures? Arch Dis Child 2021; 106:301-303. [PMID: 33097487 DOI: 10.1136/archdischild-2020-320311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Sheiniz Giva
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | | | - Kathleen M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland .,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Kaminiów K, Kozak S, Paprocka J. Neonatal Seizures Revisited. CHILDREN-BASEL 2021; 8:children8020155. [PMID: 33670692 PMCID: PMC7922511 DOI: 10.3390/children8020155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 12/29/2022]
Abstract
Seizures are the most common neurological disorder in newborns and are most prevalent in the neonatal period. They are mostly caused by severe disorders of the central nervous system (CNS). However, they can also be a sign of the immaturity of the infant’s brain, which is characterized by the presence of specific factors that increase excitation and reduce inhibition. The most common disorders which result in acute brain damage and can manifest as seizures in neonates include hypoxic-ischemic encephalopathy (HIE), ischemic stroke, intracranial hemorrhage, infections of the CNS as well as electrolyte and biochemical disturbances. The therapeutic management of neonates and the prognosis are different depending on the etiology of the disorders that cause seizures which can lead to death or disability. Therefore, establishing a prompt diagnosis and implementing appropriate treatment are significant, as they can limit adverse long-term effects and improve outcomes. In this review paper, we present the latest reports on the etiology, pathomechanism, clinical symptoms and guidelines for the management of neonates with acute symptomatic seizures.
Collapse
Affiliation(s)
- Konrad Kaminiów
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.)
| | - Sylwia Kozak
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.)
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence:
| |
Collapse
|
25
|
Alix V, James M, Jackson AH, Visintainer PF, Singh R. Efficacy of Fosphenytoin as First-Line Antiseizure Medication for Neonatal Seizures Compared to Phenobarbital. J Child Neurol 2021; 36:30-37. [PMID: 32811255 DOI: 10.1177/0883073820947514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Currently used treatment protocols for neonatal seizures vary among centers with limited evidence to support the choice of a given antiseizure medication. Because of concerns about the potential negative impact of phenobarbital on long-term neurodevelopment outcomes, our unit transitioned to fosphenytoin as the first-line antiseizure medication. A retrospective observational cohort study was conducted to compare the acute and long-term outcomes of fosphenytoin and phenobarbital as first-line antiseizure medication for neonatal seizure treatment. The 2 study groups had similar baseline characteristics for neonatal variables as well as maternal antenatal complications. We did not find any differences in the acute outcomes between the 2 groups. However, significantly fewer infants in the fosphenytoin group had moderate-to-severe neurodevelopmental delay at the 18- and 24-month assessments. In conclusion, although both medications were equally efficacious for acute neonatal seizure control, fosphenytoin had the potential for significantly better neurodevelopmental outcomes at 18-24 months of age.
Collapse
Affiliation(s)
- Veronica Alix
- Department of Pediatrics, Baystate Children's Hospital, UMMS-Baystate, Springfield, MA, USA
| | - Mansi James
- Department of Pediatrics, Baystate Children's Hospital, UMMS-Baystate, Springfield, MA, USA
| | - Anthony H Jackson
- Department of Pediatrics, Baystate Children's Hospital, UMMS-Baystate, Springfield, MA, USA
- Department of Neurology, UMMS-Baystate, Springfield, MA, USA
| | - Paul F Visintainer
- Epidemiology & Biostatistics, Office of Research, UMMS-Baystate, Springfield, MA, USA
| | - Rachana Singh
- Department of Pediatrics, Baystate Children's Hospital, UMMS-Baystate, Springfield, MA, USA
| |
Collapse
|
26
|
Löscher W, Klein P. The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond. CNS Drugs 2021; 35:935-963. [PMID: 34145528 PMCID: PMC8408078 DOI: 10.1007/s40263-021-00827-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological disorders. Antiseizure medications (ASMs), previously referred to as anticonvulsant or antiepileptic drugs, are the mainstay of symptomatic epilepsy treatment. Epilepsy is a multifaceted complex disease and so is its treatment. Currently, about 30 ASMs are available for epilepsy therapy. Furthermore, several ASMs are approved therapies in nonepileptic conditions, including neuropathic pain, migraine, bipolar disorder, and generalized anxiety disorder. Because of this wide spectrum of therapeutic activity, ASMs are among the most often prescribed centrally active agents. Most ASMs act by modulation of voltage-gated ion channels; by enhancement of gamma aminobutyric acid-mediated inhibition; through interactions with elements of the synaptic release machinery; by blockade of ionotropic glutamate receptors; or by combinations of these mechanisms. Because of differences in their mechanisms of action, most ASMs do not suppress all types of seizures, so appropriate treatment choices are important. The goal of epilepsy therapy is the complete elimination of seizures; however, this is not achievable in about one-third of patients. Both in vivo and in vitro models of seizures and epilepsy are used to discover ASMs that are more effective in patients with continued drug-resistant seizures. Furthermore, therapies that are specific to epilepsy etiology are being developed. Currently, ~ 30 new compounds with diverse antiseizure mechanisms are in the preclinical or clinical drug development pipeline. Moreover, therapies with potential antiepileptogenic or disease-modifying effects are in preclinical and clinical development. Overall, the world of epilepsy therapy development is changing and evolving in many exciting and important ways. However, while new epilepsy therapies are developed, knowledge of the pharmacokinetics, antiseizure efficacy and spectrum, and adverse effect profiles of currently used ASMs is an essential component of treating epilepsy successfully and maintaining a high quality of life for every patient, particularly those receiving polypharmacy for drug-resistant seizures.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- grid.429576.bMid-Atlantic Epilepsy and Sleep Center, Bethesda, MD USA
| |
Collapse
|
27
|
Perinatal Brain Injury and Inflammation: Lessons from Experimental Murine Models. Cells 2020; 9:cells9122640. [PMID: 33302543 PMCID: PMC7764185 DOI: 10.3390/cells9122640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Perinatal brain injury or neonatal encephalopathy (NE) is a state of disturbed neurological function in neonates, caused by a number of different aetiologies. The most prominent cause of NE is hypoxic ischaemic encephalopathy, which can often induce seizures. NE and neonatal seizures are both associated with poor neurological outcomes, resulting in conditions such as cerebral palsy, epilepsy, autism, schizophrenia and intellectual disability. The current treatment strategies for NE and neonatal seizures have suboptimal success in effectively treating neonates. Therapeutic hypothermia is currently used to treat NE and has been shown to reduce morbidity and has neuroprotective effects. However, its success varies between developed and developing countries, most likely as a result of lack of sufficient resources. The first-line pharmacological treatment for NE is phenobarbital, followed by phenytoin, fosphenytoin and lidocaine as second-line treatments. While these drugs are mostly effective at halting seizure activity, they are associated with long-lasting adverse neurological effects on development. Over the last years, inflammation has been recognized as a trigger of NE and seizures, and evidence has indicated that this inflammation plays a role in the long-term neuronal damage experienced by survivors. Researchers are therefore investigating the possible neuroprotective effects that could be achieved by using anti-inflammatory drugs in the treatment of NE. In this review we will highlight the current knowledge of the inflammatory response after perinatal brain injury and what we can learn from animal models.
Collapse
|
28
|
Johne M, Römermann K, Hampel P, Gailus B, Theilmann W, Ala-Kurikka T, Kaila K, Löscher W. Phenobarbital and midazolam suppress neonatal seizures in a noninvasive rat model of birth asphyxia, whereas bumetanide is ineffective. Epilepsia 2020; 62:920-934. [PMID: 33258158 DOI: 10.1111/epi.16778] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Neonatal seizures are the most frequent type of neurological emergency in newborn infants, often being a consequence of prolonged perinatal asphyxia. Phenobarbital is currently the most widely used antiseizure drug for treatment of neonatal seizures, but fails to stop them in ~50% of cases. In a neonatal hypoxia-only model based on 11-day-old (P11) rats, the NKCC1 inhibitor bumetanide was reported to potentiate the antiseizure activity of phenobarbital, whereas it was ineffective in a human trial in neonates. The aim of this study was to evaluate the effect of clinically relevant doses of bumetanide as add-on to phenobarbital on neonatal seizures in a noninvasive model of birth asphyxia in P11 rats, designed for better translation to the human term neonate. METHODS Intermittent asphyxia was induced for 30 minutes by exposing the rat pups to three 7 + 3-minute cycles of 9% and 5% O2 at constant 20% CO2 . Drug treatments were administered intraperitoneally either before or immediately after asphyxia. RESULTS All untreated rat pups had seizures within 10 minutes after termination of asphyxia. Phenobarbital significantly blocked seizures when applied before asphyxia at 30 mg/kg but not 15 mg/kg. Administration of phenobarbital after asphyxia was ineffective, whereas midazolam (0.3 or 1 mg/kg) exerted significant antiseizure effects when administered before or after asphyxia. In general, focal seizures were more resistant to treatment than generalized convulsive seizures. Bumetanide (0.3 mg/kg) alone or in combination with phenobarbital (15 or 30 mg/kg) exerted no significant effect on seizure occurrence. SIGNIFICANCE The data demonstrate that bumetanide does not increase the efficacy of phenobarbital in a model of birth asphyxia, which is consistent with the negative data of the recent human trial. The translational data obtained with the novel rat model of birth asphyxia indicate that it is a useful tool to evaluate novel treatments for neonatal seizures.
Collapse
Affiliation(s)
- Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Philip Hampel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Björn Gailus
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Wiebke Theilmann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Tommi Ala-Kurikka
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
29
|
Theilmann W, Brandt C, Bohnhorst B, Winstroth AM, Das AM, Gramer M, Kipper A, Kalesse M, Löscher W. Hydrolytic biotransformation of the bumetanide ester prodrug DIMAEB to bumetanide by esterases in neonatal human and rat serum and neonatal rat brain-A new treatment strategy for neonatal seizures? Epilepsia 2020; 62:269-278. [PMID: 33140458 DOI: 10.1111/epi.16746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The loop diuretic bumetanide has been proposed previously as an adjunct treatment for neonatal seizures because bumetanide is thought to potentiate the action of γ-aminobutyric acid (GABA)ergic drugs such as phenobarbital by preventing abnormal intracellular accumulation of chloride and the subsequent "GABA shift." However, a clinical trial in neonates failed to demonstrate such a synergistic effect of bumetanide, most likely because this drug only poorly penetrates into the brain. This prompted us to develop lipophilic prodrugs of bumetanide, such as the N,N-dimethylaminoethyl ester of bumetanide (DIMAEB), which rapidly enter the brain where they are hydrolyzed by esterases to the parent compound, as demonstrated previously by us in adult rodents. However, it is not known whether esterase activity in neonates is sufficient to hydrolyze ester prodrugs such as DIMAEB. METHODS In the present study, we examined whether esterases in neonatal serum of healthy term infants are capable of hydrolyzing DIMAEB to bumetanide and whether this activity is different from the serum of adults. Furthermore, to extrapolate the findings to brain tissue, we performed experiments with brain tissue and serum of neonatal and adult rats. RESULTS Serum from 1- to 2-day-old infants was capable of hydrolyzing DIMAEB to bumetanide at a rate similar to that of serum from adult individuals. Similarly, serum and brain tissue of neonatal rats rapidly hydrolyzed DIMAEB to bumetanide. SIGNIFICANCE These data provide a prerequisite for further evaluating the potential of bumetanide prodrugs as add-on therapy to phenobarbital and other antiseizure drugs as a new strategy for improving pharmacotherapy of neonatal seizures.
Collapse
Affiliation(s)
- Wiebke Theilmann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bettina Bohnhorst
- Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anne-Mieke Winstroth
- Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anibh Martin Das
- Clinic for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Martina Gramer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andi Kipper
- Institute for Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Markus Kalesse
- Institute for Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
30
|
De Rose DU, Cairoli S, Dionisi M, Santisi A, Massenzi L, Goffredo BM, Dionisi-Vici C, Dotta A, Auriti C. Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age. Int J Mol Sci 2020; 21:E5898. [PMID: 32824472 PMCID: PMC7460644 DOI: 10.3390/ijms21165898] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Therapeutic drug monitoring (TDM) should be adopted in all neonatal intensive care units (NICUs), where the most preterm and fragile babies are hospitalized and treated with many drugs, considering that organs and metabolic pathways undergo deep and progressive maturation processes after birth. Different developmental changes are involved in interindividual variability in response to drugs. A crucial point of TDM is the choice of the bioanalytical method and of the sample to use. TDM in neonates is primarily used for antibiotics, antifungals, and antiepileptic drugs in clinical practice. TDM appears to be particularly promising in specific populations: neonates who undergo therapeutic hypothermia or extracorporeal life support, preterm infants, infants who need a tailored dose of anticancer drugs. This review provides an overview of the latest advances in this field, showing options for a personalized therapy in newborns and infants.
Collapse
Affiliation(s)
- Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Sara Cairoli
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Marco Dionisi
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Alessandra Santisi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Luca Massenzi
- Neonatal Intensive Care Unit and Neonatal Pathology, Fatebenefratelli Hospital, 00186 Rome, Italy;
| | - Bianca Maria Goffredo
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Carlo Dionisi-Vici
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Cinzia Auriti
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| |
Collapse
|
31
|
Favié LMA, Huitema ADR, van den Broek MPH, Rademaker CMA, de Haan TR, van Straaten HLM, Simons SHP, Rijken M, Nuytemans DHGM, Egberts TCG, Groenendaal F. Lidocaine as treatment for neonatal seizures: Evaluation of previously developed population pharmacokinetic models and dosing regimen. Br J Clin Pharmacol 2020; 86:75-84. [PMID: 31663153 PMCID: PMC6983510 DOI: 10.1111/bcp.14136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 01/28/2023] Open
Abstract
AIMS Lidocaine is used to treat neonatal seizures refractory to other anticonvulsants. It is effective, but also associated with cardiac toxicity. Previous studies have reported on the pharmacokinetics of lidocaine in preterm and term neonates and proposed a dosing regimen for effective and safe lidocaine use. The objective of this study was to evaluate the previously developed pharmacokinetic models and dosing regimen. As a secondary objective, lidocaine effectiveness and safety were assessed. METHODS Data from preterm neonates and (near-)term neonates with and without therapeutic hypothermia receiving lidocaine were included. Pharmacokinetic analyses were performed using non-linear mixed effects modelling. Simulations were performed to evaluate the proposed dosing regimen. Lidocaine was considered effective if no additional anticonvulsant was required and safe if no cardiac adverse events occurred. RESULTS Data were available for 159 neonates; 50 (31.4%) preterm and 109 term neonates, of whom 49 (30.8%) were treated with therapeutic hypothermia. Lidocaine clearance increased with postmenstrual age by 0.69%/day (95% confidence interval 0.54-0.84%). During therapeutic hypothermia (33.5°C), lidocaine clearance was reduced by 21.8% (7.26%/°C, 95% confidence interval 1.63-11.2%) compared to normothermia (36.5°C). Simulations demonstrated that the proposed dosing regimen leads to adequate average lidocaine plasma concentrations. Effectiveness and safety were assessed in 92 neonates. Overall effectiveness was 53.3% (49/92) and 56.5% (13/23) for neonates receiving the proposed dosing regimen. No cardiac toxicity was observed. CONCLUSION Lidocaine pharmacokinetics was adequately described across the entire neonatal age range. With the proposed dosing regimen, lidocaine can provide effective and safe treatment for neonatal seizures.
Collapse
Affiliation(s)
- Laurent M A Favié
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Carin M A Rademaker
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timo R de Haan
- Department of Neonatology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Sinno H P Simons
- Department of Pediatrics, Division of Neonatology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Monique Rijken
- Department of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Debbie H G M Nuytemans
- Department of Neonatology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Toine C G Egberts
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
32
|
He Y, Tang J, Zhang M, Xiong T, Ojha S, Choonara I, Mu D. Efficacy of antiepileptic drugs in neonatal seizures: a systematic review protocol. BMJ Paediatr Open 2020; 4:e000683. [PMID: 32626827 PMCID: PMC7326240 DOI: 10.1136/bmjpo-2020-000683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Seizures are one of the most common neurological disorders of neonates, which is also an emergency in the neonatal intensive care unit. For neonates, the recommended first-line antiepileptic drugs (AEDs) include phenobarbitone, which may be effective in only 50% of seizures. Some new AEDs, such as levetiracetam, have been shown to be effective in adults and older children. However, their efficacy for neonatal seizures remains uncertain. The aim of this investigation is to conduct a systematic review to evaluate the efficacy of all AEDs in neonates. Additionally, the long-term outcomes following neonatal seizures, in relation to the development of cerebral palsy and epilepsy, will be studied. METHOD We will perform a systematic review including randomised controlled studies (RCTs), cohort studies, case-controlled studies and case series studies which evaluated the efficacy of AEDs and short-term and long-term outcomes in neonatal seizures. PubMed, Embase, Web of Science, Cochrane Library and Clinical trial.gov will be searched. There will be no language restriction. Risk bias in RCTs will be evaluated by the Cochrane risk-of-bias tool, while cohort and case-control studies will be evaluated by the Newcastle-Ottawa Scale. A network meta-analysis will be performed by the Bayesian model using WinBUGS V.1.4.3 and R software if there is a high degree of homogeneity among studies. Otherwise, we will perform a narrative review without pooling. Subgroup analyses will be performed in different AEDs and dosage groups. OUTCOME The primary outcomes will be seizure cessation confirmed by electroencephalogram and long-term neurodevelopmental outcome. Secondary outcomes will be neonatal mortality during hospitalisation and suspected drug toxicity. ETHICS AND DISSEMINATION Formal ethical approval is not required as no primary data are collected. This systematic review will be disseminated through a peer-reviewed publication.
Collapse
Affiliation(s)
- Yang He
- Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun Tang
- Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Meng Zhang
- Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Xiong
- Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shalini Ojha
- Academic Child Health, University of Nottingham, Nottingham, UK
| | - Imti Choonara
- School of Medicine, University of Nottingham, Derby, UK
| | - Dezhi Mu
- Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Abstract
Focal-onset seizures are among the most common forms of seizures in children and adolescents and can be caused by a wide diversity of acquired or genetic etiologies. Despite the increasing array of antiseizure drugs available, treatment of focal-onset seizures in this population remains problematic, with as many as one-third of children having seizures refractory to medications. This review discusses contemporary concepts in focal seizure classification and pathophysiology and describes the antiseizure medications most commonly chosen for this age group. As antiseizure drug efficacy is comparable in children and adults, here we focus on pharmacokinetic aspects, drug-drug interactions, and side effect profiles. Finally, we provide some suggestions for choosing the optimal medication for the appropriate patient.
Collapse
Affiliation(s)
- Clare E Stevens
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins Hospital, The Johns Hopkins University School of Medicine, Rubenstein Bldg 2157, 200N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins Hospital, The Johns Hopkins University School of Medicine, Rubenstein Bldg 2157, 200N. Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
34
|
Binson G, Beuzit K, Migeot V, Marco L, Troussier B, Venisse N, Dupuis A. Preparation and Physicochemical Stability of Liquid Oral Dosage Forms Free of Potentially Harmful Excipient Designed for Pediatric Patients. Pharmaceutics 2019; 11:E190. [PMID: 31003500 PMCID: PMC6523203 DOI: 10.3390/pharmaceutics11040190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Dexamethasone, hydrochlorothiazide, spironolactone, and phenytoin are commonly used in neonates, but no age-appropriate formulation containing these active pharmaceutical ingredients (APIs) is commercially available. Thus, pharmaceutical compounding of the liquid oral dosage form is required to enable newborn administration. A problem common to the compounded preparations described in the literature is that they include potentially harmful excipients (PHEs). Therefore, the aim of this study was to evaluate the feasibility of compounding oral liquid dosage forms free of PHE, containing dexamethasone, hydrochlorothiazide, phenytoin, or spironolactone and to assess their physicochemical stability. Due to the poor water solubility of the targeted APIs, oral suspensions were compounded using Syrspend® SF-PH4 Dry, a suspending vehicle free of PHE. Four HPLC coupled to UV spectrometry (HPLC-UV) stability-indicating methods were developed and validated according to international guidelines to assay the strength of the targeted APIs. Whatever storage condition was used (5 ± 3 °C or 22 ± 4 °C), no significant degradation of API occurred in compounded oral suspensions. Overall, the results attest to the physical and chemical stability of the four oral liquid dosage forms over 60 days under regular storage temperatures. Finally, the use of the proposed oral suspensions provides a reliable solution to reduce the exposure of children to potentially harmful excipients.
Collapse
Affiliation(s)
- Guillaume Binson
- Health-Endocrine Disruptors-EXposome (HEDEX), CIC Inserm 1402, University Hospital of Poitiers, Poitiers 86021, France.
- Department of Pharmacy, University Hospital of Poitiers, Poitiers 86021, France.
- School of Medicine and Pharmacy, University of Poitiers, Poitiers 86073, France.
| | - Karine Beuzit
- Department of Pharmacy, University Hospital of Poitiers, Poitiers 86021, France.
| | - Virginie Migeot
- Health-Endocrine Disruptors-EXposome (HEDEX), CIC Inserm 1402, University Hospital of Poitiers, Poitiers 86021, France.
- School of Medicine and Pharmacy, University of Poitiers, Poitiers 86073, France.
| | - Léa Marco
- Department of Pharmacy, University Hospital of Poitiers, Poitiers 86021, France.
| | - Barbara Troussier
- Department of Pharmacy, University Hospital of Poitiers, Poitiers 86021, France.
| | - Nicolas Venisse
- Health-Endocrine Disruptors-EXposome (HEDEX), CIC Inserm 1402, University Hospital of Poitiers, Poitiers 86021, France.
- Department of Pharmacokinetics, University Hospital of Poitiers, Poitiers 86021, France.
| | - Antoine Dupuis
- Health-Endocrine Disruptors-EXposome (HEDEX), CIC Inserm 1402, University Hospital of Poitiers, Poitiers 86021, France.
- Department of Pharmacy, University Hospital of Poitiers, Poitiers 86021, France.
- School of Medicine and Pharmacy, University of Poitiers, Poitiers 86073, France.
| |
Collapse
|
35
|
Winkler P, Luhmann HJ, Kilb W. Taurine potentiates the anticonvulsive effect of the GABA A agonist muscimol and pentobarbital in the immature mouse hippocampus. Epilepsia 2019; 60:464-474. [PMID: 30682212 DOI: 10.1111/epi.14651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The high incidence of epileptic seizures in neonates and their frequent refractoriness to pharmacologic therapies require identification of new therapeutical options. Therefore, we investigated whether the modulatory effect of taurine on γ-aminobutyric acid (GABA)A receptors can enhance the anticonvulsive potential of the GABAA receptor agonist muscimol and of the barbiturate pentobarbital. METHODS We performed field potential recordings in in toto hippocampus preparations of immature (postnatal days 4-7) C57Bl/6 mouse pups. Spontaneous epileptiform activity was induced by the continuous presence of the potassium channel blocker 4-aminopyridine and the glycinergic antagonist strychnine in Mg2+ -free solutions. RESULTS Bath application of 0.1 μmol/L muscimol increases the occurrence of recurrent epileptiform discharges, whereas they are significantly attenuated in a dose-dependent manner by muscimol in concentrations between 0.5 and 5 μmol/L. Taurine at concentrations between 0.1 and 0.5 mmol/L induces a proconvulsive effect, but upon coapplication, it significantly augments the anticonvulsive effect of moderate muscimol doses (0.5-1 μmol/L). In addition, the anticonvulsive effect of 100 and 200 μmol/L pentobarbital is increased significantly in the presence of 0.5 μmol/L taurine. SIGNIFICANCE These observations demonstrate that taurine can indeed enhance the anticonvulsive effects of muscimol and pentobarbital, suggesting that taurine may act as a positive modulator on GABAA receptors. Thus, interfering with the modulatory taurine binding site of GABAA receptors or the interstitial taurine concentration may provide new therapeutical options for anticonvulsive therapies in neonates.
Collapse
Affiliation(s)
- Paula Winkler
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
36
|
Pisani F, Spagnoli C. Diagnosis and Management of Acute Seizures in Neonates. Neurology 2019. [DOI: 10.1016/b978-0-323-54392-7.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
37
|
Abstract
Most neonatal seizures in preterm newborns are of acute symptomatic origin with a prevalence higher than in full-term infants. To date, recommendations for management of seizures in preterm newborns are scarce and do not differ from those in full-term newborns. Mortality in preterm newborns with seizures has significantly declined over the last decades, from figures of 84%-94% in the 1970s and 1980s to 22%-45% in the last years. However, mortality is significantly higher in those with a birth weight<1000g and a gestational age<28 weeks. Seizures are a strong predictor of unfavorable outcomes, including not only cerebral palsy, epilepsy, and intellectual disability, but also vision, hearing impairment, and microcephaly. The majority of patients with developmental delay are severely affected and this is usually associated with cerebral palsy. Furthermore, the incidence of epilepsy after neonatal seizures seems to be lower in preterm than in full-term infants but the risk is approximately 40 times greater than in the general population. Clinical studies cannot disentangle the specific and independent contributions of seizure-induced functional changes and the role of etiology and brain damage severity in determining the long-term outcomes in these newborns.
Collapse
Affiliation(s)
- Francesco Pisani
- Child Neuropsychiatry Unit, Department of Medicine & Surgery, University of Parma, Parma, Italy.
| | - Carlotta Spagnoli
- Child Neurology Unit, Department of Pediatrics, Santa Maria Nuova Hospital, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
38
|
Spagnoli C, Falsaperla R, Deolmi M, Corsello G, Pisani F. Symptomatic seizures in preterm newborns: a review on clinical features and prognosis. Ital J Pediatr 2018; 44:115. [PMID: 30382869 PMCID: PMC6211591 DOI: 10.1186/s13052-018-0573-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/16/2018] [Indexed: 01/23/2023] Open
Abstract
Neonatal seizures are the most common neurological event in newborns, showing higher prevalence in preterm than in full-term infants. In the majority of cases they represent acute symptomatic phenomena, the main etiologies being intraventricular haemorrhage, hypoxic-ischemic encephalopathy, central nervous system infections and transient metabolic derangements.Current definition of neonatal seizures requires detection of paroxysmal EEG-changes, and in preterm newborns the incidence of electrographic-only seizures seems to be particularly high, further stressing the crucial role of electroencephalogram monitoring in this population. Imaging work-up includes an integration of serial cranial ultrasound and brain magnetic resonance at term-equivalent age. Unfavourable outcomes following seizures in preterm infants include death, neurodevelopmental impairment, epilepsy, cerebral palsy, hearing and visual impairment. As experimental evidence suggests a detrimental role of seizures per se in determining subsequent outcome, they should be promptly treated with the aim to reduce seizure burden and long-term disabilities. However, neonatal seizures show low response to conventional anticonvulsant drugs, and this is even more evident in preterm newborns, due to intrinsic developmental factors. As a consequence, as literature does not provide any specific guidelines, due to the lack of robust evidence, off-label medications are often administered in clinical practice.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Child Neuropsychiatry Unit, Department of Pediatrics, Arcispedale Santa Maria Nuova, IRCSS, Reggio Emilia, Italy
| | - Raffaele Falsaperla
- Neonatal Intensive Care Unit, Santo Bambino Hospital, University Hospital "Policlinico-Vittorio Emanuele", Via Tindaro 2, 95124, Catania, Italy.
| | - Michela Deolmi
- Pediatrics Unit, Medicine & Surgery Department, University of Parma, Parma, Italy
| | - Giovanni Corsello
- Department of Maternal and Child Health, University of Palermo, Palermo, Italy
| | - Francesco Pisani
- Child Neuropsychiatry Unit, Medicine & Surgery Department, Neuroscience Division, University of Parma, Parma, Italy
| |
Collapse
|
39
|
Pisani F, Pavlidis E. What is new: Talk about status epilepticus in the neonatal period. Eur J Paediatr Neurol 2018; 22:757-762. [PMID: 29861333 DOI: 10.1016/j.ejpn.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/30/2018] [Accepted: 05/20/2018] [Indexed: 10/16/2022]
Abstract
Nowadays, no general consensus was achieved regarding neonatal status epilepticus and its definition. Indeed, different criteria (mainly based on seizure duration) were used. Whereas a recent proposal has been developed to define status epilepticus in older ages, it seems that the peculiar characteristics of neonatal seizures and of the immature brain make difficult to find a tailored definition for this period of life. Achieving a consensus on this entity would mean to make the first step toward a targeted therapeutic strategy of intervention.
Collapse
Affiliation(s)
- Francesco Pisani
- Child Neuropsychiatry Unit, Medicine & Surgery Department, University of Parma, Italy
| | - Elena Pavlidis
- Child Neuropsychiatry Unit, Medicine & Surgery Department, University of Parma, Italy.
| |
Collapse
|
40
|
Pastukhov A, Borisova T. Combined Application of Glutamate Transporter Inhibitors and Hypothermia Discriminates Principal Constituent Processes Involved in Glutamate Homo- and Heteroexchange in Brain Nerve Terminals. Ther Hypothermia Temp Manag 2018; 8:143-149. [DOI: 10.1089/ther.2017.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Artem Pastukhov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| |
Collapse
|
41
|
Pisani F, Spagnoli C. Acute symptomatic neonatal seizures in preterm neonates: etiologies and treatments. Semin Fetal Neonatal Med 2018; 23:191-196. [PMID: 29467102 DOI: 10.1016/j.siny.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Acute symptomatic neonatal seizures in preterm newborns are a relevant clinical challenge due to the presence of many knowledge gaps. Etiology-wise, acute symptomatic seizures have an age-specific epidemiology, with intraventricular hemorrhage and its complications representing the first cause in extremely and very preterm neonates, whereas other etiologies have similar occurrence rates as in full-term infants. Specific treatment strategies for the premature neonates are not yet available. Studies suggest a similarly low response rate with even more unfavorable prognosis than in full-term infants. Pharmacodynamic and pharmacokinetic changes are likely under way during the preterm period, with the potential to affect both effectiveness and safety of antiepileptic drugs in these patients. However, due to the lack of clear evidence to guide prioritization of second-line drugs, off-label medications are frequently indicated by review papers and flow-charts, and are prescribed in clinical practice. We therefore conclude by exploring potential future lines of research.
Collapse
|
42
|
Abstract
Acute symptomatic seizures caused by either diffuse or focal perinatal hypoxic-ischemic insults and intracranial hemorrhage in term newborns make up the large majority of all neonatal seizures. Acute seizures are one of the most common neurological disorders in term newborns who require admission to the neonatal intensive care unit. Despite elucidation of seizure pathogenesis in this population using animal models, treatment is limited by a lack of good evidence-based guidelines because of a paucity of rigorously conducted clinical trials or prospective studies in human newborns. A result of this knowledge gap is that management, particularly drug choice, is guided by clinical experience rather than by data informing drug efficacy and safety. This review summarizes the common etiologies and pathogenesis of acute symptomatic seizures, and the current data informing their treatment, including potential novel drugs, together with a suggested treatment algorithm.
Collapse
Affiliation(s)
- Janet S. Soul
- Fetal–Neonatal Neurology Program, Boston Children’s Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA,Address: Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA. Tel.: +1 617-355-8994; fax: +1 617-730-0279. (J.S. Soul)
| |
Collapse
|
43
|
Han JY, Moon CJ, Youn YA, Sung IK, Lee IG. Efficacy of levetiracetam for neonatal seizures in preterm infants. BMC Pediatr 2018; 18:131. [PMID: 29636029 PMCID: PMC5892045 DOI: 10.1186/s12887-018-1103-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
Background Neonatal seizures remain a significant clinical problem, and therapeutic options are still not diverse with limited efficacy. Levetiracetam (LEV) is a relatively new and wide spectrum anti-seizure medication with favorable pharmacokinetics and safety profile. In the recent decades, LEV has been increasingly used for the treatment of neonatal seizures. The aim of this study was to describe the experience of using LEV as the first line anti-seizure medication for preterm infants. Methods A retrospective analysis of 37 preterm infants who were treated with LEV as the first-line anti-seizure medication was performed. Results Mean gestational age of the 37 preterm infants was 31.5 ± 1.9 weeks (range, 26 to 36+ 6 weeks). Twenty-one infants (57%) were seizure-free while given LEV at the end of the first week, and no additional anti-seizure medication was required. Loading doses of LEV ranged from 40 to 60 mg/kg (mean 56 mg/kg) and the maintenance dose ranged from 20 to 30 mg/kg (mean 23 mg/kg). No adverse effect was observed. Conclusions Levetiracetam can be a good and safe choice for treatment of neonatal seizures in preterm infants. Prospective double blind controlled studies are needed in the future.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodaero, Seochogu, Seoul, 137-701, South Korea
| | - Chung Joon Moon
- Department of Pediatrics, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodaero, Seochogu, Seoul, 137-701, South Korea
| | - Young Ah Youn
- Department of Pediatrics, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodaero, Seochogu, Seoul, 137-701, South Korea
| | - In Kyung Sung
- Department of Pediatrics, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodaero, Seochogu, Seoul, 137-701, South Korea
| | - In Goo Lee
- Department of Pediatrics, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodaero, Seochogu, Seoul, 137-701, South Korea.
| |
Collapse
|
44
|
Abstract
The mainstay of treatment of childhood epilepsy is to administer antiepileptic drugs (AEDs). This article provides an overview of the clinical approach to drug treatment of childhood epilepsy, focusing on general principles of therapy and properties of recently introduced medications. Initiation and cessation of therapy, adverse medication effects, drug interactions, indications for the various AEDs, and off-label use of AEDs are reviewed. The distinct challenges in treatment of epileptic spasms and neonatal seizures are addressed. Finally, ideas for the future of drug treatment of childhood epilepsy are presented, with particular attention to precision medicine.
Collapse
Affiliation(s)
- Louis T Dang
- Division of Pediatric Neurology, Department of Pediatrics, University of Michigan, C.S. Mott Children's Hospital, Room 12-733, 1540 East Hospital Drive, Ann Arbor, MI 48109-4279, USA.
| | - Faye S Silverstein
- Division of Pediatric Neurology, Department of Pediatrics, University of Michigan, 8301 MSRB3, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5646, USA
| |
Collapse
|
45
|
Vasopressin excites interneurons to suppress hippocampal network activity across a broad span of brain maturity at birth. Proc Natl Acad Sci U S A 2017; 114:E10819-E10828. [PMID: 29183979 PMCID: PMC5740624 DOI: 10.1073/pnas.1717337114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During birth in mammals, a pronounced surge of fetal peripheral stress hormones takes place to promote survival in the transition to the extrauterine environment. However, it is not known whether the hormonal signaling involves central pathways with direct protective effects on the perinatal brain. Here, we show that arginine vasopressin specifically activates interneurons to suppress spontaneous network events in the perinatal hippocampus. Experiments done on the altricial rat and precocial guinea pig neonate demonstrated that the effect of vasopressin is not dependent on the level of maturation (depolarizing vs. hyperpolarizing) of postsynaptic GABAA receptor actions. Thus, the fetal mammalian brain is equipped with an evolutionarily conserved mechanism well-suited to suppress energetically expensive correlated network events under conditions of reduced oxygen supply at birth.
Collapse
|
46
|
Abstract
Neonatal seizures constitute the most frequent presenting neurologic sign encountered in the neonatal intensive care unit. Despite limited efficacy and safety data, phenobarbital continues to be used near-universally as the first-line anti-seizure drug (ASD) in neonates. The choice of second-line ASDs varies by provider and institution, and is still not supported by sufficient scientific evidence. In this review, we discuss the available evidence supporting the efficacy, mechanism of action, potential adverse effects, key pharmacokinetic characteristics such as interaction with therapeutic hypothermia, logistical issues, and rationale for use of neonatal ASDs. We describe the widely used neonatal ASDs, namely phenobarbital, phenytoin, midazolam, and levetiracetam, in addition to potential ASDs, including lidocaine, topiramate, and bumetanide.
Collapse
Affiliation(s)
- Mohamed El-Dib
- Neonatal Neurocritical Care, Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Janet S Soul
- Fetal-Neonatal Neurology Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Affiliation(s)
- Stéphane Auvin
- Pediatric Neurology, Robert-Debré University Hospital, APHP & INSERM U1141, Paris, France
| | | |
Collapse
|
48
|
Rodriguez-Alvarez N, Jimenez-Mateos EM, Engel T, Quinlan S, Reschke CR, Conroy RM, Bhattacharya A, Boylan GB, Henshall DC. Effects of P2X7 receptor antagonists on hypoxia-induced neonatal seizures in mice. Neuropharmacology 2017; 116:351-363. [PMID: 28082183 DOI: 10.1016/j.neuropharm.2017.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/12/2016] [Accepted: 01/08/2017] [Indexed: 12/28/2022]
Abstract
Neonatal seizures are a common consequence of hypoxic/ischemic encephalopathy (HIE). Phenobarbital remains the frontline treatment for neonatal seizures but is often ineffective. The P2X7 receptor (P2X7R) is a cell surface-expressed ionotropic receptor activated by high amounts of ATP which may be released during seizures or as a consequence of tissue injury. Here, we explored the role of the P2X7R in a mouse model of neonatal seizures induced by hypoxia. Exposure of postnatal day 7 (P7) mouse pups to global hypoxia (5% O2 for 15 min) produced electrographically-defined seizures with behavioural correlates that persisted after restitution of normoxia. Expression of the P2X7R showed age-dependent increases in the hippocampus and neocortex of developing mice and was present in human neonatal brain. P2X7R transcript and protein levels were increased 24 h after neonatal hypoxia-induced seizures in mouse pups. EEG recordings in pups determined that injection of the P2X7R antagonist A-438079 (25 mg/kg-1, intraperitoneal) reduced electrographic seizure number, EEG power and spiking during hypoxia. A-438079 did not reduce post-hypoxia seizures. Caspase-1 processing and molecular markers of inflammation and microglia were reduced in A438079-treated mice. Electrographic seizure-suppressive effects were also observed with a second P2X7R antagonist, JNJ-47965567, in the same model. The present study shows hypoxia-induced seizures alter expression of purinergic and neuroinflammatory signalling components and suggest potential applications but also limitations of the P2X7R as a target for the treatment of HIE and other causes of neonatal seizures.
Collapse
Affiliation(s)
- Natalia Rodriguez-Alvarez
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Sean Quinlan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Cristina R Reschke
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Ronán M Conroy
- Division of Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Geraldine B Boylan
- Irish Centre for Fetal and Neonatal Translational Research (INFANT) Cork, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; Irish Centre for Fetal and Neonatal Translational Research (INFANT) Cork, Ireland.
| |
Collapse
|
49
|
Sung IK. Therapeutic Hypothermia for Hypoxic-Ischemic Encephalopathy in Newborn Infants. NEONATAL MEDICINE 2017. [DOI: 10.5385/nm.2017.24.4.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- In Kyung Sung
- Department of Pediatrics, Collge of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
50
|
Different response to antiepileptic drugs according to the type of epileptic events in a neonatal ischemia-reperfusion model. Neurobiol Dis 2016; 99:145-153. [PMID: 28042096 DOI: 10.1016/j.nbd.2016.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/16/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Perinatal arterial stroke is the most frequent form of cerebral infarction in children. Neonatal seizures are the most frequent symptom during the neonatal period. The current management of perinatal stroke is based on supportive care. It is currently unknown if treatment of the seizures modifies the outcome, and no clinical studies have focused on seizures during neonatal stroke. We studied the effect of phenobarbital and levetiracetam on an ischemic-reperfusion stroke model in P7 rats using prolonged electroencephalographic recordings and a histologic analysis of the brain (24h after injury). The following two types of epileptic events were observed: 1) bursts of high amplitude spikes during ischemia and the first hours of reperfusion and 2) organized seizures consisting in discharges of a 1-2Hz spike-and-wave. Both phenobarbital and levetiracetam decreased the total duration of the bursts of high amplitude spikes. Phenobarbital also delayed the start of seizures without changing the total duration of epileptic discharges. The markedly limited efficacy of the antiepileptic drugs studied in our neonatal stroke rat model is frequently observed in human neonatal seizures. Both drugs did not modify the stroke volume, which suggests that the modification of the quantity of bursts of high amplitude spikes does not influence the infarct size. In the absence of a reduction in seizure burden by the antiepileptic drugs, we increased the seizure burden and stroke volume by combining our neonatal stroke model with a lithium-pilocarpine-induced status epilepticus. Our data suggest that the reduction of burst of spikes did not influence the stroke volume. The presence of organized seizure with a pattern close to what is observed in human newborns seems related to the presence of the infarct. Further research is required to determine the relationship between seizure burden and infarct volume.
Collapse
|