1
|
Ramos-Ramírez M, Caballe-Pérez E, Lucio-Lozada J, Romero-Nuñez E, Castillo-Ruiz C, Dorantes-Sánchez L, Flores-Estrada D, Recondo G, Barrios-Bernal P, Cabrera-Miranda L, Bravo-Dominguez H, Hernández-Pedro N, Arrieta O. Immunomodulatory role of oncogenic alterations in non-small cell lung cancer: a review of implications for immunotherapy. Cancer Metastasis Rev 2025; 44:30. [PMID: 39915358 DOI: 10.1007/s10555-025-10245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/16/2025] [Indexed: 03/28/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have improved clinical outcomes in patients with non-small cell lung cancer (NSCLC) lacking targetable oncogenic alterations. However, their efficacy in individuals with such genomic alterations remains heterogeneous and poorly understood. In detail, certain oncogenic alterations in TP53, EGFR (uncommon mutations), KRAS (G12C), BRAF (non-V600E), MET (amplifications), FGFR1 and FGFR4, actively modify MAPK, PI3K, and STING signaling, thus remodeling tumoral immune phenotype and are associated with high TMB counts, enriched T lymphocyte tumor infiltration, and high expression of antigen-presenting molecules, supporting their consideration as part of the eligibility criteria for ICIs treatment. Nonetheless, other oncogenic alterations are associated with an immunosuppressive TME, low TMB counts, and downregulation of targetable immune checkpoints, in which novel therapeutic approaches are currently being tested to overcome their intrinsic resistance. In this context, this review discusses the fundamental mechanisms by which frequent driver alterations affect ICIs efficacy in patients with NSCLC, and outlines their prognostic relevance in the era of immunotherapy.
Collapse
Affiliation(s)
- Maritza Ramos-Ramírez
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico
| | - Enrique Caballe-Pérez
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico
| | - José Lucio-Lozada
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico
| | - Eunice Romero-Nuñez
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico
| | - Cesar Castillo-Ruiz
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico
| | - Lorena Dorantes-Sánchez
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico
| | - Diana Flores-Estrada
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico
| | - Gonzalo Recondo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pedro Barrios-Bernal
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico
| | - Luis Cabrera-Miranda
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico
| | - Heyman Bravo-Dominguez
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico
| | - Norma Hernández-Pedro
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico.
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico.
| | - Oscar Arrieta
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico.
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico.
| |
Collapse
|
2
|
Liang M, Zhang Z, Wu L, Chen M, Tan S, Huang J. Evolving prognostic paradigms in lung adenocarcinoma with brain metastases: a web-based predictive model enhanced by machine learning. Discov Oncol 2025; 16:117. [PMID: 39904937 PMCID: PMC11794753 DOI: 10.1007/s12672-025-01854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
INTRODUCTION Patients with lung adenocarcinoma (LUAD) who develop brain metastases (BM) face significantly poor prognoses. A well-crafted prognostic model could greatly assist clinicians in patient counseling and in devising tailored therapeutic strategies. METHODS The study cohort comprised LUAD patients with BM identified from the surveillance, epidemiology, and end results database between 2000 and 2018. We pinpointed independent prognostic features for overall survival (OS) using Lasso regression analyses. Predictive models were built using Random Forest, XGBoost, Decision Trees, and Artificial Neural Networks, with their performance evaluated via metrics including the area under the receiver operating characteristic curve (AUC), calibration plots, brier score, and decision curve analysis (DCA). RESULTS We extracted a total of 9121 eligible patients from the database, identifying eleven clinical parameters that significantly influenced OS prognostication. The XGBoost model exhibited superior discriminative power, achieving AUC values of 0.829 and 0.827 for 1- and 2-year survival, respectively, in the training cohort, and 0.816 and 0.809 in the validation cohort. In comparison to other models, the XGBoost model excelled in both training and validation phases, as demonstrated by substantial differences in AUC, DCA, calibration, and Brier score. This model has been made accessible via a web-based platform. CONCLUSIONS This study has developed an XGBoost-based machine learning model with an accompanying web-based application, providing a novel resource for clinicians to support personalized decision-making and enhance treatment outcomes for LUAD patients with BM.
Collapse
Affiliation(s)
- Min Liang
- Department of Respiratory and Critical Care Medicine, Maoming People's Hospital, Maoming, China
| | - Zhiwen Zhang
- Emergency Department, Maoming People's Hospital, Maoming, China
| | - Langming Wu
- Department of Science and Education, Maoming People's Hospital, Maoming, China
| | - Mafeng Chen
- Department of Otolaryngology, Maoming People's Hospital, Maoming, China
| | - Shifan Tan
- Department of Respiratory and Critical Care Medicine, Maoming People's Hospital, Maoming, China.
| | - Jian Huang
- Department of Thoracic Surgery, Maoming People's Hospital, Maoming, China.
| |
Collapse
|
3
|
Reyes A, Muddasani R, Massarelli E. Overcoming Resistance to Checkpoint Inhibitors with Combination Strategies in the Treatment of Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:2919. [PMID: 39199689 PMCID: PMC11353073 DOI: 10.3390/cancers16162919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer continues to contribute to the highest percentage of cancer-related deaths worldwide. Advancements in the treatment of non-small cell lung cancer like immune checkpoint inhibitors have dramatically improved survival and long-term disease response, even in curative and perioperative settings. Unfortunately, resistance develops either as an initial response to treatment or more commonly as a progression after the initial response. Several modalities have been utilized to combat this. This review will focus on the various combination treatments with immune checkpoint inhibitors including the addition of chemotherapy, various immunotherapies, radiation, antibody-drug conjugates, bispecific antibodies, neoantigen vaccines, and tumor-infiltrating lymphocytes. We discuss the status of these agents when used in combination with immune checkpoint inhibitors with an emphasis on lung cancer. The early toxicity signals, tolerability, and feasibility of implementation are also reviewed. We conclude with a discussion of the next steps in treatment.
Collapse
Affiliation(s)
| | | | - Erminia Massarelli
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.); (R.M.)
| |
Collapse
|
4
|
Li Y, Qu J, Jiang L, Peng X, Wu K, Chen M, Peng Y, Cao X. Application and challenges of nitrogen heterocycles in PROTAC linker. Eur J Med Chem 2024; 273:116520. [PMID: 38788299 DOI: 10.1016/j.ejmech.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
The absence of effective active pockets makes traditional molecularly targeted drug strategies ineffective against 80 % of human disease-related proteins. The PROTAC technology effectively makes up for the deficiency of traditional molecular targeted drugs, which produces drug activity by degrading rather than inhibiting the target protein. The degradation of PROTAC is not only affected by POI ligand and E3 ligand, but by the selection of suitable linker which can play an important role in the efficiency and selectivity of the degradation. In the early exploring stage of the PROTAC, flexible chains were priorly applied as the linker of PROTAC. Although PROTAC with flexible chains as linkers sometimes perform well in vitro bioactivity evaluations, the introduction of lipophilic flexible chains reduces the hydrophilicity of these molecules, resulting in generally poor pharmacokinetic characteristics and pharmacological activities in vivo. In addition, recent reports have also shown that some PROTAC with flexible chains have some risks to causing hemolysis in vivo. Therefore, PROTAC with flexible chains show less druggability and large difficulty to entering the clinical trial stage. On the other hand, the application of nitrogen heterocycles in the design of PROTAC linkers has been widely reported in recent years. More and more reports have shown that the introduction of nitrogen heterocycles in the linker not only can effectively improves the metabolism of PROTAC in vivo, but also can enhance the degradation efficiency and selectivity of PROTAC. These PROTAC with nitrogen heterocycle linkers have attracted much attention of pharmaceutical chemists. The introduction of nitrogen heterocycles in the linker deserves priority consideration in the primary design of the PROTAC based on various druggabilities including pharmacokinetic characteristics and pharmacological activity. In this work, we summarized the optimization process and progress of nitrogen heterocyclic rings as the PROTAC linker in recent years. However, there were still limited understanding of how to discover, design and optimize PROTAC. For example, the selection of the types of nitrogen heterocycles and the optimization sites of this linker are challenges for researchers, choosing between four to six-membered nitrogen heterocycles, selecting from saturated to unsaturated ones, and even optimizing the length and extension angle of the linker. There is a truly need for theoretical explanation and elucidation of the PROTAC to guide the developing of more effective and valuable PROTAC.
Collapse
Affiliation(s)
- Yang Li
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Junfeng Qu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Lizhi Jiang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Kaiyue Wu
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Miaojia Chen
- Department of Pharmacy, The First People's Hospital, Pingjiang, Yueyang, Hunan, China
| | - Yuanyuan Peng
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, 330000, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
5
|
Cheng Y, Ye Z, Xie Y, Du X, Song S, Ding X, Lin C, Wang B, Li W, Zhang C. Continuation of immunotherapy beyond progression is beneficial to the survival of advanced non-small-cell lung cancer. Clin Transl Oncol 2024; 26:1357-1367. [PMID: 38145428 DOI: 10.1007/s12094-023-03360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023]
Abstract
PURPOSE To investigate the potential clinical importance of continuing immunotherapy beyond progression in patients with advanced non-small-cell lung cancer (aNSCLC). METHODS The data of patients with aNSCLC who experienced progressive disease after receiving first-line immunotherapy plus chemotherapy were collected from multiple centers for the period from January 1, 2018 to May 31, 2022. According to the second-line treatment, the patients were classified into two groups: the continuation of immunotherapy beyond progression (CIBP) group and the discontinuation of immunotherapy beyond progression (DIBP) group. The efficacy and safety of the treatment were compared between the groups. RESULTS Overall, data from 169 patients were analyzed; 93 patients were enrolled in the CIBP group and 76 patients were in the DIBP group. The median second-line progression-free survival was 5.5 months in the CIBP group, which for the DIBP group was 3.4 (p = 0.011). The median overall survival of the CIBP group was 13.3 months, whereas that of the DIBP group was 8.8 months (p = 0.031). The disease control rate of the CIBP group (79.57%) was observably higher than that of the DIBP group (64.47%; p = 0.028). Among patients who responded better (complete or partial response) to prior therapy, the median progression-free survival was 5.5 months and 3.3 months in the CIBP and DIBP groups respectively (p = 0.022), and the median overall survival was 14.8 months and 8.8 months in the CIBP and DIBP groups respectively (p = 0.046). CONCLUSIONS Continuing immunotherapy as a second-line treatment could be beneficial to the survival of patients with aNSCLC with disease progression beyond initial chemotherapy combined with immunotherapy.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Zhe Ye
- Department of Radiation Oncology, Ruian City People's Hospital, Wenzhou, Zhejiang, People's Republic of China
| | - Yanru Xie
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Xuedan Du
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Siqi Song
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Xiaobo Ding
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Chuchu Lin
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Bin Wang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Wenfeng Li
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, People's Republic of China.
| | - Chunhong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Chen T, Ni T, Mu L, Ying Z, Zhang H, Wang Z. Molecular typing and prognostic risk models for ovarian cancer: a study based on cell differentiation trajectory. Front Cell Dev Biol 2023; 11:1131494. [PMID: 37719881 PMCID: PMC10500593 DOI: 10.3389/fcell.2023.1131494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Ovarian cancer is a heterogeneous disease with different molecular phenotypes. We performed molecular typing of ovarian cancer using cell differentiation trajectory analysis and proposed a prognostic risk scoring model. Using the copy number variation provided by inferCNV, we identified malignant tumor cells. Then, ovarian cancer samples were divided into four subtypes based on differentiation-related genes (DRGs). There were significant differences in survival rates, clinical features, tumor microenvironment scores, and the expression levels of ICGs among the subtypes. Based on nine DRGs, a prognostic risk score model was generated (AUC at 1 year: 0.749; 3 years: 0.651). Then we obtained a nomogram of the prognostic variable combination, including risk scores and clinicopathological characteristics, and predicted the 1-, 3- and 5-year overall survival. Finally, we explored some issues of immune escape using the established risk model. Our study demonstrates the significant influence of cell differentiation on predicting prognosis in OV patients and provides new insights for OV treatment and potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Tingfeng Chen
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Ni
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Lan Mu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhou Ying
- Department of Medical Records and Statistics, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
7
|
Hu Q, Zhu W, Du J, Ge H, Zheng J, Long S, Fan J, Peng X. A GPX4-targeted photosensitizer to reverse hypoxia-induced inhibition of ferroptosis for non-small cell lung cancer therapy. Chem Sci 2023; 14:9095-9100. [PMID: 37655031 PMCID: PMC10466276 DOI: 10.1039/d3sc01597a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Ferroptosis therapy is gradually becoming a new strategy for the treatment of non-small cell lung cancer (NSCLC) because of its active iron metabolism. Because the hypoxic microenvironment in NSCLC inhibits ferroptosis heavily, the therapeutic effect of some ferroptosis inducers is severely limited. To address this issue, this work describes a promising photosensitizer ENBS-ML210 and its application against hypoxia of NSCLC treatment based on type I photodynamic therapy and glutathione peroxidase 4 (GPX4)-targeted ferroptosis. ENBS-ML210 can promote lipid peroxidation and reduce GPX4 expression by generating superoxide anion radicals under 660 nm light irradiation, which reverses the hypoxia-induced resistance of ferroptosis and effectively kills H1299 tumor cells. Finally, the excellent synergistic antitumor effects are confirmed both in vitro and in vivo. We firmly believe that this method will provide a new direction for the clinical treatment of NSCLC in the future.
Collapse
Affiliation(s)
- Qiao Hu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Wanjie Zhu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Jiazhu Zheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
8
|
Li S, Li Q, Zhang L, Qi Y, Bai H. M6A RNA methylation modification and tumor immune microenvironment in lung adenocarcinoma. BIOPHYSICS REPORTS 2023; 9:146-158. [PMID: 38028153 PMCID: PMC10648234 DOI: 10.52601/bpr.2023.220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/30/2023] [Indexed: 12/01/2023] Open
Abstract
Lung adenocarcinoma is one of the deadliest tumors. Studies have shown that N6-methyladenosine RNA methylation regulators, as a dynamic chemical modification, affect the occurrence and development of lung adenocarcinoma. To investigate the relationship between mutations and expression levels of m6A regulators in lung adenocarcinoma, we investigated the mutations and expression levels of 38 m6A regulators. We found that mutations in m6A regulatory factors did not affect the changes in expression levels, and 19 differentially expressed genes were identified. All tumor samples were classified into two subtypes based on the expression levels of 19 differentially expressed m6A-regulated genes. Survival analysis showed significant differences in survival between the two subtypes. To explore the relationship between immune cell infiltration and survival in both subtypes, we calculated the infiltration of 23 immune cells in both subtypes, and we found that the subtype with high immune cell infiltration had better survival. We found that subtypes with low tumor purity and high stromal and immune scores had better survival. The m6A-related immune genes were identified by taking the intersection of differentially expressed genes and immune genes in the two isoforms and calculating the Pearson correlation coefficients between the intersecting immune genes and the differentially expressed m6A-regulated genes. Finally, a prognostic model associated with m6A and associated with immunity was developed using prognostic genes screened from m6A-associated immune genes. The predictive power of the model was evaluated and our model was able to achieve good prediction.
Collapse
Affiliation(s)
- Shujuan Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qianzhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Luqiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yechen Qi
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
9
|
Ni X, Jiang X, Yu S, Wu F, Zhou J, Mao D, Wang H, Liu Y, Jin F. Triptonodiol, a Diterpenoid Extracted from Tripterygium wilfordii, Inhibits the Migration and Invasion of Non-Small-Cell Lung Cancer. Molecules 2023; 28:4708. [PMID: 37375263 DOI: 10.3390/molecules28124708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is the most prevalent oncological disease worldwide, with non-small-cell lung cancer accounting for approximately 85% of lung cancer cases. Tripterygium wilfordii is a traditional Chinese herb that is widely used to treat rheumatism, pain, inflammation, tumors, and other diseases. In this study, we found that Triptonodiol extracted from Tripterygium wilfordii inhibited the migration and invasion of non-small-cell lung cancer and inhibited cytoskeletal remodeling, which has not been previously reported. Triptonodiol significantly inhibited the motility activity of NSCLC at low toxic concentrations and suppressed the migration and invasion of NSCLC. These results can be confirmed by wound healing, cell trajectory tracking, and Transwell assays. We found that cytoskeletal remodeling was inhibited in Triptonodiol-treated NSCLC, as evidenced by the reduced aggregation of actin and altered pseudopod morphology. Additionally, this study found that Triptonodiol induced an increase in complete autophagic flux in NSCLC. This study suggests that Triptonodiol reduces the aggressive phenotype of NSCLC by inhibiting cytoskeletal remodeling and is a promising anti-tumor compound.
Collapse
Affiliation(s)
- Xiaochen Ni
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Xiaomin Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Shilong Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Feng Wu
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Jun Zhou
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Defang Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Haibo Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Yanqing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Feng Jin
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
10
|
Shao F, Ling L, Li C, Huang X, Ye Y, Zhang M, Huang K, Pan J, Chen J, Wang Y. Establishing a metastasis-related diagnosis and prognosis model for lung adenocarcinoma through CRISPR library and TCGA database. J Cancer Res Clin Oncol 2023; 149:885-899. [PMID: 36574046 DOI: 10.1007/s00432-022-04495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE Existing biomarkers for diagnosing and predicting metastasis of lung adenocarcinoma (LUAD) may not meet the demands of clinical practice. Risk prediction models with multiple markers may provide better prognostic factors for accurate diagnosis and prediction of metastatic LUAD. METHODS An animal model of LUAD metastasis was constructed using CRISPR technology, and genes related to LUAD metastasis were screened by mRNA sequencing of normal and metastatic tissues. The immune characteristics of different subtypes were analyzed, and differentially expressed genes were subjected to survival and Cox regression analyses to identify the specific genes involved in metastasis for constructing a prediction model. The biological function of RFLNA was verified by analyzing CCK-8, migration, invasion, and apoptosis in LUAD cell lines. RESULTS We identified 108 differentially expressed genes related to metastasis and classified LUAD samples into two subtypes according to gene expression. Subsequently, a prediction model composed of eight metastasis-related genes (RHOBTB2, KIAA1524, CENPW, DEPDC1, RFLNA, COL7A1, MMP12, and HOXB9) was constructed. The areas under the curves of the logistic regression and neural network were 0.946 and 0.856, respectively. The model effectively classified patients into low- and high-risk groups. The low-risk group had a better prognosis in both the training and test cohorts, indicating that the prediction model had good diagnostic and predictive power. Upregulation of RFLNA successfully promoted cell proliferation, migration, invasion, and attenuated apoptosis, suggesting that RFLNA plays a role in promoting LUAD development and metastasis. CONCLUSION The model has important diagnostic and prognostic value for metastatic LUAD and may be useful in clinical applications.
Collapse
Affiliation(s)
- Fanggui Shao
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liqun Ling
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changhong Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yincai Ye
- Department of Blood Transfusion, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meijuan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingye Pan
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Provincial, Wenzhou, China. .,Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jie Chen
- Department of ICU, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
11
|
Buglioni A, Caffes PL, Hessler MG, Mansfield AS, Lo YC. Clinical Utility Validation of an Automated Ultrarapid Gene Fusion Assay for NSCLC. JTO Clin Res Rep 2022; 3:100434. [PMID: 36536899 PMCID: PMC9758522 DOI: 10.1016/j.jtocrr.2022.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Gene rearrangements are frequent oncologic drivers in NSCLC, and many are suitable for treatment with Food and Drug Administration-approved or experimental targeted therapies. We evaluated the accuracy, specimen acceptance profile, and limits of detection of a rapid fusion assay (Idylla GeneFusion Assay), a commercially available ultrarapid molecular assay, for its clinical utility. Methods A collection of 97 specimens which had previously undergone next-generation sequencing testing were analyzed using the rapid fusion assay. Accuracy was evaluated by sensitivity and specificity compared with the next-generation sequencing results. The performance characteristics were tested by using a variety of different clinically relevant specimen types. Limits of detection were assessed by evaluating different input of tumor percentage and material amount. Results The rapid fusion assay was found to have 100% sensitivity in detecting fusions of ALK, ROS1, RET, NTRK1, and MET exon 14 skipping and 83% sensitivity for NTRK2/3 fusions. There were 100% specificity in detecting fusions of ROS1, RET, NTRK2/3, and MET exon 14 skipping and 98% specificity for ALK. Testing was successful with formalin-fixed paraffin-embedded biopsy and surgical tissues, cell blocks from fine-needle aspiration and pleural fluid (down to 5% tumor content, 18 mm2 tissue scraped), cytology smears (≥300 cells), and previously extracted RNA (minimal 20 ng). Conclusions The rapid fusion assay is quick, accurate, and versatile, allowing reliable detection of ALK, ROS1, RET fusions, and MET exon 14 skipping in NSCLC, and NTRK fusions. Rapid molecular testing may expedite treatment with appropriate targeted therapies.
Collapse
Affiliation(s)
- Alessia Buglioni
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Patricia L. Caffes
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Mark G. Hessler
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Ying-Chun Lo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Wang Z, Hu F, Chang R, Yu X, Xu C, Liu Y, Wang R, Chen H, Liu S, Xia D, Chen Y, Ge X, Zhou T, Zhang S, Pang H, Fang X, Zhang Y, Li J, Hu K, Cai Y. Development and Validation of a Prognostic Model to Predict Overall Survival for Lung Adenocarcinoma: A Population-Based Study From the SEER Database and the Chinese Multicenter Lung Cancer Database. Technol Cancer Res Treat 2022; 21:15330338221133222. [PMID: 36412085 PMCID: PMC9706045 DOI: 10.1177/15330338221133222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2023] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is the most common subtype of non-small-cell lung cancer (NSCLC). The aim of our study was to determine prognostic risk factors and establish a novel nomogram for lung adenocarcinoma patients. Methods: This retrospective cohort study is based on the Surveillance, Epidemiology, and End Results (SEER) database and the Chinese multicenter lung cancer database. We selected 22,368 eligible LUAD patients diagnosed between 2010 and 2015 from the SEER database and screened them based on the inclusion and exclusion criteria. Subsequently, the patients were randomly divided into the training cohort (n = 15,657) and the testing cohort (n = 6711), with a ratio of 7:3. Meanwhile, 736 eligible LUAD patients from the Chinese multicenter lung cancer database diagnosed between 2011 and 2021 were considered as the validation cohort. Results: We established a nomogram based on each independent prognostic factor analysis for 1-, 3-, and 5-year overall survival (OS) . For the training cohort, the area under the curves (AUCs) for predicting the 1-, 3-, and 5-year OS were 0.806, 0.856, and 0.886. For the testing cohort, AUCs for predicting the 1-, 3-, and 5-year OS were 0.804, 0.849, and 0.873. For the validation cohort, AUCs for predicting the 1-, 3-, and 5-year OS were 0.86, 0.874, and 0.861. The calibration curves were observed to be closer to the ideal 45° dotted line with regard to 1-, 3-, and 5-year OS in the training cohort, the testing cohort, and the validation cohort. The decision curve analysis (DCA) plots indicated that the established nomogram had greater net benefits in comparison with the Tumor-Node-Metastasis (TNM) staging system for predicting 1-, 3-, and 5-year OS of lung adenocarcinoma patients. The Kaplan-Meier curves indicated that patients' survival in the low-risk group was better than that in the high-risk group (P < .001). Conclusion: The nomogram performed very well with excellent predictive ability in both the US population and the Chinese population.
Collapse
Affiliation(s)
- Zhiqiang Wang
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Fan Hu
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Ruijie Chang
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Xiaoyue Yu
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Chen Xu
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Yujie Liu
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Rongxi Wang
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Hui Chen
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Shangbin Liu
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Danni Xia
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Yingjie Chen
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Xin Ge
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Tian Zhou
- Dongfang
Hospital, Beijing University of Chinese
Medicine, Beijing, China
| | - Shuixiu Zhang
- Dongfang
Hospital, Beijing University of Chinese
Medicine, Beijing, China
| | - Haoyue Pang
- Dongfang
Hospital, Beijing University of Chinese
Medicine, Beijing, China
| | - Xueni Fang
- Dongfang
Hospital, Beijing University of Chinese
Medicine, Beijing, China
| | - Yushuang Zhang
- The Fourth
Hospital of Hebei Medical University,
Shijiazhuang, China
| | - Jin Li
- The Fourth
Hospital of Hebei Medical University,
Shijiazhuang, China
| | - Kaiwen Hu
- Dongfang
Hospital, Beijing University of Chinese
Medicine, Beijing, China
| | - Yong Cai
- School of Public Health, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| |
Collapse
|
13
|
Ferlenghi F, Scalvini L, Vacondio F, Castelli R, Bozza N, Marseglia G, Rivara S, Lodola A, La Monica S, Minari R, Petronini PG, Alfieri R, Tiseo M, Mor M. A sulfonyl fluoride derivative inhibits EGFR L858R/T790M/C797S by covalent modification of the catalytic lysine. Eur J Med Chem 2021; 225:113786. [PMID: 34464874 DOI: 10.1016/j.ejmech.2021.113786] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
The emergence of the C797S mutation in EGFR is a frequent mechanism of resistance to osimertinib in the treatment of non-small cell lung cancer (NSCLC). In the present work, we report the design, synthesis and biochemical characterization of UPR1444 (compound 11), a new sulfonyl fluoride derivative which potently and irreversibly inhibits EGFRL858R/T790M/C797S through the formation of a sulfonamide bond with the catalytic residue Lys745. Enzymatic assays show that compound 11 displayed an inhibitory activity on EGFRWT comparable to that of osimertinib, and it resulted more selective than the sulfonyl fluoride probe XO44, recently reported to inhibit a significant part of the kinome. Neither compound 11 nor XO44 inhibited EGFRdel19/T790M/C797S triple mutant. When tested in Ba/F3 cells expressing EGFRL858R/T790M/C797S, compound 11 resulted significantly more potent than osimertinib at inhibiting both EGFR autophosphorylation and proliferation, even if the inhibition of EGFR autophosphorylation by compound 11 in Ba/F3 cells was not long lasting.
Collapse
Affiliation(s)
| | - Laura Scalvini
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Nicole Bozza
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Minari
- Medical Oncology, University Hospital of Parma, Parma, Italy
| | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Ding C, Liu J, Zhang J, Wan Y, Hu L, Charwudzi A, Zhan H, Meng Y, Zheng H, Wang H, Wang Y, Gao L, Hu X, Li J, Xiong S. Tumor Endothelial Marker 8 Promotes Proliferation and Metastasis via the Wnt/β-Catenin Signaling Pathway in Lung Adenocarcinoma. Front Oncol 2021; 11:712371. [PMID: 34722259 PMCID: PMC8552045 DOI: 10.3389/fonc.2021.712371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023] Open
Abstract
Tumor endothelial marker 8 (TEM8), also known as ANTXR1, was highly expressed in cancers, and was identified as a biomarker for early diagnosis and prognosis in some cancers. However, the clinical role and molecular mechanisms of TEM8 in lung adenocarcinoma (LUAD) are still unclear. The present study aimed to explore its clinical value and the molecular mechanisms of TEM8 underlying the progression of LUAD. Our study found the elevation of TEM8 in LUAD cell lines and tissues. What’s more, we observed that the TEM8 expression level was associated with tumor size, primary tumor, and AJCC stage, and LUAD patients with high TEM8 expression usually have a poor prognosis. Then, we conducted a series of experiments by the strategy of loss-of-function and gain-of-function, and our results suggested that the knockdown of TEM8 suppressed proliferation, migration, and invasion and induced apoptosis in LUAD whereas overexpression of TEM8 had the opposite effect. Molecular mechanistic investigation showed that TEM8 exerted its promoting effects mainly through activating the Wnt/β-catenin signaling pathway. In short, our findings suggested that TEM8 played a crucial role in the progression of LUAD by activating the Wnt/β-catenin signaling pathway and could serve as a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Chen Ding
- Department of Hematology/Oncology Lab, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jun Liu
- Department of Hematology/Oncology Lab, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jiali Zhang
- Department of Hematology/Oncology Lab, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yang Wan
- Department of Hematology/Oncology Lab, The Second Hospital of Anhui Medical University, Hefei, China
| | - Linhui Hu
- Department of Hematology/Oncology Lab, The Second Hospital of Anhui Medical University, Hefei, China
| | - Alice Charwudzi
- Department of Hematology/Oncology Lab, The Second Hospital of Anhui Medical University, Hefei, China
| | - Heqin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ye Meng
- Department of Hematology/Oncology Lab, The Second Hospital of Anhui Medical University, Hefei, China
| | - Huimin Zheng
- Department of Hematology/Oncology Lab, The Second Hospital of Anhui Medical University, Hefei, China
| | - HuiPing Wang
- Department of Hematology/Oncology Lab, The Second Hospital of Anhui Medical University, Hefei, China
| | - Youliang Wang
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Gao
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xianwen Hu
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jingrong Li
- Department of Emergency, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shudao Xiong
- Department of Hematology/Oncology Lab, The Second Hospital of Anhui Medical University, Hefei, China.,Center of Hematology Research, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Zhou H, Zheng M, Shi M, Wang J, Huang Z, Zhang H, Zhou Y, Shi J. Characteristic of molecular subtypes in lung adenocarcinoma based on m6A RNA methylation modification and immune microenvironment. BMC Cancer 2021; 21:938. [PMID: 34416861 PMCID: PMC8379743 DOI: 10.1186/s12885-021-08655-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a major subtype of lung cancer and closely associated with poor prognosis. N6-methyladenosine (m6A), one of the most predominant modifications in mRNAs, is found to participate in tumorigenesis. However, the potential function of m6A RNA methylation in the tumor immune microenvironment is still murky. METHODS The gene expression profile cohort and its corresponding clinical data of LUAD patients were downloaded from TCGA database and GEO database. Based on the expression of 21 m6A regulators, we identified two distinct subgroups by consensus clustering. The single-sample gene-set enrichment analysis (ssGSEA) algorithm was conducted to quantify the relative abundance of the fraction of 28 immune cell types. The prognostic model was constructed by Lasso Cox regression. Survival analysis and receiver operating characteristic (ROC) curves were used to evaluate the prognostic model. RESULT Consensus classification separated the patients into two clusters (clusters 1 and 2). Those patients in cluster 1 showed a better prognosis and were related to higher immune scores and more immune cell infiltration. Subsequently, 457 differentially expressed genes (DEGs) between the two clusters were identified, and then a seven-gene prognostic model was constricted. The survival analysis showed poor prognosis in patients with high-risk score. The ROC curve confirmed the predictive accuracy of this prognostic risk signature. Besides, further analysis indicated that there were significant differences between the high-risk and low-risk groups in stages, status, clustering subtypes, and immunoscore. Low-risk group was related to higher immune score, more immune cell infiltration, and lower clinical stages. Moreover, multivariate analysis revealed that this prognostic model might be a powerful prognostic predictor for LUAD. Ultimately, the efficacy of this prognostic model was successfully validated in several external cohorts (GSE30219, GSE50081 and GSE72094). CONCLUSION Our study provides a robust signature for predicting patients' prognosis, which might be helpful for therapeutic strategies discovery of LUAD.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Miaosen Zheng
- Department of Pathology, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Muqi Shi
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jinjie Wang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhanghao Huang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
16
|
Ling B, Liao X, Tang Q, Ye G, Bin X, Wang J, Pang Y, Qi G. MicroRNA-106b-5p inhibits growth and progression of lung adenocarcinoma cells by downregulating IGSF10. Aging (Albany NY) 2021; 13:18740-18756. [PMID: 34351868 PMCID: PMC8351668 DOI: 10.18632/aging.203318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 12/04/2022]
Abstract
In this study, we investigated the mechanistic role and prognostic significance of IGSF10 in lung adenocarcinoma. Oncomine database analysis showed that IGSF10 expression was significantly reduced in most cancer types, including lung adenocarcinoma (LUAD). In the TCGA-LUAD dataset, IGSF10 expression correlated positively with proportions of tumor-infiltrated B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells. Kaplan-Meier survival analysis showed that overall survival of patients with low IGSF10 expression was significantly shorter than those with high IGSF10 expression. MiRWalk2.0 database analysis and dual luciferase reporter assays confirmed that miR-106b-5p suppressed IGSF10 expression by binding to its 3’UTR. MiR-106b-5p levels inversely correlated with IGSF10 expression in the TCGA-LUAD dataset. Moreover, inhibition of miR-106b-5p significantly decreased in vitro proliferation, migration, and invasion by LUAD cells, whereas miR-106b-5p overexpression reversed those effects. These results demonstrate that IGSF10 is an independent prognostic factor for LUAD. Furthermore, miR-106b-5p suppressed IGSF10 expression in LUAD tissues by binding to its 3’UTR, which makes IGSF10 and miR-106b-5p potential prognostic biomarkers and therapeutic targets in LUAD patients.
Collapse
Affiliation(s)
- Bo Ling
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Xianjiu Liao
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Qiang Tang
- Department of Burn and Plastic Surgery and Wound Repair, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Guangbin Ye
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.,Medical College of Guangxi University, Nanning 530004, Guangxi, China
| | - Xiaoyun Bin
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Yaqin Pang
- College of Medical Laboratory, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Guangzi Qi
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| |
Collapse
|
17
|
Wang Z, Embaye KS, Yang Q, Qin L, Zhang C, Liu L, Zhan X, Zhang F, Wang X, Qin S. Development and validation of a novel epigenetic-related prognostic signature and candidate drugs for patients with lung adenocarcinoma. Aging (Albany NY) 2021; 13:18701-18717. [PMID: 34285141 PMCID: PMC8351720 DOI: 10.18632/aging.203315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/11/2021] [Indexed: 12/02/2022]
Abstract
Background: Epigenetic dysregulation has been increasingly proposed as a hallmark of cancer. Here, the aim of this study is to establish an epigenetic-related signature for predicting the prognosis of lung adenocarcinoma (LUAD) patients. Results: Five epigenetic-related genes (ERGs) (ARRB1, PARP1, PKM, TFDP1, and YWHAZ) were identified as prognostic hub genes and used to establish a prognostic signature. According our risk score system, LUAD patients were stratified into high and low risk groups, and patients in the high risk group had a worse prognosis. ROC analysis indicated that the signature was precise in predicting the prognosis. A new nomogram was constructed based on the five hub genes, which can predict the OS of every LUAD patients. The calibration curves showed that the nomogram had better accuracy in prediction. Finally, candidate drugs that aimed at hub ERGs were identified, which included 47 compounds. Conclusions: Our epigenetic-related signature nomogram can effectively and reliably predict OS of LUAD patients, also we provide precise targeted chemotherapeutic drugs. Methods: The genomic data and clinical data of LUAD cohort were downloaded from the TCGA database and ERGs were obtained from the EpiFactors database. GSE31210 and GSE50081 microarray datasets were included as independent external datasets. Univariate Cox, LASSO regression, and multivariate Cox analyses were applied to construct the epigenetic-related signature.
Collapse
Affiliation(s)
- Zhihao Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kidane Siele Embaye
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Yang
- Department of Pharmacy, Hiser Medical Center of Qingdao, Qingdao 266033, China
| | - Lingzhi Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liwei Liu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqian Zhan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fengdi Zhang
- Department of Pathology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430030, China
| | - Xi Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenghui Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Fighting tertiary mutations in EGFR-driven lung-cancers: Current advances and future perspectives in medicinal chemistry. Biochem Pharmacol 2021; 190:114643. [PMID: 34097913 DOI: 10.1016/j.bcp.2021.114643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
Third-generation inhibitors of the epidermal growth factor receptor (EGFR), best exemplified by osimertinib, have been developed to selectively target variants of EGFR bearing activating mutations and the mutation of gatekeeper T790 in patients with EGFR-mutated forms of Non-Small Cell Lung Cancer (NSCLC). While the application of third-generation inhibitors has represented an effective first- and second-line treatment, the efficacy of this class of inhibitors has been hampered by the novel, tertiary mutation C797S, which may occur after the treatment with osimertinib. More recently, other point mutations, including L718Q, G796D, G724S, L792 and G719, have emerged as mutations mediating resistance to third-generation inhibitors. The challenge of overcoming newly developed and recurrent resistances mediated by EGFR-mutations is thus driving the search of alternative strategies in the design of new therapeutic agents able to block EGFR-driven tumor growth. In this manuscript we review the recently emerged EGFR-dependent mechanisms of resistance to third-generation inhibitors, and the achievements lately obtained in the development of next-generation EGFR inhibitors.
Collapse
|
19
|
Addeo A, Passaro A, Malapelle U, Luigi Banna G, Subbiah V, Friedlaender A. Immunotherapy in non-small cell lung cancer harbouring driver mutations. Cancer Treat Rev 2021; 96:102179. [PMID: 33798954 DOI: 10.1016/j.ctrv.2021.102179] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Alfredo Addeo
- Oncology Department, University Hospital, Geneva, Switzerland.
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Umberto Malapelle
- Department of Haematology/Oncology, Queen Alexandra Hospital, Portsmouth, United Kingdom
| | | | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
20
|
Yin L, Zhang N, Yang Q. DNA methylation subtypes for ovarian cancer prognosis. FEBS Open Bio 2021; 11:851-865. [PMID: 33278864 PMCID: PMC7931230 DOI: 10.1002/2211-5463.13056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is one of three major malignancies of the female reproductive system. DNA methylation (MET) is closely related to ovarian cancer occurrence and development, and as such, elucidation of effective MET subtype markers may guide individualized treatment and improve ovarian cancer prognosis. To identify potential markers, we downloaded a total of 571 ovarian cancer MET samples from The Cancer Genome Atlas (TCGA), and established a Cox proportional hazards model using the MET spectrum and clinical pathological parameters. A total of 250 prognosis-related MET loci were obtained by Cox regression, and six molecular subtypes were screened by consensus clustering of CpG loci with a significant difference in both univariate and multivariate analyses. There was a remarkable MET difference between most subtypes. Cluster 2 had the highest MET level and demonstrated the best prognosis, while Clusters 4 and 5 had MET levels significantly lower than those of the other subtypes and demonstrated very poor prognosis. All Cluster 5 samples were at a high grade, while the percentage of stage IV samples in Cluster 4 was greater than in the other subtypes. We obtained five CpG loci using a coexpression network: cg27625732, cg00431050, cg22197830, cg03152385, and cg22809047. Our cluster analysis showed that prognosis in patients with hypomethylation was significantly worse than in patients with hypermethylation. These MET molecular subtypes can be used not only to evaluate ovarian cancer prognosis, but also to fully distinguish the tumor stage and histological grade in patients with ovarian cancer.
Collapse
Affiliation(s)
- Lili Yin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ningning Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Zheng Y, Chen J, Li Y, Xu Y, Chen L, Chen W, Liu A, Lin X, Weng S. Dual-probe fluorescent biosensor based on T7 exonuclease-assisted target recycling amplification for simultaneous sensitive detection of microRNA-21 and microRNA-155. Anal Bioanal Chem 2021; 413:1605-1614. [PMID: 33515273 DOI: 10.1007/s00216-020-03121-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Effective and simultaneous monitoring of the abnormal expression of certain microRNAs (miRNAs), especially for miRNA-21 and miRNA-155, can indicate drug resistance in lung cancer. In this work, T7 exonuclease (T7 Exo)-assisted target recycling amplification coupled with the extensive fluorescence quenching of graphene oxide (GO) was designed for the simultaneous detection of miRNA-21 and miRNA-155 using FAM- and ROX-labeled single-strand DNA probes. Through this method, the variable emission intensities of FAM and ROX caused by the introduction of miRNA-21 and miRNA-155, respectively, were obtained with high sensitivity. The method exhibited excellent analytical performance for simultaneous detection of miRNA-21 and miRNA-155 without cross-interference. The linear range was from 0.005 nM to 5 nM over three orders of magnitude, with detection limits as low as 3.2 pM and 4.5 pM for miRNA-21 and miRNA-155, respectively. Furthermore, the recovery (92.49-103.67%) and relative standard deviation (RSD < 4.8%) of the standard addition test of miRNA-21 and miRNA-155 in human plasma suggested the potential for drug resistance warning in clinical practice via this simple strategy. A homogeneous T7 Exo-assisted signal amplification combined with GO quenching platform was developed for accurate, sensitive and simultaneous analysis of miRNA-21 and miRNA-155 for drug resistance warning in lung cancer. This simple method exhibited a wide linear range and low LODs for miR-21 and miR-155.
Collapse
Affiliation(s)
- Yanjie Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Jinyuan Chen
- The Central lab, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - You Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Department of Pharmacy, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, 350008, Fujian, China
| | - Yichun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Li Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
22
|
Cao Y, Lu X, Li Y, Fu J, Li H, Li X, Chang Z, Liu S. Identification of a six-gene metabolic signature predicting overall survival for patients with lung adenocarcinoma. PeerJ 2020; 8:e10320. [PMID: 33344071 PMCID: PMC7718790 DOI: 10.7717/peerj.10320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related deaths worldwide. Lung adenocarcinoma (LUAD) is one of the main subtypes of lung cancer. Hundreds of metabolic genes are altered consistently in LUAD; however, their prognostic role remains to be explored. This study aimed to establish a molecular signature that can predict the prognosis in patients with LUAD based on metabolic gene expression. Methods The transcriptome expression profiles and corresponding clinical information of LUAD were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. The differentially expressed genes (DEGs) between LUAD and paired non-tumor samples were identified by the Wilcoxon rank sum test. Univariate Cox regression analysis and the lasso Cox regression model were used to construct the best-prognosis molecular signature. A nomogram was established comprising the prognostic model for predicting overall survival. To validate the prognostic ability of the molecular signature and the nomogram, the Kaplan-Meier survival analysis, Cox proportional hazards model, and receiver operating characteristic analysis were used. Results The six-gene molecular signature (PFKP, PKM, TPI1, LDHA, PTGES, and TYMS) from the DEGs was constructed to predict the prognosis. The molecular signature demonstrated a robust independent prognostic ability in the training and validation sets. The nomogram including the prognostic model had a greater predictive accuracy than previous systems. Furthermore, a gene set enrichment analysis revealed several significantly enriched metabolic pathways, which suggests a correlation of the molecular signature with metabolic systems and may help explain the underlying mechanisms. Conclusions Our study identified a novel six-gene metabolic signature for LUAD prognosis prediction. The molecular signature could reflect the dysregulated metabolic microenvironment, provide potential biomarkers for predicting prognosis, and indicate potential novel metabolic molecular-targeted therapies.
Collapse
Affiliation(s)
- Yubo Cao
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaomei Lu
- Department of Pathophysiology, China Medical University, Shenyang, China
| | - Yue Li
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia Fu
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongyuan Li
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiulin Li
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ziyou Chang
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Sa Liu
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Fujimura T, Furugaki K, Harada N, Yoshimura Y. Enhanced antitumor effect of alectinib in combination with cyclin-dependent kinase 4/6 inhibitor against RET-fusion-positive non-small cell lung cancer cells. Cancer Biol Ther 2020; 21:863-870. [PMID: 32835580 DOI: 10.1080/15384047.2020.1806643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rearranged during transfection (RET) fusion-positive non-small cell lung cancer (NSCLC) accounts for 1% of lung adenocarcinoma. Although small molecule agents with RET kinase inhibitory activity such as alectinib, vandetanib, and cabozantinib have been clinically evaluated in RET-fusion-positive NSCLC, an effective monotherapy regimen has not been established. We explored agents to use in combination with alectinib to enhance the antitumor effect of alectinib against RET-fusion cells. Cell proliferation under co-treatment with alectinib plus each of six chemotherapeutic agents or six molecularly targeted agents was evaluated in vitro. The combination effect was analyzed by IC50 isobologram and combination index using LC-2/ad and Ba/F3-KIF5B-RET cells. The in vivo combination effect was investigated in a Ba/F3-KIF5B-RET xenograft model. The phosphorylation levels of proteins regulating proliferation were measured by immunoblotting. Palbociclib, a CDK4/6 inhibitor, showed the greatest synergy against LC-2/ad cells in the isobologram analysis and combination index. This synergistic effect was also observed against Ba/F3-KIF5B-RET cells. Another CDK4/6 inhibitor, abemaciclib, also showed a synergistic effect. In vivo, the combination of alectinib plus palbociclib showed a more enhanced antitumor effect than each single agent in a mouse xenograft model with transplanted Ba/F3-KIF5B-RET cells. This combination suppressed the phosphorylation of S6 and Rb more intensely than did either single agent in both LC-2/ad and Ba/F3-KIF5B-RET cell lines, both in vitro and in vivo. Combination therapy with alectinib plus the CDK4/6 inhibitor enhanced the antitumor effect against RET-fusion-positive cells in vitro and in vivo.
Collapse
Affiliation(s)
- Takaaki Fujimura
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical , Kanagawa, Japan
| | - Koh Furugaki
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical , Kanagawa, Japan
| | - Naoki Harada
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical , Kanagawa, Japan
| | - Yasushi Yoshimura
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical , Kanagawa, Japan
| |
Collapse
|
24
|
Zhang Y, Liu J, Sun Y, Yu X, Wang J, Dai D, Zhu Y, Song X, Zhu L, Li X, Xu W. Enhanced glucose metabolism mediated by CD147 is associated with 18 F-FDG PET/CT imaging in lung adenocarcinoma. Thorac Cancer 2020; 11:1245-1257. [PMID: 32162491 PMCID: PMC7180588 DOI: 10.1111/1759-7714.13383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most deadly thoracic tumors. Reprogrammed glycolytic metabolism is a hallmark of cancer cells and significantly affects several cellular functions. In the current study, we aimed to investigate cluster of differentiation 147 (CD147)‐mediated glucose metabolic regulation in LUAD and its association with 18F‐FDG PET/CT imaging. Methods The expression profile and prognostic potential of CD147 in LUAD were analyzed using UALCAN and a Kaplan‐Meier plotter. Tissue immunohistochemical analyses and PET metabolic parameters were used to identify the relationship between CD147 expression and reprogrammed glycolysis. The role of CD147 in glucose metabolic reprogramming was assessed by radioactive uptake of 18F‐FDG through γ‐radioimmunoassays in vitro and micro‐PET/CT imaging in vivo. Western blotting assays were used to determine the expression level of monocarboxylate transporter 1 (MCT1) and MCT4 in established human LUAD cell lines (ie, HCC827 and H1975) with different CD147 expression levels via lentiviral transduction. Results CD147 was highly expressed in LUAD. A significant positive correlation existed between CD147 expression and PET metabolic parameters(SUVmax,SUVmean, SUVpeak). CD147 could promote radioactive uptake of 18F‐FDG in vitro and in vivo, suggesting the ability of CD147 to enhance glycolytic metabolism. Furthermore, as an obligate chaperone for MCT1 and MCT4, CD147 positively correlated with MCT1 and MCT4 expression in LUAD tissues and established cell lines with different CD147 expression. Conclusions Our study revealed that CD147 is a promising novel target for LUAD treatment and CD147‐mediated glucose metabolism demonstrated its contribution to the predictive role of 18F‐FDG PET/CT imaging for targeted therapeutic efficacy.
Collapse
Affiliation(s)
- Yufan Zhang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yunchuan Sun
- Department of Nuclear Medicine, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Xiaozhou Yu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jian Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanjia Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiuyu Song
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
25
|
Sundar R, Tan IBH, Chee CE. Negative Predictive Biomarkers in Colorectal Cancer: PRESSING Ahead. J Clin Oncol 2019; 37:3066-3068. [DOI: 10.1200/jco.19.01977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Raghav Sundar
- National University Health System, Singapore
- Duke-National University of Singapore Medical School, Singapore
- National University of Singapore, Singapore
| | - Iain Bee Huat Tan
- Duke-National University of Singapore Medical School, Singapore
- National Cancer Centre Singapore, Singapore
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore, Singapore
| | - Cheng E. Chee
- National University Health System, Singapore
- National University of Singapore, Singapore
| |
Collapse
|
26
|
Niggenaber J, Hardick J, Lategahn J, Rauh D. Structure Defines Function: Clinically Relevant Mutations in ErbB Kinases. J Med Chem 2019; 63:40-51. [DOI: 10.1021/acs.jmedchem.9b00964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Janina Niggenaber
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, (Germany)
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), TU Dortmund University, 44227 Dortmund (Germany)
| | - Julia Hardick
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, (Germany)
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), TU Dortmund University, 44227 Dortmund (Germany)
| | - Jonas Lategahn
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, (Germany)
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), TU Dortmund University, 44227 Dortmund (Germany)
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, (Germany)
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), TU Dortmund University, 44227 Dortmund (Germany)
| |
Collapse
|
27
|
Xu J, Lv H, Zhang B, Xu F, Zhu H, Chen B, Zhu C, Shen J. miR-30b-5p acts as a tumor suppressor microRNA in esophageal squamous cell carcinoma. J Thorac Dis 2019; 11:3015-3029. [PMID: 31463131 DOI: 10.21037/jtd.2019.07.50] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background To study miR-30b-5p expression in esophageal squamous cell carcinoma (ESCC) by comparisons between tumor tissues and matched adjacent non-cancerous tissues to elucidate the correlation between miR-30b-5p expression and ESCC clinical parameters, and to explore the signaling pathways associated with miR-30b-5p and key target genes. Methods Clinical data, cancer tissues, and adjacent non-cancerous tissues of 32 patients diagnosed with ESCC were collected from Taizhou Hospital of Zhejiang Province. The expression levels of miR-30b-5p were determined by real-time polymerase chain reaction (RT-PCR). mRNA data for ESCC tissues and normal tissues, and clinical materials of patients with ESCC were obtained from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA). Associations between miR-30b-5p expression and clinical features of patients with ESCC and overall survival were explored. A bioinformatics analysis was performed to determine the pathways and key miR-30b-5p targets associated with ESCC. Additionally, a cytological experiment was performed to evaluate the biological functions of miR-30b-5p. Finally, correlations between miR-30b-5p and key targets involved in PI3K/Akt signaling pathways were validated by western blotting. Results The expression level of miR-30b-5p in the 32 ESCC tissues was significantly lower than that in adjacent normal tissues (P<0.01) and was significantly disparate in the T stage, with higher expression in T1 than in T2 (P<0.05). Among the patients with higher expression levels of miR-30b-5p in ESCC tissues than in adjacent normal tissues, patients with higher expression of miR-30b-5p had a better prognosis (P<0.05). An analysis of gene chip data from the GEO database showed similar results. A gene enrichment analysis indicated a series of pathways that may be associated with the downregulation of miR-30b-5p, including focal adhesion, ECM-receptor interaction, and PI3K/Akt signaling pathways. Seven key target genes (PDGFRB, VIM, ITGA5, ACTN1, THBS2, SERPINE1, and RUNX2) were identified; these were found to be upregulated in ESCC tissues and were negatively correlated with miR-30b-5p. Functional experiments showed that miR-30b-5p attenuated migration (P<0.01) and invasion (P<0.05) in the Eca109 cell line. Moreover, the levels of ITGA5, PDGFRB, p-PI3K, and p-AKT, which are involved in the PI3K/Akt signaling pathway, were decreased in the miR-30b-5p-overexpressing Eca109 cell line. Conclusions Upregulated miR-30b-5p may inhibit migration and invasion in ESCC by targeting ITGA5, PDGFRB, and signaling pathways, such as PI3K/Akt, involved in ESCC regulation. Our results indicate that miR-30b-5p plays an important role in the occurrence and progression of ESCC and is a potential therapeutic target.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Haiyan Lv
- Enze Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Bo Zhang
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Feng Xu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Hongyu Zhu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Baofu Chen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Chengchu Zhu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Jianfei Shen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| |
Collapse
|
28
|
Xu X, Sui X, Zhong W, Xu Y, Wang Z, Jiang J, Ge Y, Song L, Du Q, Wang X, Song W, Jin Z. Clinical utility of quantitative dual-energy CT iodine maps and CT morphological features in distinguishing small-cell from non-small-cell lung cancer. Clin Radiol 2019; 74:268-277. [PMID: 30691731 DOI: 10.1016/j.crad.2018.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023]
Abstract
AIM To evaluate the clinical usefulness of quantitative dual-energy (DE) computed tomography (CT) iodine enhancement metrics combined with morphological CT features in distinguishing small-cell lung cancer (SCLC) from non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS One hundred and six untreated lung cancer patients who underwent DECT before biopsy or surgery were prospectively enrolled. Twenty-seven routine CT descriptors, including tumour location, size, shape, margin, enhancement heterogeneity, and internal and surrounding structures, and associated findings were assessed and DECT parameters were measured in all patients. Multiple logistic regression analyses were applied to identify independent predictors of SCLC. The area under the receiver operating characteristic curve was compared between CT features combined with DECT metrics and CT features alone for distinguishing SCLC from NSCLC. RESULTS Histology revealed NSCLC in 80 and SCLC in 26 patients. In univariate analysis, 12 morphological CT features and two DECT metrics differed significantly between NSCLC and SCLC. When DECT parameters were combined with CT features for multivariate analysis, the independent predictors of SCLC were large tumour size, central location, confluent mediastinal lymphadenopathy, homogeneous enhancement, absence of coarse spiculation, and lower iodine density and iodine ratio (all p<0.05). The area under the receiver operating characteristic curve was improved from 0.908 to 0.981 after adding DECT metrics compared with CT features alone (p=0.007). CONCLUSION The combination of DECT measures and CT morphological features can be used to distinguish SCLC from NSCLC, with higher diagnostic performance compared with CT morphological features alone.
Collapse
Affiliation(s)
- X Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - X Sui
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - W Zhong
- Department of Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Y Xu
- Department of Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Z Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Science, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - J Jiang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Science, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Y Ge
- Siemens China, Beijing, China
| | - L Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Q Du
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - X Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - W Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Z Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
29
|
Zhou J, Zhao C, Zhao J, Wang Q, Chu X, Li J, Zhou F, Ren S, Li X, Su C, Zhou C. Re-biopsy and liquid biopsy for patients with non-small cell lung cancer after EGFR-tyrosine kinase inhibitor failure. Thorac Cancer 2019; 10:957-965. [PMID: 30887673 PMCID: PMC6449239 DOI: 10.1111/1759-7714.13035] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/23/2022] Open
Abstract
Background Re‐biopsy is important for exploring resistance mechanisms, especially for non‐small cell lung cancer (NSCLC) patients who develop resistance to EGFR‐tyrosine kinase inhibitors (TKIs). Liquid biopsy using circulating tumor DNA has come into use for this purpose. This retrospective study investigated the status of re‐biopsy and liquid biopsy in NSCLC patients with EGFR mutations and evaluated their effect on clinical strategies and prognosis. Methods Five hundred fifty‐five NSCLC patients with resistance to EGFR‐TKIs were included and divided into three groups: re‐biopsy, liquid biopsy, and no re‐biopsy. Amplification refractory mutation system (ARMS) PCR or super ARMS PCR was used to detect EGFR mutations. Results Three hundred eight (55.5%) patients underwent re‐biopsy; 45.5% (140/308) were positive for T790M. The most common re‐biopsy procedure was computed tomography‐guided percutaneous core needle biopsy (60.1%), followed by effusion drainage (29.5%) and superficial lymph node biopsy (6.5%). One hundred eighteen (21.3%) patients underwent liquid biopsy; the T790M detection rate was 41.5% (49/118.) Of the 308 patients who underwent re‐biopsy, 69 were examined for EGFR mutations with plasma. The concordance rate of T790M detection between tissue and plasma was 66.7%. A statistical difference in further treatment after EGFR‐TKI failure was observed among all groups (P = 0.014). Patients in the biopsy groups were more likely to receive third‐generation EGFR‐TKIs. Multivariate analysis showed that re‐biopsy had a significant impact on overall survival (P < 0.001). Conclusion Re‐biopsy plays a pivotal role in the management of patients with NSCLC and resistance to EGFR‐TKIs. Liquid biopsy may be an alternative if difficulties performing re‐biopsy exist.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jing Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xiangling Chu
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jiayu Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Peng F, Li Q, Niu SQ, Shen GP, Luo Y, Chen M, Bao Y. ZWINT is the next potential target for lung cancer therapy. J Cancer Res Clin Oncol 2019; 145:661-673. [PMID: 30643969 DOI: 10.1007/s00432-018-2823-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE We aimed to analyze the expression of ZWINT, NUSAP1, DLGAP5, and PRC1 in tumor tissues and adjacent tissues with public data. METHODS The expression patterns of four genes were detected in cancer tissues and adjacent tissues by qRT-PCR. The overall survival analysis was used to explore these genes in lung adenocarcinoma and squamous cell carcinoma patients. Knockdown assays were used to select the most suitable gene among these four genes. Cell function assays with the knockdown gene were conducted in A549 and NCL H226 cells. The role of the knockdown gene in lung cancer was dissected in a mice tumor model. Transcriptome sequencing analyses with the knockdown gene were analyzed. RESULTS Overexpression of these genes was significantly detected in cancer tissues (P < 0.01). Overall survival revealed that high expression of these genes is closely related with poor prognosis of lung adenocarcinoma patients (P < 0.05). Knockdown of ZWINT reduced proliferation in NCI H226 and A549 cells (P < 0.05). Knockdown also inhibited cell migration, invasion, apoptosis, and colony formation (P < 0.05). ZWINT knockdown reduced tumor volume (P < 0.05). Transcriptome sequencing of ZWINT knockdown-treated A549 and NCI H226 cells indicated that 100 and 426 differentially expressed genes were obtained, respectively. Gene ontology analysis suggested that binding, biological regulation, and multicellular organismal processes were the most enriched. KEGG analysis revealed that TNF, P53, and PI3K signal networks would be the most potential ZWINT-related pathways and were identified by Western blot analysis. CONCLUSIONS ZWINT may be a novel target for lung cancer therapy.
Collapse
Affiliation(s)
- Fang Peng
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Qiang Li
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Shao-Qing Niu
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Guo-Ping Shen
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ying Luo
- Department of Clinical Laboratory, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ming Chen
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, 1 East Banshan Road, Hangzhou, 310022, Zhejiang, People's Republic of China.
| | - Yong Bao
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
31
|
Zhu Z, Liang Z, Tong J, Mao X, Yin Y, Manor LC, Shen Z. Survival analysis in Caucasian pulmonary adenocarcinoma patients based on differential targets between Caucasian and Asian population. Saudi J Biol Sci 2018; 25:1003-1006. [PMID: 30108455 PMCID: PMC6088109 DOI: 10.1016/j.sjbs.2018.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 11/10/2022] Open
Abstract
Ethnicity differences may contribute to the variety of overall survival in pulmonary adenocarcinoma, while the influence of ethnicity relevant somatic driver mutations (ERSDM) profile on Caucasian survival is not well investigated. In this study, we studied epidermal growth factor receptor (EGFR), tumor protein p53 (TP53), Kirsten rat sarcoma 2 viral oncogene homolog (KRAS), and Serine/Threonine Kinase 11 (STK11) to construct the ERSDM profile. Those genes were selected as harboring somatic driver mutations with >10% prevalence and with different occurrence between Caucasian and Asian ethnicity. Clinical information and transcriptome sequencing of 173 Caucasian pulmonary adenocarcinoma patients with matched mutation data are retrieved from TCGA, Kaplan-Meier analyses and Cox proportional-hazards regression models are further used to analyze the effect of the ERSDM profile on overall survival. There is no significant correlation between single gene mutation and overall survival, while patients with less than two mutated genes have a better overall survival compared with those with at least two mutated genes (p = 0.034). All of these indicate that multiple mutations in the ERSDM profile may be a negative prognostic factor for overall survival in Caucasian pulmonary adenocarcinoma patients.
Collapse
Affiliation(s)
- Zheng Zhu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, China
| | - Zhigang Liang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang 315000, China
| | - Jichun Tong
- Department of Cardiovascular Thoracic Surgery, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Xiaoliang Mao
- Department of Cardiovascular Thoracic Surgery, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Yajun Yin
- Department of Cardiovascular Thoracic Surgery, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Lydia C Manor
- Department of Biology Products, American Informatics LLC, Rockville 20850, USA
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, China
| |
Collapse
|
32
|
Lung Cancer Radiogenomics: The Increasing Value of Imaging in Personalized Management of Lung Cancer Patients. J Thorac Imaging 2018; 33:17-25. [PMID: 29252899 DOI: 10.1097/rti.0000000000000312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radiogenomics provide a large-scale data analytical framework that aims to understand the broad multiscale relationships between the complex information encoded in medical images (including computational, quantitative, and semantic image features) and their underlying clinical, therapeutic, and biological associations. As such it is a powerful and increasingly important tool for both clinicians and researchers involved in the imaging, evaluation, understanding, and management of lung cancers. Herein we provide an overview of the growing field of lung cancer radiogenomics and its applications.
Collapse
|
33
|
Mulder C, Prust N, van Doorn S, Reinecke M, Kuster B, van Bergen en Henegouwen P, Lemeer S. Adaptive Resistance to EGFR-Targeted Therapy by Calcium Signaling in NSCLC Cells. Mol Cancer Res 2018; 16:1773-1784. [DOI: 10.1158/1541-7786.mcr-18-0212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/26/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
|
34
|
Yang L, Wang J, Fan Y, Yu K, Jiao B, Su X. Hsa_circ_0046264 up-regulated BRCA2 to suppress lung cancer through targeting hsa-miR-1245. Respir Res 2018; 19:115. [PMID: 29891014 PMCID: PMC5996480 DOI: 10.1186/s12931-018-0819-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/30/2018] [Indexed: 01/07/2023] Open
Abstract
Objective Lung cancer had been leading mounts of deaths worldwide. Advances in genes microarray had helped human further understand genes and identify novel circular RNAs. This study aimed at investigating the biological functions and molecular mechanisms of hsa_circ_0046264 in lung cancer which may be helpful in lung cancer early diagnosis and clinical treatment. Methods Gene microarray data screened the differential gene of hsa_circ_0046264 and its downstream genes were found by bioinformatics analysis and verified by luciferase reporter assay. QRT-PCR and Western blot was used to detect the RNA and protein levels respectively. RNase R digestion confirmed the existences of circular RNA. Cell viability, invasion and apoptosis were determined by MTT assay, flow cytometry and DNA damage assay. Tumor formation in nude mice and immunohistochemistry proved the functions of hsa_circ_0046264 in vivo. Results Hsa_circ_0046264 and BRCA2 were down-regulated in lung cancer tissues while miR-1245 was up-regulated. Hsa_circ_0046264 induced apoptosis but inhibited proliferation and invasion of lung cancer cells through targeting miR-1245 to up-regulate BRCA2. Hsa_circ_0046264 inhibited the tumor growth in vivo. Conclusion Hsa_circ_0046264 was a tumor suppressor in lung cancer. Overexpression of hsa_circ_0046264 could up-regulate BRCA2 expression through down-regulating of miR-1245. Electronic supplementary material The online version of this article (10.1186/s12931-018-0819-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liu Yang
- Biomedical Research Center, the Affiliated Calmette Hospital of Kunming Medical University (the First Hospital of Kunming), No. 504 Qingnian Road, Kunming, 650011, Yunnan, China
| | - Jun Wang
- Department of Anesthesiology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yaodong Fan
- Department of Neurosurgery, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118, Yunnan, China
| | - Kun Yu
- Department of Colorectal Cancer, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118, Yunnan, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Xiaosan Su
- Biomedical Research Center, the Affiliated Calmette Hospital of Kunming Medical University (the First Hospital of Kunming), No. 504 Qingnian Road, Kunming, 650011, Yunnan, China.
| |
Collapse
|
35
|
Liu K, Chen H, You Q, Ye Q, Wang F, Wang S, Zhang S, Yu K, Li W, Gu M. miR‑145 inhibits human non‑small-cell lung cancer growth by dual-targeting RIOK2 and NOB1. Int J Oncol 2018; 53:257-265. [PMID: 29749434 DOI: 10.3892/ijo.2018.4393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-associated mortality worldwide. Right open reading frame kinase 2 (RIOK2) and nin one binding protein (NOB1) are important accessory factors in ribosome assembly. In our previous study, RIOK2 and NOB1 were revealed to be highly expressed in NSCLC, and were associated with the clinicopathological characteristics of patients with NSCLC, i.e. TNM clinical stage, lymph node metastasis and differentiation. In addition, RIOK2 expression was correlated with NOB1. To further explore the mechanism and the RIOK2 and NOB1 signaling pathway, microRNA (miR) regulation was analyzed. The tumor suppressor miR‑145 has been reported to be lowly expressed in numerous types of human cancer; in the present study, the expression levels of miR‑145 were decreased in patients with NSCLC. Furthermore, RIOK2 and NOB1 were predicted to be the direct targets of miR‑145 using bioinformatics software; this was further validated using a dual luciferase reporter assay. In addition, the protein expression levels of RIOK2 and NOB1 were inhibited in response to miR‑145 overexpression, thus resulting in the suppression of cell viability, migration and invasion. These results suggested that RIOK2 and NOB1 may be potential targets in the treatment of NSCLC, and miR‑145 may be considered a therapeutic inhibitor of both genes.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Honglin Chen
- School of Nursing, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qing Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fei Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shuo Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shuanglong Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Kangjun Yu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Weinan Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Mingming Gu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
36
|
Latif M, Ashraf Z, Basit S, Ghaffar A, Zafar MS, Saeed A, Meo SA. Latest perspectives of orally bioavailable 2,4-diarylaminopyrimidine analogues (DAAPalogues) as anaplastic lymphoma kinase inhibitors: discovery and clinical developments. RSC Adv 2018; 8:16470-16493. [PMID: 35540549 PMCID: PMC9080316 DOI: 10.1039/c8ra01934g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
The course of anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC) therapy has improved impressively. The Food and Drug Administration (FDA) has approved crizotinib (Xalkori, Pfizer) as a first-in-class tyrosine kinase inhibitor (TKI) that demonstrated a substantial objective response rate (ORR) and remarkable progression-free survival (PFS). However, acquired resistance to crizotinib is still a major concern especially as the central nervous system (CNS) remains the most common sites of relapse. To combat disease resistance, limited PFS and poor CNS exposure exhibited by crizotinib (Xalkori, Pfizer) led to the discovery of numerous next generation ALK-TKIs and surprisingly most of them are 2,4-Diarylaminopyrimidine Analogues (DAAPalogues). To date, DAAPalogues have been investigated extensively to display their superior potency against numerous kinase targets especially ALK/ROS1. This review describes hit-to-drug evolution strategies, activity spectra, milestones related to medicinal chemistry discovery efforts and scalable synthetic pathways of clinically emerging DAAPalouges which are either progressing as investigational or preclinical candidates. In addition, the significance of DAAPalogues to treat the patients with ALK+-NSCLC in clinical settings has been detailed. This review is beneficial for medicinal chemists and researchers contributing to discovering ALK-TKIs to overcome existing issues related to DAAPalouges in the drug discovery process.
Collapse
Affiliation(s)
- Muhammad Latif
- College of Medicine, Centre for Genetics and Inherited Diseases (CGID), Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Sulman Basit
- College of Medicine, Centre for Genetics and Inherited Diseases (CGID), Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
| | - Abdul Ghaffar
- Department of Chemistry, University of Engineering and Technology Lahore Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University Islamabad 44000 Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-e-Azam University Islamabad Pakistan
| | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University Riyadh Kingdom of Saudi Arabia
| |
Collapse
|
37
|
Xie ZC, Li TT, Gan BL, Gao X, Gao L, Chen G, Hu XH. Investigation of miR-136-5p key target genes and pathways in lung squamous cell cancer based on TCGA database and bioinformatics analysis. Pathol Res Pract 2018; 214:644-654. [PMID: 29650443 DOI: 10.1016/j.prp.2018.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lung squamous cell cancer (LUSC) is a common but challenging malignancy. It is important to illuminate the molecular mechanism of LUSC. Thus, we aim to explore the molecular mechanism of miR-136-5p in relation to LUSC. METHODS We used the Cancer Genome Atlas (TCGA) database to investigate the expression of miR-136-5p in relation to LUSC. Then, we identified the possible miR-136-5p target genes through intersection of the predicted miR-136-5p target genes and LUSC upregulated genes from TCGA. Bioinformatics analysis was performed to determine the key miR-136-5p targets and pathways associated with LUSC. Finally, the expression of hub genes, correlation between miR-136-5p and hub genes, and expected significance of hub genes were evaluated via the TCGA and Genotype-Tissue Expression (GTEx) project. RESULTS MiR-136-5p was significantly downregulated in LUSC patients. Glucuronidation, glucuronosyltransferase, and the retinoic acid metabolic process were the most enriched metabolic interactions in LUSC patients. Ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism were identified as crucial pathways. Seven hub genes (UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A10, SRD5A1, and ADH7) were found to be upregulated, and UGT1A1, UGT1A3, UGT1A6, UGT1A7, and ADH7 were negatively correlated with miR-136-5p. UGT1A7 and ADH7 were the most significantly involved miR-136-5p target genes, and high expression of these genes was correlated with better overall survival and disease-free survival of LUSC patients. CONCLUSIONS Downregulated miR-136-5p may target UGT1A7 and ADH7 and participate in ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism. High expression of UGT1A7 and ADH7 may indicate better prognosis of LUSC patients.
Collapse
Affiliation(s)
- Zu-Cheng Xie
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Tian-Tian Li
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Bin-Liang Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Xiang Gao
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
38
|
Liu H, Liao Y, Tang M, Wu T, Tan D, Zhang S, Wang H. Trps1 is associated with the multidrug resistance of lung cancer cell by regulating MGMT gene expression. Cancer Med 2018; 7:1921-1932. [PMID: 29601666 PMCID: PMC5943538 DOI: 10.1002/cam4.1421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) often leads to chemotherapy failure of lung cancer and has been linking to the cellular expression of several DNA transcription- and repair-related genes such as Trps1 and MGMT. However, their roles in the formation of MDR are largely unknown. In this study, overexpression/knockdown, luciferase assay and ChIP assay were performed to study the relationship between Trps1 and MGMT, as well as their roles in MDR formation. Our results demonstrated that Trps1 and MGMT expression both increased in drug-resistant lung cancer cell line (H446/CDDP). Silencing of Trps1 resulted in downregulation of MGMT expression and decrease in the multidrug sensitivity of H446/CDDP cells, while Trps1 overexpression exhibited the opposite effects in H446 cells. Ectopic expression of MGMT had no effect on Trps1 expression, but enhanced the IC50 values of H446 cells or rescued the IC50 values of Trps1-silenced H446/CDDP cells in treatment of multidrug. Our data further showed that, mechanistically, Trps1 acted as a transcription activator that directly induced MGMT transcription by binding to the MGMT promoter. Taken together, we consider that upregulation of Trps1 induces MGMT transcription contributing to the formation of MDR in lung cancer cells. Our findings proved potential targets for reversing MDR in clinical chemotherapy of lung cancer.
Collapse
Affiliation(s)
- Hongxiang Liu
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Liao
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng Tang
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Wu
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Deli Tan
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shixin Zhang
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haidong Wang
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
39
|
Gao X, Han H. Jolkinolide B inhibits glycolysis by downregulating hexokinase 2 expression through inactivating the Akt/mTOR pathway in non‐small cell lung cancer cells. J Cell Biochem 2018; 119:4967-4974. [PMID: 29384225 DOI: 10.1002/jcb.26742] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/25/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Xiang Gao
- Department of Cardiothoracic SurgeryHuaihe Hospital of Henan UniversityKaifengP.R. China
| | - Han Han
- Minsheng CollegeHenan UniversityKaifengP.R. China
| |
Collapse
|
40
|
#2714, a novel active inhibitor with potent G2/M phase arrest and antitumor efficacy in preclinical models. Cell Death Discov 2018. [PMID: 29531821 PMCID: PMC5841443 DOI: 10.1038/s41420-018-0032-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Arresting cell cycle has been one of the most common approaches worldwide in cancer therapy. Specifically, arresting cells in the G2/M phase is a promising therapeutic approach in the battle against lung cancer. In the present study, we demonstrated the anticancer activities and possible mechanism of compound #2714, which can prompt G2/M phase arrest followed by cell apoptosis induction in Lewis lung carcinoma LL/2 cells. In vitro, #2714 significantly inhibited LL/2 cell viability in a concentration- and time-dependent manner while exhibiting few toxicities on non-cancer cells. The mechanism study showed that cell proliferation inhibition due to the treatment with #2714 correlated with G2/M phase arrest and was followed by LL/2 cell apoptosis. The characterized changes were associated with the downregulation of phosphorylated cell division cycle 25C (Cdc25C) and upregulation of p53. Apoptosis-associated activation of cleaved caspase-3 was also detected. Moreover, #2714 strongly attenuated LL/2 cell proliferation by disrupting the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK). In vivo, intraperitoneal administration of #2714 (25–100 mg/kg/day) to mice bearing established tumors in xenograft models significantly prevented LL/2 tumor growth (58.1%) without detectable toxicity. Compound #2714 significantly increased apoptosis in LL/2 lung cancer cells in mice models, as observed via terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay, and the data from an immunohistochemical analysis showed that #2714 remarkably inhibited the proliferation and angiogenesis of lung cancer in vivo. Taken together, our data suggest that #2714 has a high potential anti-lung cancer efficacy with a pathway-specific mechanism of G2/M phase arrest and subsequent apoptosis induction both in vitro and in vivo; its potential to be an anticancer candidate warrants further investigation.
Collapse
|
41
|
Lategahn J, Keul M, Rauh D. Lessons To Be Learned: The Molecular Basis of Kinase-Targeted Therapies and Drug Resistance in Non-Small Cell Lung Cancer. Angew Chem Int Ed Engl 2018; 57:2307-2313. [DOI: 10.1002/anie.201710398] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Jonas Lategahn
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Marina Keul
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
42
|
Lategahn J, Keul M, Rauh D. Lektion gelernt? Die molekularen Grundlagen von Kinase-gerichteten Therapien und Wirkstoffresistenz im nicht-kleinzelligen Lungenkrebs. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jonas Lategahn
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 4a 44227 Dortmund Deutschland
| | - Marina Keul
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 4a 44227 Dortmund Deutschland
| | - Daniel Rauh
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 4a 44227 Dortmund Deutschland
| |
Collapse
|