1
|
Wang YY, Luo BZ, Li CM, Liang JL, Liu Z, Chen WM, Guo JL. Discovery of 3-hydroxypyridin-4(1H)-ones ester of ciprofloxacin as prodrug to combat biofilm-associated Pseudomonas aeruginosa. Eur J Med Chem 2025; 289:117396. [PMID: 40010273 DOI: 10.1016/j.ejmech.2025.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Chronic infections by Pseudomonas aeruginosa (P. aeruginosa) are frequently complicated due to its ability to form biofilm, which also effectively enhance its resistance to antibiotics. Bacteria-specific antibiotic delivery could locally increase drug concentration to break antimicrobial resistance and reduce the drug's peripheral side effects. The standard-of-care drug ciprofloxacin suffers from severe systemic side effects and was therefore chosen for this approach. It has been identified that 3-hydroxypyridin-4(1H)-one as siderophore mimics could be utilized by P. aeruginosa, and reduced bacterial biofilm formation. In this work, ciprofloxacin was conjugated to 3-hydroxypyridin-4(1H)-one by cleavable linkers to yield prodrugs, which were strategically designed and synthesized to function as dual antibacterial and antibiofilm agents against P. aeruginosa. Conjugate 5c was identified and has the best minimum inhibitory concentrations of 1.07 μM against P. aeruginosa PAO1, and reduced 61.7 % of biofilm formation. In addition, 5c destroyed 75.7 % of mature biofilms. Further studies on the uptake mechanisms showed that the bacterial siderophore-dependent iron transport system was involved in the uptake of the conjugates. Conjugate 5c interfered with iron uptake by bacteria, inhibited their motilities and reduced the production of virulence. Furthermore, prodrug 5c reduced toxicity in vivo and in vitro and showed a positive therapeutic effect in the treatment of Caenorhabditis elegans (C. elegans) infected by P. aeruginosa. These results demonstrate that 3-hydroxypyridin-4(1H)-ones-ciprofloxacin prodrugs are potent in the treatment of biofilm-associated drug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- School of Medicine, Foshan University, Foshan, 528000, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Bao-Zhang Luo
- School of Medicine, Foshan University, Foshan, 528000, PR China
| | - Chang-Ming Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jian-Long Liang
- School of Medicine, Foshan University, Foshan, 528000, PR China
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan, 528000, PR China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Jia-Liang Guo
- School of Medicine, Foshan University, Foshan, 528000, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
2
|
Montero MM, Domene-Ochoa S, Prim N, Ferola E, López-Causapé C, Gomis-Font M, Ampuero-Morisaki MF, Echeverria D, Sorlí L, Luque S, Padilla E, Grau S, Oliver A, Horcajada JP. Addressing carbapenemase-producing extensively drug-resistant Pseudomonas aeruginosa: the potential of cefiderocol and ceftazidime/avibactam plus aztreonam therapy. Eur J Clin Microbiol Infect Dis 2025; 44:1077-1087. [PMID: 39964628 PMCID: PMC12062188 DOI: 10.1007/s10096-025-05061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/03/2025] [Indexed: 05/09/2025]
Abstract
This study evaluated the activity of cefiderocol and the combination of ceftazidime/avibactam (CZA) plus aztreonam against carbapenemase-producing extensively drug-resistant (XDR) Pseudomonas aeruginosa isolates. Nine clinical XDR P. aeruginosa isolates with different sequence types and class A (GES) or B (VIM, IMP or NDM) carbapenemases were analysed. Time-kill assays assessed bacterial load reduction for each treatment, while chemostat experiments on four isolates validated these findings. All isolates showed resistance to CZA, with four also resistant to aztreonam. Seven isolates were susceptible to cefiderocol, but two displayed borderline susceptibility (MIC 2-4 mg/L). Time-kill assays demonstrated bactericidal activity by cefiderocol in six isolates at 24 h, while CZA plus aztreonam showed bactericidal effects in three isolates and synergistic/additive effects in four isolates. In the chemostat model, cefiderocol and CZA plus aztreonam were bactericidal in all four tested isolates, with cefiderocol showing greater bacterial reduction in three of these isolates. Both cefiderocol and CZA plus aztreonam achieved significant reductions in bacterial counts compared to controls, but there was no significant difference between cefiderocol monotherapy and the combination. Both cefiderocol and CZA plus aztreonam demonstrated activity against XDR P. aeruginosa carrying metallo-β-lactamase (MBL) and/or serine-β-lactamase (SBL) carbapenemases. Cefiderocol was the only consistently effective monotherapy with a bactericidal effect across all tested isolates in the chemostat model.
Collapse
Affiliation(s)
- María Milagro Montero
- Infectious Diseases Service, Hospital del Mar, Passeig Marítim 25-29, Barcelona, 08003, Spain.
- Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra Barcelona, Barcelona, Spain.
- CIBER of Infectious Diseases (CIBERINFEC CB21/13/00002 and CB21/13/00099), Institute of Health Carlos III, Madrid, Spain.
| | - Sandra Domene-Ochoa
- Infectious Diseases Service, Hospital del Mar, Passeig Marítim 25-29, Barcelona, 08003, Spain
- Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Núria Prim
- Microbiology Service, Laboratori de Referència de Catalunya, Barcelona, Spain
| | - Eliana Ferola
- Infectious Diseases Service, Hospital del Mar, Passeig Marítim 25-29, Barcelona, 08003, Spain
- Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Carla López-Causapé
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, IdISBa, Palma de Mallorca, Spain
| | - Marian Gomis-Font
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, IdISBa, Palma de Mallorca, Spain
| | | | | | - Luisa Sorlí
- Infectious Diseases Service, Hospital del Mar, Passeig Marítim 25-29, Barcelona, 08003, Spain
- Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra Barcelona, Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC CB21/13/00002 and CB21/13/00099), Institute of Health Carlos III, Madrid, Spain
| | - Sonia Luque
- Infectious Diseases Service, Hospital del Mar, Passeig Marítim 25-29, Barcelona, 08003, Spain
- Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Pharmacy Service, Hospital del Mar, Barcelona, Spain
| | - Eduardo Padilla
- Microbiology Service, Laboratori de Referència de Catalunya, Barcelona, Spain
| | - Santiago Grau
- Infectious Diseases Service, Hospital del Mar, Passeig Marítim 25-29, Barcelona, 08003, Spain
- Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra Barcelona, Barcelona, Spain
- Pharmacy Service, Hospital del Mar, Barcelona, Spain
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, IdISBa, Palma de Mallorca, Spain
- CIBER of Infectious Diseases (CIBERINFEC CB21/13/00002 and CB21/13/00099), Institute of Health Carlos III, Madrid, Spain
| | - Juan P Horcajada
- Infectious Diseases Service, Hospital del Mar, Passeig Marítim 25-29, Barcelona, 08003, Spain.
- Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra Barcelona, Barcelona, Spain.
- CIBER of Infectious Diseases (CIBERINFEC CB21/13/00002 and CB21/13/00099), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Zhang C, Yu S, Li S, Wu X, Wei Q, He J, Cao G, Yang H, Wang J, Fujitani K, Katsube T, Zhang J, Dou H. Pharmacokinetic, Pharmacokinetic/Pharmacodynamic, and Safety Investigations of Cefiderocol in Chinese Healthy Subjects. Adv Ther 2025; 42:2285-2297. [PMID: 40080239 PMCID: PMC12006280 DOI: 10.1007/s12325-025-03147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/13/2025] [Indexed: 03/15/2025]
Abstract
INTRODUCTION We aim to evaluate the safety and pharmacokinetic (PK) properties of cefiderocol in Chinese participants, following single and subsequent multiple administrations of 2 g q8h with 3-h intravenous infusion, and to predict its efficacy for the treatment of Gram-negative bacilli (GNB) infection based on PK/pharmacodynamic (PD) analysis. METHODS This was an open-label, single-center, single- and multiple-dose phase I study, conducted from September 2022 to October 2022, with 12 eligible healthy Chinese adults (6 men and 6 women). The PK profiles were described by noncompartmental analysis and a two-compartment model using WinNonlin (v.8.1). Monte Carlo simulations (MCS) were performed by R (v.4.3.1) to obtain the probability of target attainment (PTA) as well as the cumulative fraction of response (CFR), based on the previously published data of susceptibility studies for cefiderocol in China. RESULTS Both single and multiple doses of 2 g cefiderocol were well tolerated in healthy Chinese subjects, and no severe treatment-emergent adverse events occurred. The maximum plasma concentration of cefiderocol was observed approximately 3 h after administration and the half-life was about 2.6 h, with no accumulation after multiple dosing. It is worth noting that, the PK profiles, including CL, V1, Cmax, Ctrough, and AUC0-τ, were consistent with those of other populations, e.g., Caucasian. PK/PD analysis and MCS suggested that standard dosage regimen of cefiderocol would achieve satisfactory PTA and CFR (exceeding 90%) for Gram-negative pathogens with MICs up to 4 μg/mL, using the proposed fT>MIC target of 75.0%. Consistently, more than 90% of PTA was reached for Enterobacterales, P. aeruginosa, and Acinetobacter spp. with MICs up to 4 μg/mL at their respective 73.3%, 72.2%, and 88.1% fT>MIC targets, with CFR exceeding 95%. Especially for S. maltophilia, both the PTA and CFR reached nearly 100% for those with MICs as high as 8 μg/mL. CONCLUSIONS Cefiderocol is well tolerated by Chinese healthy participants at the dosage regimen of 2 g cefiderocol q8h via 3-h infusion, which is expected to achieve satisfactory efficacy in treating GNB infections in China, although further data for model optimization might still be required. To our knowledge, this is the first study to describe the PK properties of cefiderocol in Chinese subjects, and to predict its microbiological efficacy for treating GNB infection in China. TRIAL REGISTRATION ChiCTR2300076607.
Collapse
Affiliation(s)
- Chuhan Zhang
- Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuyan Yu
- Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Size Li
- Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojie Wu
- Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong Wei
- Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinjie He
- Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Guoying Cao
- Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Haijing Yang
- Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjing Wang
- Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | - Jing Zhang
- Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, China.
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | | |
Collapse
|
4
|
Russo A, Serapide F. The Multifaceted Landscape of Healthcare-Associated Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Microorganisms 2025; 13:829. [PMID: 40284665 PMCID: PMC12029738 DOI: 10.3390/microorganisms13040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is an emerging and important major cause of nosocomial infections, posing a significant challenge to clinicians worldwide. The intrinsic and acquired resistance mechanisms exhibited by CRAB, associated with its ability to persist in healthcare environments, have transformed it into a critical public health concern. The clinical implications of CRAB infections include severe manifestations, like ventilator-associated pneumonia and bloodstream infections. These infections are often associated with increased morbidity and mortality, particularly in critically ill patients, such as those in intensive care units, immunocompromised, and those undergoing invasive procedures. Considering these characteristics, the therapeutic armamentarium for the treatment of CRAB infections is increasingly limited, as these strains exhibit resistance to a broad range of antibiotics, including carbapenems and the new β-lactam inhibitors, which are considered last-line agents for many bacterial infections. An important role is represented by cefiderocol and data from real-world evidence. The aim of this narrative review is to discuss the main topics of CRAB infection and strategies for prevention, management, and therapy.
Collapse
Affiliation(s)
- Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, Viale Europa, 88100 Grosseto, Italy;
| | | |
Collapse
|
5
|
Kany AM, Fries F, Seyfert CE, Porten C, Deckarm S, Chacón Ortiz M, Dubarry N, Vaddi S, Große M, Bernecker S, Sandargo B, Müller AV, Bacqué E, Stadler M, Herrmann J, Müller R. In Vivo Activity Profiling of Biosynthetic Darobactin D22 against Critical Gram-Negative Pathogens. ACS Infect Dis 2024; 10:4337-4346. [PMID: 39565008 DOI: 10.1021/acsinfecdis.4c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In recent years, naturally occurring darobactins have emerged as a promising compound class to combat infections caused by critical Gram-negative pathogens. In this study, we describe the in vivo evaluation of derivative D22, a non-natural biosynthetic darobactin analogue with significantly improved antibacterial activity. We found D22 to be active in vivo against key critical Gram-negative human pathogens, as demonstrated in murine models of Pseudomonas aeruginosa thigh infection, Escherichia coli peritonitis/sepsis, and urinary tract infection (UTI). Furthermore, we observed the restored survival of Acinetobacter baumannii-infected embryos in a zebrafish infection model. These in vivo proof-of-concept (PoC) in diverse models of infection against highly relevant pathogens, including drug-resistant isolates, highlight the versatility of darobactins in the treatment of bacterial infections and show superiority of D22 over the natural darobactin A. Together with a favorable safety profile, these findings pave the way for further optimization of the darobactin scaffold toward the development of a novel antibiotic.
Collapse
Affiliation(s)
- Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Franziska Fries
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - Carsten E Seyfert
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Christoph Porten
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - Selina Deckarm
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - María Chacón Ortiz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | | | | | - Miriam Große
- Helmholtz Centre for Infection Research (HZI), Department Microbial Drugs, Braunschweig 38124, Germany
| | - Steffen Bernecker
- Helmholtz Centre for Infection Research (HZI), Department Microbial Drugs, Braunschweig 38124, Germany
| | - Birthe Sandargo
- Helmholtz Centre for Infection Research (HZI), Department Microbial Drugs, Braunschweig 38124, Germany
| | - Alison V Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | | | - Marc Stadler
- Helmholtz Centre for Infection Research (HZI), Department Microbial Drugs, Braunschweig 38124, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
- Helmholtz International Lab for Anti-infectives, Saarbrücken 66123, Germany
| |
Collapse
|
6
|
Yang C, Wang L, Lv J, Wen Y, Gao Q, Qian F, Tian X, Zhu J, Zhu Z, Chen L, Du H. Effects of different carbapenemase and siderophore production on cefiderocol susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 2024; 68:e0101924. [PMID: 39470196 PMCID: PMC11619314 DOI: 10.1128/aac.01019-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
The resistance mechanism of Gram-negative bacteria to the siderophore antibiotic cefiderocol is primarily attributed to carbapenemase and siderophore uptake pathways; however, specific factors and their relationships remain to be fully elucidated. Here, we constructed cefiderocol-resistant Klebsiella pneumoniae (CRKP) strains carrying different carbapenemases and knocked out siderophore genes to investigate the roles of various carbapenemases and siderophores in the development of cefiderocol resistance. Antimicrobial susceptibility testing revealed that both blaNDM and blaKPC significantly increased the minimum inhibitory concentration (MIC) of Klebsiella pneumoniae (KP) to cefiderocol, while blaOXA-48 showed a modest increase. Notably, KP expressing NDM exhibited a higher cefiderocol MIC compared to KP expressing KPC, although expression of NDM alone did not induce cefiderocol resistance. Laboratory evolutionary experiments demonstrated that combining pNDM with mutations in the siderophore uptake receptor gene cirA and pKPC with a mutation in the two-component system gene envZ led to KP reaching a high level of cefiderocol resistance. Although combining pOXA with mutations in the two-component system gene baeS did not induce cefiderocol resistance, it significantly reduced susceptibility. Moreover, siderophores could influence the development of cefiderocol resistance. Strains deficient in enterobactin exhibited increased susceptibility to cefiderocol, while deficiencies in yersiniabactin and salmochelin showed no significant alterations. In conclusion, carbapenemase gene expression facilitates cefiderocol resistance, but its presence alone is insufficient. Cefiderocol resistance in CRKP typically involves abnormal expression of certain genes and other factors, such as mutations in siderophore uptake receptor genes and two-component system genes. The enterobactin siderophore synthesis gene entB may also contribute to resistance.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jingnan Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Alkene-Carbon Fibres-Based Technology and Application for Detection of Major Infectious Diseases, Suzhou, China
| | - Yicheng Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qizhao Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feinan Qian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangxiang Tian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhichen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Key Laboratory of Alkene-Carbon Fibres-Based Technology and Application for Detection of Major Infectious Diseases, Suzhou, China
| |
Collapse
|
7
|
Yang YS, Lee YL, Liu YM, Kuo CF, Tan MC, Huang WC, Hsu SY, Chang YY, Shang HS, Kuo SC. Acquired bla CfxA-3 carried by a conjugative transposon or duplicated intrinsic bla CME-3 mediates cefiderocol resistance in Elizabethkingia anophelis clinical isolates. Int J Antimicrob Agents 2024; 64:107378. [PMID: 39510324 DOI: 10.1016/j.ijantimicag.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVES Elizabethkingia spp. are resistant to multiple antibiotics. This study aimed to determine in vitro and in vivo activities of cefiderocol against Elizabethkingia spp. and to investigate resistance mechanisms. METHODS Bloodstream isolates were collected from four hospitals. In vitro and in vivo activities were determined using broth microdilution and the wax moth model, respectively. Genome comparison and gene editing were used to confirm the contribution of target genes. Conjugation experiments and serial passage were used to determine transferability and stability, respectively. A MIC of ≤4 mg/L was designated as the susceptibility breakpoint. RESULTS Among 228 non-duplicated isolates, 226 exhibited a MIC of ≤4 mg/L with MIC50/90 of 1/2 mg/L. Two isolates had a MIC of 128 mg/L; both patients had multiple comorbidities, were ventilator-dependent and had not received cefiderocol previously. Resistance was attributable to acquisition of blaCfxA-3, carried by a conjugative transposon from Prevotella jejuni, and duplication of intrinsic blaCME-3, which led to its overexpression. tetQ coexisted with blaCfxA-3 in this conjugative transposon and minocycline facilitated its transfer among E. anophelis. Antibiotics prescribed for source patients did not induce blaCME-3 duplication. The stabilities of blaCfxA-3 and double blaCME-3 were 100% and > 90%, respectively, after 10-day serial passage. Cefiderocol failed to rescue moth larvae infected with resistant strains, but removal of resistance mechanisms restored in vivo efficacy. CONCLUSIONS Cefiderocol was in vitro and in vivo active against Elizabethkingia spp. but resistance may emerge due to the availability, transferability, and/or stability of resistance mechanisms.
Collapse
Affiliation(s)
- Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yuag-Meng Liu
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chen-Feng Kuo
- Department of Infectious Diseases, Taipei MacKay Memorial Hospital, Taipei, Taiwan
| | - Mei-Chen Tan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Zhunan, Taiwan
| | - Wei-Cheng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Zhunan, Taiwan
| | - Shu-Yuan Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Zhunan, Taiwan
| | - Yea-Yuan Chang
- Division of Infectious Diseases, Department of Internal Medicine, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Zhunan, Taiwan; Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
8
|
Kaki R, Taj A, Bagaaifar S. The Use of Cefiderocol in Gram-Negative Bacterial Infections at International Medical Center, Jeddah, Saudi Arabia. Antibiotics (Basel) 2024; 13:1043. [PMID: 39596738 PMCID: PMC11590943 DOI: 10.3390/antibiotics13111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The necessity for ground-breaking treatments for Gram-negative infections is evident. The World Health Organization, the Infectious Diseases Society of America, and the European Commission have highlighted the critical insufficiency of efficient antibiotics, urging pharmaceutical businesses to manufacture new antibiotics. Therefore, developing new antibiotics with broad efficacy against Gram-negative pathogens is essential. Thus, this research aimed to evaluate the safety and effectiveness of cefiderocol in treating multidrug-resistant Gram-negative bacterial infections at the International Medical Center (IMC), Jeddah, Saudi Arabia. METHODS A retrospective analysis was conducted on patients treated from January 2021 to February 2023. Thirteen case groups treated with cefiderocol were compared to twenty control groups treated with other antibiotics. RESULTS The results indicated no statistically significant differences in ICU stay, comorbidity indices, or mortality rates between the two groups. Cefiderocol showed high clinical and microbiological cure rates, despite the severity of the patients' conditions. Carbapenem-resistant Klebsiella pneumoniae and difficult-to-treat resistance Pseudomonas aeruginosa were the most prevalent pathogens in the case and control group, respectively. Two patients treated with cefiderocol developed Clostridioides difficile infection, emphasizing the need for close monitoring of potential adverse effects. CONCLUSIONS The results of this study support cefiderocol as a viable alternative for managing serious infections instigated by multidrug-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Reham Kaki
- Department of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medicine, International Medical Center, Jeddah 21589, Saudi Arabia; (A.T.)
- Department of Infectious Disease, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Infectious Disease, International Medical Center, Jeddah 21589, Saudi Arabia
| | - Amjad Taj
- Department of Medicine, International Medical Center, Jeddah 21589, Saudi Arabia; (A.T.)
| | - Sultan Bagaaifar
- Department of Medicine, International Medical Center, Jeddah 21589, Saudi Arabia; (A.T.)
| |
Collapse
|
9
|
Clancy CJ, Cornely OA, Marcella SW, Nguyen ST, Gozalo L, Cai B. Effectiveness and Safety of Cefiderocol in Clinical Practice for Treatment of Patients with Gram-Negative Bacterial Infections: US Interim Results of the PROVE Study. Infect Drug Resist 2024; 17:4427-4443. [PMID: 39431212 PMCID: PMC11490232 DOI: 10.2147/idr.s475462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
Purpose The international PROVE retrospective chart-review study aims to assess the real-world effectiveness and safety of cefiderocol for treatment of patients with carbapenem-resistant Gram-negative infections. Patients and Methods US centers selected hospitalized patients receiving their first cefiderocol treatment for ≥72 hours for a Gram-negative bacterial infection (November 2020-March 2023). Patient demographics, clinical characteristics, hospitalization, course of infection, antibiotic use, clinical cure (excluding patients with a relapse/reinfection), clinical response at the end of treatment, microbiology, in-hospital all-cause mortality (IH-ACM) at Day 30, and safety were analyzed using descriptive statistics. Results This interim analysis included 244 patients. The most frequent infection sites were respiratory tract (55.7%), skin and skin structure (16.8%), and blood (9.8%). The median duration of cefiderocol use was 12 days (interquartile range 8-18.5). Clinical cure was reported for 64.8% (158/244) of patients, clinical response for 74.2% (181/244), and 9.4% (23/244) had relapse/reinfection; 30-day IH-ACM was 18.4% (45/244). Of 82 patients with monomicrobial Pseudomonas aeruginosa infections, 64.6% (n = 53) and 74.4% (n = 61) had clinical cure and clinical response, respectively, and 30-day IH-ACM was 25.6%. Among 43 patients with monomicrobial Acinetobacter baumannii infections, 60.5% (n = 26) and 74.4% (n = 32) had clinical cure and clinical response, respectively, and 30-day IH-ACM was 18.6%. Five patients experienced six adverse drug reactions (one serious event: interstitial nephritis/acute kidney injury), and cefiderocol was discontinued in two cases. Conclusion Cefiderocol had similar clinical cure and response rates to previous retrospective studies and lower mortality. Cefiderocol was well tolerated in real-world settings in critically ill US patients with problematic Gram-negative pathogens.
Collapse
Affiliation(s)
| | - Oliver A Cornely
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Stephen W Marcella
- Global Epidemiology and Real-World Evidence, Shionogi Inc, Florham Park, NJ, USA
| | - Sean T Nguyen
- Medical Affairs, Shionogi Inc, Florham Park, NJ, USA
| | | | - Bin Cai
- Center of Real-World Data and Analytics, Shionogi Inc, Florham Park, NJ, USA
| |
Collapse
|
10
|
Jamwal V, Palmo T, Singh K. Understanding the mechanisms of antimicrobial resistance and potential therapeutic approaches against the Gram-negative pathogen Acinetobacter baumannii. RSC Med Chem 2024; 15:d4md00449c. [PMID: 39386059 PMCID: PMC11457259 DOI: 10.1039/d4md00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Globally, the emergence of anti-microbial resistance in pathogens has become a serious threat to human health and well-being. Infections caused by drug-resistant microorganisms in hospitals are associated with increased morbidity, mortality, and healthcare costs. Acinetobacter baumannii is a Gram-negative bacterium belonging to the ESKAPE group and is widely associated with nosocomial infections. It persists in hospitals and survives antibiotic treatment, prompting acute infections such as urinary tract infections, pneumonia, bacteremia, meningitis, and wound-related infections. An innovation void in drug discovery and the lack of new therapeutic measures against A. baumannii continue to afflict infection control against the rising drug-resistant cases. The emergence of drug-resistant A. baumannii strains has also led to the incessant collapse of newly discovered antibiotics. Therefore exploring novel strategies is requisite to give impetus to A. baumannii drug discovery. The present review discusses the bacterial research community's efforts in the field of A. baumannii, focusing on the strategies adapted to identify potent scaffolds and novel targets to bolster and diversify the chemical space available for drug discovery. Firstly, we have discussed existing chemotherapy and various anti-microbial resistance mechanisms in A. baumannii bacterial strains. Next, we elaborate on multidisciplinary approaches and strategies that may be the way forward to combat the current menace caused by the drug-resistant A. baumannii strains. The review highlights the recent advances in drug discovery, including combinational therapy, high-throughput screening, drug repurposing, nanotechnology, and anti-microbial peptides, which are imperative tools to fight bacterial pathogens in the future.
Collapse
Affiliation(s)
- Vishwani Jamwal
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Tashi Palmo
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
11
|
LeBlanc A, Wuest WM. Siderophores: A Case Study in Translational Chemical Biology. Biochemistry 2024; 63:1877-1891. [PMID: 39041827 PMCID: PMC11308372 DOI: 10.1021/acs.biochem.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Siderophores are metal-binding secondary metabolites that assist in iron homeostasis and have been of interest to the scientific community for the last half century. Foundational siderophore research has enabled several translational applications including siderophore-antibiotic and siderophore-peptide conjugates, identification of new antimicrobial targets, advances in disease imaging, and novel therapeutics. This review aims to connect the basic science research (biosynthesis, cellular uptake, gene regulation, and effects on homeostasis) of well-known siderophores with the successive translational application that results. Intertwined throughout are connections to the career of Christopher T. Walsh, his impact on the field of chemical biology, and the legacy of his trainees who continue to innovate.
Collapse
Affiliation(s)
- Andrew
R. LeBlanc
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
Kammineni C, Vamsi S, Basireddy SR. Surveillance of In Vitro Activity of Cefiderocol Against Carbapenem-Resistant Gram-Negative Clinical Isolates in a Tertiary Care Hospital. Cureus 2024; 16:e67164. [PMID: 39161549 PMCID: PMC11331273 DOI: 10.7759/cureus.67164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Antibiotic resistance among Gram-negative bacterial isolates is increasingly observed. With the emergence of carbapenem-resistant and pan-resistant pathogens, treating these resistant infections is becoming more challenging due to the limited number of effective drugs. There is a desperate need for the discovery of new antibiotics with novel mechanisms of action. Cefiderocol is one such novel antibiotic with a unique siderophore-based mechanism of action, which has been recently approved for clinical use against drug-resistant pathogens. The present study aims to identify the in vitro activity of cefiderocol against major carbapenem-resistant clinical isolates, including those resistant to colistin. MATERIALS AND METHODS One hundred and one carbapenem-resistant clinical isolates were included in the study. Identification and antibiotic susceptibility testing were performed using the automated VITEK® 2 Compact (bioMérieux SA, Marcy-l'Étoile, France) identification and susceptibility testing system, except for colistin and cefiderocol. Colistin resistance in Enterobacterales and Pseudomonas aeruginosa was assessed using the agar dilution minimum inhibitory concentration method, while for Acinetobacter baumannii, broth microdilution method was employed. Cefiderocol susceptibility testing was conducted using the Kirby-Bauer disc diffusion method with 30 µg discs on standard Mueller-Hinton agar plates. For selected isolates, cefiderocol minimum inhibitory concentration detection was performed using broth microdilution with iron-depleted cation-adjusted Mueller-Hinton broth. RESULTS Of the total 101 isolates, the majority (75, 74.25%) were Enterobacterales which included Klebsiella pneumonia (42, 41.58%) and Escherichia coli (33, 32.67%), followed by Pseudomonas aeruginosa (13, 12.87%) and Acinetobacter baumannii (10, 9.9%). Only three (2.97%) of the isolates were Stenotrophomonas maltophilia. Most of the isolates were susceptible to cefiderocol, with only four (3.96%) isolates showing resistance. Colistin resistance was observed in six (6.12%) of the isolates. There was a good correlation between disc diffusion testing and broth microdilution testing for the detection of cefiderocol-resistant isolates. No cross-resistance with colistin was observed, as all colistin-resistant isolates were uniformly susceptible to cefiderocol Conclusion: Cefiderocol is highly effective with good in vitro activity against the majority of carbapenem-resistant pathogens. While some isolates do show resistance, it is relatively uncommon. Given its safety profile compared to colistin, cefiderocol can serve as an alternative to colistin to treat carbapenem-resistant infections and it may be considered even for the management of colistin-resistant cases. Disc diffusion testing is a reliable method for identifying cefiderocol-resistant isolates in routine clinical and diagnostic laboratories, especially in resource-limited settings.
Collapse
Affiliation(s)
| | - Sreeja Vamsi
- Microbiology, SVS Medical College and Hospital, Mahabubnagar, IND
| | - Sreekanth Reddy Basireddy
- Microbiology, Government Medical College, Kadapa, IND
- Microbiology, Siriraj Hospital, Mahidol University, Bangkok, THA
| |
Collapse
|
13
|
Rodríguez D, Lence E, Vázquez-Ucha JC, Beceiro A, González-Bello C. Novel Penicillin-Based Sulfone-Siderophore Conjugates for Restoring β-Lactam Antibiotic Efficacy. ACS OMEGA 2024; 9:26484-26494. [PMID: 38911797 PMCID: PMC11191083 DOI: 10.1021/acsomega.4c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
Membrane permeability is a natural defense barrier that contributes to increased bacterial drug resistance, particularly for Gram-negative pathogens. As such, accurate delivery of the antibacterial agent to the target has become a growing research area in the infectious diseases field as a means of improving drug efficacy. Although the efficient transport of siderophore-antibiotic conjugates into the cytosol still remains challenging, great success has been achieved in the delivery of β-lactam antibiotics into the periplasmic space via bacterial iron uptake pathways. Cefiderocol, the first siderophore-cephalosporin conjugate approved by the US Food and Drug Administration, is a good example. These conjugation strategies have also been applied to the precise delivery of β-lactamase inhibitors, such as penicillin-based sulfone 1, to restore β-lactam antibiotic efficacy in multidrug-resistant bacteria. Herein, we have explored the impact on the bacterial activity of 1 by modifying its iron chelator moiety. A set of derivatives functionalized with diverse iron chelator groups and linkages to the scaffold (compounds 2-8) were synthesized and assayed in vitro. The results on the ability of derivatives 2-8 to recover β-lactam antibiotic efficacy in difficult-to-treat pathogens that produce various β-lactamase enzymes, along with kinetic studies with the isolated enzymes, allowed us to identify compound 2, a novel β-lactamase inhibitor with an expanded spectrum of activity. Molecular dynamics simulation studies provided us with further information regarding the molecular basis of the relative inhibitory properties of the most relevant compound described herein.
Collapse
Affiliation(s)
- Diana Rodríguez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Emilio Lence
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Juan C. Vázquez-Ucha
- Servicio
de Microbiología, Complexo Hospitalario Universitario da Coruña
(CHUAC), Instituto de Investigación
Biomédica da Coruña (INIBIC), Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Alejandro Beceiro
- Servicio
de Microbiología, Complexo Hospitalario Universitario da Coruña
(CHUAC), Instituto de Investigación
Biomédica da Coruña (INIBIC), Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Concepción González-Bello
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
14
|
Choi SJ, Kim ES. Optimizing Treatment for Carbapenem-Resistant Acinetobacter baumannii Complex Infections: A Review of Current Evidence. Infect Chemother 2024; 56:171-187. [PMID: 38960737 PMCID: PMC11224036 DOI: 10.3947/ic.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii complex (CRAB) poses a significant global health challenge owing to its resistance to multiple antibiotics and limited treatment options. Polymyxin-based therapies have been widely used to treat CRAB infections; however, they are associated with high mortality rates and common adverse events such as nephrotoxicity. Recent developments include numerous observational studies and randomized clinical trials investigating antibiotic combinations, repurposing existing antibiotics, and the development of novel agents. Consequently, recommendations for treating CRAB are undergoing significant changes. The importance of colistin is decreasing, and the role of sulbactam, which exhibits direct antibacterial activity against A. baumannii complex, is being reassessed. High-dose ampicillin-sulbactam-based combination therapies, as well as combinations of sulbactam and durlobactam, which prevent the hydrolysis of sulbactam and binds to penicillin-binding protein 2, have shown promising results. This review introduces recent advancements in CRAB infection treatment based on clinical trial data, highlighting the need for optimized treatment protocols and comprehensive clinical trials to combat the evolving threat of CRAB effectively.
Collapse
Affiliation(s)
- Seong Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
15
|
Serapide F, Guastalegname M, Gullì SP, Lionello R, Bruni A, Garofalo E, Longhini F, Trecarichi EM, Russo A. Antibiotic Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections in View of the Newly Developed β-Lactams: A Narrative Review of the Existing Evidence. Antibiotics (Basel) 2024; 13:506. [PMID: 38927173 PMCID: PMC11201171 DOI: 10.3390/antibiotics13060506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
It is estimated that antimicrobial resistance (AMR) is responsible for nearly 5 million human deaths worldwide each year and will reach 10 million by 2050. Carbapenem-resistant Acinetobacter baumannii (CRAB) infections represent the fourth-leading cause of death attributable to antimicrobial resistance globally, but a standardized therapy is still lacking. Among the antibiotics under consideration, Sulbactam/durlobactam seems to be the best candidate to replace current back-bone agents. Cefiderocol could play a pivotal role within combination therapy regimens. Due to toxicity and the pharmacokinetics/pharmacodynamics (PK/PD) limitations, colistin (or polymyxin B) should be used as an alternative agent (when no other options are available). Tigecycline (or minocycline) and fosfomycin could represent suitable partners for both NBLs. Randomized clinical trials (RCTs) are needed to better evaluate the role of NBLs in CRAB infection treatment and to compare the efficacy of tigecycline and fosfomycin as partner antibiotics. Synergism should be tested between NBLs and "old" drugs (rifampicin and trimethoprim/sulfamethoxazole). Huge efforts should be made to accelerate pre-clinical and clinical studies on safer polymyxin candidates with improved lung activity, as well as on the iv rifabutin formulation. In this narrative review, we focused the antibiotic treatment of CRAB infections in view of newly developed β-lactam agents (NBLs).
Collapse
Affiliation(s)
- Francesca Serapide
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Maurizio Guastalegname
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Sara Palma Gullì
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Rosaria Lionello
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Andrea Bruni
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.); (F.L.)
| | - Eugenio Garofalo
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.); (F.L.)
| | - Federico Longhini
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.); (F.L.)
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| |
Collapse
|
16
|
Ishikawa K, Nakamura T, Kawai F, Ota E, Mori N. Systematic Review of Beta-Lactam vs. Beta-Lactam plus Aminoglycoside Combination Therapy in Neutropenic Cancer Patients. Cancers (Basel) 2024; 16:1934. [PMID: 38792012 PMCID: PMC11487387 DOI: 10.3390/cancers16101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
We performed a systematic review of studies that compared beta-lactams vs. beta-lactams plus aminoglycosides for the treatment of febrile neutropenia in cancer patients. METHOD We searched CENTRAL, MEDLINE, and Embase for studies published up to October 2023, and randomized controlled trials (RCTs) that compared anti-Pseudomonas aeruginosa beta-lactam monotherapy with any combination of an anti-Pseudomonas aeruginosa beta-lactam and an aminoglycoside were included. RESULT The all-cause mortality rate of combination therapy showed no significant differences compared with that of monotherapy (RR 0.99, 95% CI 0.84 to 1.16, high certainty of evidence). Infection-related mortality rates showed that combination therapy had a small positive impact compared with the intervention with monotherapy (RR 0.83, 95% CI 0.66 to 1.05, high certainty of evidence). Regarding treatment failure, combination therapy showed no significant differences compared with monotherapy (RR 0.99, 95% CI 0.94 to 1.03, moderate certainty of evidence). In the sensitivity analysis, the treatment failure data published between 2010 and 2019 showed better outcomes in the same beta-lactam group (RR 1.10 [95% CI, 1.01-1.19]). Renal failure was more frequent with combination therapy of any daily dosing regimen (RR 0.46, 95% CI 0.36 to 0.60, high certainty of evidence). CONCLUSION We found combining aminoglycosides with a narrow-spectrum beta-lactam did not spare the use of broad-spectrum antibiotics. Few studies included antibiotic-resistant bacteria and a detailed investigation of aminoglycoside serum levels, and studies that combined the same beta-lactams showed only a minimal impact with the combination therapy. In the future, studies that include the profile of antibiotic-resistant bacteria and the monitoring of serum aminoglycoside levels will be required.
Collapse
Affiliation(s)
- Kazuhiro Ishikawa
- Department of Infectious Diseases, St. Luke’s International Hospital, Tokyo 104-8560, Japan;
| | - Tomoaki Nakamura
- Department of Pulmonary Medicine, Thoracic Center, St. Luke’s International Hospital, Tokyo 104-8560, Japan;
| | - Fujimi Kawai
- Library, Department of Academic Resources, St. Luke’s International University, Tokyo 104-0044, Japan
| | - Erika Ota
- Global Health Nursing, Graduate School of Nursing Sciences, St. Luke’s International University, Tokyo 104-0044, Japan;
- Tokyo Foundation for Policy Research, Tokyo 106-0032, Japan
| | - Nobuyoshi Mori
- Department of Infectious Diseases, St. Luke’s International Hospital, Tokyo 104-8560, Japan;
| |
Collapse
|
17
|
Sollima A, Rossini F, Lanza P, Pallotto C, Meschiari M, Gentile I, Stellini R, Lenzi A, Mulé A, Castagna F, Lorenzotti S, Amadasi S, Van Hauwermeiren E, Saccani B, Fumarola B, Signorini L, Castelli F, Matteelli A. Role of Cefiderocol in Multidrug-Resistant Gram-Negative Central Nervous System Infections: Real Life Experience and State-of-the-Art. Antibiotics (Basel) 2024; 13:453. [PMID: 38786181 PMCID: PMC11118811 DOI: 10.3390/antibiotics13050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Cefiderocol is a new molecule effective against multidrug-resistant (MDR) Gram-negative pathogens. Currently, there is limited evidence regarding the use of cefiderocol in central nervous system (CNS) infections. Data on the cerebrospinal fluid penetration rate of cefiderocol are limited and heterogeneous, and there is no consensus on the dosing scheme of cefiderocol to penetrate the blood-brain barrier. We present a case series and a literature review of CNS infections caused by MDR pathogens that were treated with cefiderocol: some of these patients were treated with different dose schemes of cefiderocol and underwent therapeutic drug monitoring both on plasma and cerebrospinal fluid (CSF). The CSF penetration rates and the clinical outcomes were evaluated.
Collapse
Affiliation(s)
- Alessio Sollima
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy (A.L.); (A.M.); (F.C.); (A.M.)
| | - Francesco Rossini
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy (A.L.); (A.M.); (F.C.); (A.M.)
| | - Paola Lanza
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (P.L.); (S.L.); (S.A.); (E.V.H.); (B.S.); (B.F.); (L.S.)
| | - Carlo Pallotto
- Department of Medicine and Surgery, Infectious Diseases Clinic, “Santa Maria della Misericordia” Hospital, University of Perugia, 06132 Perugia, Italy;
| | - Marianna Meschiari
- Infectious Diseases Unit, Azienda Ospedaliera-Universitaria of Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Roberto Stellini
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy (A.L.); (A.M.); (F.C.); (A.M.)
| | - Angelica Lenzi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy (A.L.); (A.M.); (F.C.); (A.M.)
| | - Alice Mulé
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy (A.L.); (A.M.); (F.C.); (A.M.)
| | - Francesca Castagna
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy (A.L.); (A.M.); (F.C.); (A.M.)
| | - Silvia Lorenzotti
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (P.L.); (S.L.); (S.A.); (E.V.H.); (B.S.); (B.F.); (L.S.)
| | - Silvia Amadasi
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (P.L.); (S.L.); (S.A.); (E.V.H.); (B.S.); (B.F.); (L.S.)
| | - Evelyn Van Hauwermeiren
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (P.L.); (S.L.); (S.A.); (E.V.H.); (B.S.); (B.F.); (L.S.)
| | - Barbara Saccani
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (P.L.); (S.L.); (S.A.); (E.V.H.); (B.S.); (B.F.); (L.S.)
| | - Benedetta Fumarola
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (P.L.); (S.L.); (S.A.); (E.V.H.); (B.S.); (B.F.); (L.S.)
| | - Liana Signorini
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (P.L.); (S.L.); (S.A.); (E.V.H.); (B.S.); (B.F.); (L.S.)
| | - Francesco Castelli
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy (A.L.); (A.M.); (F.C.); (A.M.)
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (P.L.); (S.L.); (S.A.); (E.V.H.); (B.S.); (B.F.); (L.S.)
| | - Alberto Matteelli
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy (A.L.); (A.M.); (F.C.); (A.M.)
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (P.L.); (S.L.); (S.A.); (E.V.H.); (B.S.); (B.F.); (L.S.)
| |
Collapse
|
18
|
Viscardi S, Topola E, Sobieraj J, Duda-Madej A. Novel Siderophore Cephalosporin and Combinations of Cephalosporins with β-Lactamase Inhibitors as an Advancement in Treatment of Ventilator-Associated Pneumonia. Antibiotics (Basel) 2024; 13:445. [PMID: 38786173 PMCID: PMC11117516 DOI: 10.3390/antibiotics13050445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
In an era of increasing antibiotic resistance among pathogens, the treatment options for infectious diseases are diminishing. One of the clinical groups especially vulnerable to this threat are patients who are hospitalized in intensive care units due to ventilator-associated pneumonia caused by multidrug-resistant/extensively drug-resistant Gram-negative bacteria. In order to prevent the exhaustion of therapeutic options for this life-threatening condition, there is an urgent need for new pharmaceuticals. Novel β-lactam antibiotics, including combinations of cephalosporins with β-lactamase inhibitors, are proposed as a solution to this escalating problem. The unique mechanism of action, distinctive to this new group of siderophore cephalosporins, can overcome multidrug resistance, which is raising high expectations. In this review, we present the summarized results of clinical trials, in vitro studies, and case studies on the therapeutic efficacy of cefoperazone-sulbactam, ceftolozane-tazobactam, ceftazidime-avibactam, and cefiderocol in the treatment of ventilator-associated pneumonia. We demonstrate that treatment strategies based on siderophore cephalosporins and combinations of β-lactams with β-lactamases inhibitors show comparable or higher clinical efficacy than those used with classic pharmaceuticals, like carbapenems, colistin, or tigecycline, and are often associated with a lower risk of adverse events.
Collapse
Affiliation(s)
- Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (J.S.)
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (J.S.)
| | - Jakub Sobieraj
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (J.S.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
19
|
Nasrollahian S, Graham JP, Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Front Cell Infect Microbiol 2024; 14:1387497. [PMID: 38638826 PMCID: PMC11024256 DOI: 10.3389/fcimb.2024.1387497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The dissemination of antibiotic resistance in Escherichia coli poses a significant threat to public health worldwide. This review provides a comprehensive update on the diverse mechanisms employed by E. coli in developing resistance to antibiotics. We primarily focus on pathotypes of E. coli (e.g., uropathogenic E. coli) and investigate the genetic determinants and molecular pathways that confer resistance, shedding light on both well-characterized and recently discovered mechanisms. The most prevalent mechanism continues to be the acquisition of resistance genes through horizontal gene transfer, facilitated by mobile genetic elements such as plasmids and transposons. We discuss the role of extended-spectrum β-lactamases (ESBLs) and carbapenemases in conferring resistance to β-lactam antibiotics, which remain vital in clinical practice. The review covers the key resistant mechanisms, including: 1) Efflux pumps and porin mutations that mediate resistance to a broad spectrum of antibiotics, including fluoroquinolones and aminoglycosides; 2) adaptive strategies employed by E. coli, including biofilm formation, persister cell formation, and the activation of stress response systems, to withstand antibiotic pressure; and 3) the role of regulatory systems in coordinating resistance mechanisms, providing insights into potential targets for therapeutic interventions. Understanding the intricate network of antibiotic resistance mechanisms in E. coli is crucial for the development of effective strategies to combat this growing public health crisis. By clarifying these mechanisms, we aim to pave the way for the design of innovative therapeutic approaches and the implementation of prudent antibiotic stewardship practices to preserve the efficacy of current antibiotics and ensure a sustainable future for healthcare.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jay P. Graham
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, United States
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
20
|
Melo e Silva J, Oliveira D, Louro JA, Monteiro E. Cefiderocol and Intraventricular Colistin for Ventriculitis due to an Extensively Drug-Resistant Pseudomonas Aeruginosa. J Crit Care Med (Targu Mures) 2024; 10:183-187. [PMID: 39109273 PMCID: PMC11193941 DOI: 10.2478/jccm-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 10/22/2024] Open
Abstract
Rheumatoid arthritis, an inflammatory rheumatic disease predominantly affecting small limb joints, frequently compromises the cervical spine, resulting in spinal instability and the potential surgical necessity. This may result in severe complications, such as ventriculitis, often associated with a high mortality rate and multidrug-resistant organisms. A major challenge lies in achieving therapeutic antimicrobial concentrations in the central nervous system. The authors present a case of a 65-year-old female, with cervical myelopathy due to severe rheumatoid arthritis. Following surgery, the patient developed ventriculitis caused by an extensively drug-resistant Pseudomonas Aeruginosa. Early diagnosis and prompt treatment played a crucial role in facilitating neurological and cognitive recovery.
Collapse
Affiliation(s)
| | - Diogo Oliveira
- Centro Hospitalar de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - João A. Louro
- Hospital Professor Doutor Fernando Fonseca EPE, Lisboa, Portugal
| | | |
Collapse
|
21
|
Bostanghadiri N, Sholeh M, Navidifar T, Dadgar-Zankbar L, Elahi Z, van Belkum A, Darban-Sarokhalil D. Global mapping of antibiotic resistance rates among clinical isolates of Stenotrophomonas maltophilia: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2024; 23:26. [PMID: 38504262 PMCID: PMC10953290 DOI: 10.1186/s12941-024-00685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION Infections caused by Stenotrophomonas maltophilia are clinically important due to its intrinsic resistance to a broad range of antibiotics. Therefore, selecting the most appropriate antibiotic to treat S. maltophilia infection is a major challenge. AIM The current meta-analysis aimed to investigate the global prevalence of antibiotic resistance among S. maltophilia isolates to the develop more effective therapeutic strategies. METHOD A systematic literature search was performed using the appropriate search syntax after searching Pubmed, Embase, Web of Science and Scopus databases (May 2023). Statistical analysis was performed using Pooled and the random effects model in R and the metafor package. A total of 11,438 articles were retrieved. After a thorough evaluation, 289 studies were finally eligible for inclusion in this systematic review and meta-analysis. RESULT Present analysis indicated that the highest incidences of resistance were associated with doripenem (97%), cefoxitin (96%), imipenem and cefuroxime (95%), ampicillin (94%), ceftriaxone (92%), aztreonam (91%) and meropenem (90%) which resistance to Carbapenems is intrinsic. The lowest resistance rates were documented for minocycline (3%), cefiderocol (4%). The global resistance rate to TMP-SMX remained constant in two periods before and after 2010 (14.4% vs. 14.6%). A significant increase in resistance to tigecycline and ceftolozane/tazobactam was observed before and after 2010. CONCLUSIONS Minocycline and cefiderocol can be considered the preferred treatment options due to low resistance rates, although regional differences in resistance rates to other antibiotics should be considered. The low global prevalence of resistance to TMP-SMX as a first-line treatment for S. maltophilia suggests that it remains an effective treatment option.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Open Innovation & Partnerships, BaseClear, Leiden, Netherlands
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Miron M, Blaj M, Ristescu AI, Iosep G, Avădanei AN, Iosep DG, Crișan-Dabija R, Ciocan A, Perțea M, Manciuc CD, Luca Ș, Grigorescu C, Luca MC. Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: A Literature Review. Microorganisms 2024; 12:213. [PMID: 38276198 PMCID: PMC10820465 DOI: 10.3390/microorganisms12010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Hospital-acquired pneumonia (HAP) and its subtype, ventilator-associated pneumonia (VAP), remain two significant causes of morbidity and mortality worldwide, despite the better understanding of pathophysiological mechanisms, etiology, risk factors, preventive methods (bundle of care principles) and supportive care. Prior detection of the risk factors combined with a clear clinical judgement based on clinical scores and dosage of different inflammatory biomarkers (procalcitonin, soluble triggering receptor expressed on myelloid cells type 1, C-reactive protein, mid-regional pro-adrenomedullin, mid-regional pro-atrial natriuretic peptide) represent the cornerstones of a well-established management plan by improving patient's outcome. This review article provides an overview of the newly approved terminology considering nosocomial pneumonia, as well as the risk factors, biomarkers, diagnostic methods and new treatment options that can guide the management of this spectrum of infections.
Collapse
Affiliation(s)
- Mihnea Miron
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iași, 700115 Iasi, Romania; (M.B.); (A.I.R.); (A.-N.A.); (D.-G.I.); (R.C.-D.); (M.P.); (C.D.M.); (Ș.L.); (C.G.); (M.C.L.)
| | - Mihaela Blaj
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iași, 700115 Iasi, Romania; (M.B.); (A.I.R.); (A.-N.A.); (D.-G.I.); (R.C.-D.); (M.P.); (C.D.M.); (Ș.L.); (C.G.); (M.C.L.)
- Anesthesiology and Intensive Care Unit, “Sf. Spiridon” Hospital, 700111 Iasi, Romania
| | - Anca Irina Ristescu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iași, 700115 Iasi, Romania; (M.B.); (A.I.R.); (A.-N.A.); (D.-G.I.); (R.C.-D.); (M.P.); (C.D.M.); (Ș.L.); (C.G.); (M.C.L.)
- Anesthesiology and Intensive Care Unit, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Gabriel Iosep
- Anesthesiology and Intensive Care Unit, Clinical Hospital of Pneumology, 700182 Iasi, Romania;
| | - Andrei-Nicolae Avădanei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iași, 700115 Iasi, Romania; (M.B.); (A.I.R.); (A.-N.A.); (D.-G.I.); (R.C.-D.); (M.P.); (C.D.M.); (Ș.L.); (C.G.); (M.C.L.)
| | - Diana-Gabriela Iosep
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iași, 700115 Iasi, Romania; (M.B.); (A.I.R.); (A.-N.A.); (D.-G.I.); (R.C.-D.); (M.P.); (C.D.M.); (Ș.L.); (C.G.); (M.C.L.)
| | - Radu Crișan-Dabija
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iași, 700115 Iasi, Romania; (M.B.); (A.I.R.); (A.-N.A.); (D.-G.I.); (R.C.-D.); (M.P.); (C.D.M.); (Ș.L.); (C.G.); (M.C.L.)
- Pulmonology Department, Clinical Hospital of Pneumology, 700182 Iasi, Romania
| | | | - Mihaela Perțea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iași, 700115 Iasi, Romania; (M.B.); (A.I.R.); (A.-N.A.); (D.-G.I.); (R.C.-D.); (M.P.); (C.D.M.); (Ș.L.); (C.G.); (M.C.L.)
- Department of Surgery 1, “Sf. Spiridon” Hospital, 700111 Iasi, Romania
| | - Carmen Doina Manciuc
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iași, 700115 Iasi, Romania; (M.B.); (A.I.R.); (A.-N.A.); (D.-G.I.); (R.C.-D.); (M.P.); (C.D.M.); (Ș.L.); (C.G.); (M.C.L.)
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
| | - Ștefana Luca
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iași, 700115 Iasi, Romania; (M.B.); (A.I.R.); (A.-N.A.); (D.-G.I.); (R.C.-D.); (M.P.); (C.D.M.); (Ș.L.); (C.G.); (M.C.L.)
| | - Cristina Grigorescu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iași, 700115 Iasi, Romania; (M.B.); (A.I.R.); (A.-N.A.); (D.-G.I.); (R.C.-D.); (M.P.); (C.D.M.); (Ș.L.); (C.G.); (M.C.L.)
- Thoracic Surgery Department, Clinical Hospital of Pneumology, 700182 Iasi, Romania
| | - Mihaela Cătălina Luca
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iași, 700115 Iasi, Romania; (M.B.); (A.I.R.); (A.-N.A.); (D.-G.I.); (R.C.-D.); (M.P.); (C.D.M.); (Ș.L.); (C.G.); (M.C.L.)
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
| |
Collapse
|
23
|
Markovska R, Stankova P, Stoeva T, Keuleyan E, Mihova K, Boyanova L. In Vitro Antimicrobial Activity of Five Newly Approved Antibiotics against Carbapenemase-Producing Enterobacteria-A Pilot Study in Bulgaria. Antibiotics (Basel) 2024; 13:81. [PMID: 38247640 PMCID: PMC10812743 DOI: 10.3390/antibiotics13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
To solve the problem with pan-drug resistant and extensively drug-resistant Gram-negative microbes, newly approved drugs such as ceftazidime/avibactam, cefiderocol, plazomicin, meropenem/vaborbactam, and eravacycline have been introduced in practice. The aim of the present study was to collect carbapenemase-producing clinical Enterobacterales isolates, to characterize their carbapenemase genes and clonal relatedness, and to detect their susceptibility to commonly used antimicrobials and the above-mentioned newly approved antibiotics. Sixty-four carbapenemase producers were collected in a period of one year from four Bulgarian hospitals, mainly including Klebsiella pneumoniae (89% of the isolates) and also single Proteus mirabilis, Providencia stuartii and Citrobacter freundii isolates. The main genotype was blaNDM-1 (in 61%), followed by blaKPC-2 (23%), blaVIM-1 (7.8%) and blaOXA-48 (7.8%). Many isolates showed the presence of ESBL (blaCTX-M-15/-3 in 76.6%) and AmpC (blaCMY-4 in 37.5% or blaCMY-99 in 7.8% of isolates). The most common MLST type was K. pneumoniae ST11 (57.8%), followed by ST340 (12.5%), ST258 (6.3%) and ST101 (6.3%). The isolates were highly resistant to standard-group antibiotics, except they were susceptible to tigecycline (83.1%), colistin (79.7%), fosfomycin (32.8%), and aminoglycosides (20.3-35.9%). Among the newly approved compounds, plazomicin (90.6%) and eravacycline (76.3%) showed the best activity. Susceptibility to ceftazidime/avibactam and meropenem/vaborbactam was 34.4% and 27.6%, respectively. For cefiderocol, a large discrepancy was observed between the percentages of susceptible isolates according to EUCAST susceptibility breakpoints (37.5%) and those of CLSI (71.8%), detected by the disk diffusion method. This study is the first report to show patterns of susceptibility to five newly approved antibiotics among molecularly characterized isolates in Bulgaria. The data may contribute to both the improvement of treatment of individual patients and the choice of infection control strategy and antibiotic policy.
Collapse
Affiliation(s)
- Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Petya Stankova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Temenuga Stoeva
- Department of Microbiology and Virology, University Multiprofile Hospital for Active Treatment (UMHAT) ”Saint Marina”, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Emma Keuleyan
- Department of Clinical Microbiology, Medical Institute-Ministry of the Interior, 1606 Sofia, Bulgaria;
| | - Kalina Mihova
- Molecular Medicine Center, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| |
Collapse
|
24
|
Russo C, Humphries R. Approaches to Testing Novel β-Lactam and β-Lactam Combination Agents in the Clinical Laboratory. Antibiotics (Basel) 2023; 12:1700. [PMID: 38136734 PMCID: PMC10740869 DOI: 10.3390/antibiotics12121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The rapid emergence of multi-drug resistant Gram-negative pathogens has driven the introduction of novel β-lactam combination agents (BLCs) to the antibiotic market: ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, cefiderocol, and sulbactam-durlobactam. These agents are equipped with innovative mechanisms that confer broad Gram-negative activity, notably against certain challenging carbapenemases. While their introduction offers a beacon of hope, clinical microbiology laboratories must navigate the complexities of susceptibility testing for these agents due to their diverse activity profiles against specific β-lactamases and the possibility of acquired resistance mechanisms in some bacterial isolates. This review explores the complexities of these novel antimicrobial agents detailing the intricacies of their application, providing guidance on the nuances of susceptibility testing, interpretation, and result reporting in clinical microbiology laboratories.
Collapse
Affiliation(s)
| | - Romney Humphries
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
25
|
Passari AK, Ruiz-Villafán B, Cruz-Bautista R, Díaz-Domínguez V, Rodríguez-Sanoja R, Sanchez S. Opportunities and challenges of microbial siderophores in the medical field. Appl Microbiol Biotechnol 2023; 107:6751-6759. [PMID: 37755507 PMCID: PMC10589192 DOI: 10.1007/s00253-023-12742-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Siderophores are low-molecular-weight secondary metabolites that function as iron chelators. Under iron-deficiency conditions, they are produced by a wide variety of microbes, allowing them to increase their iron uptake. The primary function of these compounds is the environmental iron scavenging and its transport into the cytosol. Iron is then reduced to its ferrous form to operate as an enzymatic cofactor for various functions, including respiration, nitrogen fixation, photosynthesis, methanogenesis, and amino acid synthesis. Depending on their functional group, siderophores are classified into hydroxamate, catecholate, phenolate, carboxylate, and mixed types. They have achieved great importance in recent years due to their medical applications as antimicrobial, antimalarial, or anticancer drugs, vaccines, and drug-delivery agents. This review integrates current advances in specific healthcare applications of microbial siderophores, delineating new opportunities and challenges as viable therapies to fight against diseases that represent crucial public health problems in the medical field.Key points• Siderophores are low-molecular-weight secondary metabolites functioning as iron chelators.• The siderophore's properties offer viable options to face diverse clinical problems.• Siderophores are alternatives for the enhancement of antibiotic activities.
Collapse
Affiliation(s)
- Ajit Kumar Passari
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rodrigo Cruz-Bautista
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Valerie Díaz-Domínguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
26
|
Ullah I, Lang M. Key players in the regulation of iron homeostasis at the host-pathogen interface. Front Immunol 2023; 14:1279826. [PMID: 37942316 PMCID: PMC10627961 DOI: 10.3389/fimmu.2023.1279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Iron plays a crucial role in the biochemistry and development of nearly all living organisms. Iron starvation of pathogens during infection is a striking feature utilized by a host to quell infection. In mammals and some other animals, iron is essentially obtained from diet and recycled from erythrocytes. Free iron is cytotoxic and is readily available to invading pathogens. During infection, most pathogens utilize host iron for their survival. Therefore, to ensure limited free iron, the host's natural system denies this metal in a process termed nutritional immunity. In this fierce battle for iron, hosts win over some pathogens, but others have evolved mechanisms to overdrive the host barriers. Production of siderophores, heme iron thievery, and direct binding of transferrin and lactoferrin to bacterial receptors are some of the pathogens' successful strategies which are highlighted in this review. The intricate interplay between hosts and pathogens in iron alteration systems is crucial for understanding host defense mechanisms and pathogen virulence. This review aims to elucidate the current understanding of host and pathogen iron alteration systems and propose future research directions to enhance our knowledge in this field.
Collapse
Affiliation(s)
- Inam Ullah
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
27
|
Stoikov I, Ivanov IN, Donchev D, Teneva D, Dobreva E, Hristova R, Sabtcheva S. Genomic Characterization of IMP-Producing Pseudomonas aeruginosa in Bulgaria Reveals the Emergence of IMP-100, a Novel Plasmid-Mediated Variant Coexisting with a Chromosomal VIM-4. Microorganisms 2023; 11:2270. [PMID: 37764114 PMCID: PMC10537328 DOI: 10.3390/microorganisms11092270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa infections represent a major public health concern and require comprehensive understanding of their genetic makeup. This study investigated the first occurrence of imipenemase (IMP)-carrying P. aeruginosa strains from Bulgaria. Whole genome sequencing identified a novel plasmid-mediated IMP-100 allele located in a a novel In4886 integron embedded in a putative Tn7700 transposon. Two other closely related chromosomal IMP variants, IMP-13 and IMP-84, were also detected. The IMP-producers were resistant to last-line drugs including cefiderocol (CFDC) (two out of three) and susceptible to colistin. The IMP-13/84 cassettes were situated in a In320 integron inserted in a Tn5051-like transposon as previously reported. Lastly, the p4782-IMP plasmid rendered the PA01 transformant resistant to CFDC, suggesting a transferable CFDC resistance. A variety of virulence factors associated with adhesion, antiphagocytosis, iron uptake, and quorum sensing, as well as secretion systems, toxins, and proteases, were confirmed, suggesting significant pathogenic potential consistent with the observed strong biofilm formation. The emergence of IMP-producing MDR P. aeruginosa is alarming as it remains unsusceptible even to last-generation drugs like CFDC. Newly detected IMP-100 was even located in a CFDC-resistant XDR strain.
Collapse
Affiliation(s)
- Ivan Stoikov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
- Laboratory for Clinical Microbiology, National Oncology Center, 6 Plovdivsko pole Str., 1797 Sofia, Bulgaria;
| | - Ivan N. Ivanov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Deyan Donchev
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Deana Teneva
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Elina Dobreva
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Rumyana Hristova
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Stefana Sabtcheva
- Laboratory for Clinical Microbiology, National Oncology Center, 6 Plovdivsko pole Str., 1797 Sofia, Bulgaria;
| |
Collapse
|
28
|
Olshvang E, Fritsch S, Scholtyssek OC, Schalk IJ, Metzler-Nolte N. Vectorization via Siderophores Increases Antibacterial Activity of K(RW) 3 Peptides against Pseudomonas aeruginosa. Chemistry 2023; 29:e202300364. [PMID: 37541431 DOI: 10.1002/chem.202300364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 08/06/2023]
Abstract
A series of new conjugates comprised from a small synthetic antimicrobial peptide (AMP) and a siderophore-type vector component was designed and tested for activity on P. aeruginosa PAO1 and several genetically modified strains. As AMP, the well-established arginine-tryptophane combination K(RW)3 (P1) was chosen with an added lysine for siderophore attachment. This peptide is easy to prepare, modify, and possesses good anti-bacterial activity. On the vector part, we examined several moieties: (i) the natural siderophore deferoxamine (DFO); (ii) bidentate iron chelators based on the hydroxamate building block (4 a-c) ; (iii) the non-siderophore chelators deferasirox (DFX) and deferiprone-carboxylate (DFP-COOH). All conjugates were prepared by solid phase synthesis techniques and fully characterized by HPLC and mass spectrometry (including HR-MS). 55 Fe uptake assays indicate a receptor-mediated uptake for 4 a-c, DFP-COOH and DFO, which is dependent on the outer membrane transporter FoxA in the case of DFO. All conjugates showed increased antibacterial activity against P. aeruginosa compared to the parent peptide P1 alone when investigated in iron-depleted medium. MIC values were as low as 2 μM (for P1-DFP) on wild type P. aeruginosa. The activity of P1-DFO and P1-DFP was even better on genetically mutated strains unable to produce siderophores (down to 0.5 μM). Although the DFX vector on its own was not able to transport iron inside the bacterial cell as shown by 55 Fe uptake studies, the P1-DFX conjugate had excellent antibacterial activity compared to P1 (2 μM, and as low as 0.25 μM on a receptor-deficient strain unable to produce siderophores), suggesting that the conjugates were indeed recognized and internalized by an (unknown) transporter. Control experiments with an equimolar mixture of P1 and DFX confirm that the observed activity is intrinsic to vectorization. This work thus demonstrates the power of linking small AMPs covalently to siderophores for a new class of Trojan Horse antibiotics, with P1-DFP and P1-DFX being the most potent conjugates.
Collapse
Affiliation(s)
- Evgenia Olshvang
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Sarah Fritsch
- UMR7242, ESBS, University of Strasbourg, 67413, Illkirch, Strasbourg, France
- UMR7242, ESBS, CNRS, 67413, Illkirch, Strasbourg, France
| | - Oliver C Scholtyssek
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Isabelle J Schalk
- UMR7242, ESBS, University of Strasbourg, 67413, Illkirch, Strasbourg, France
- UMR7242, ESBS, CNRS, 67413, Illkirch, Strasbourg, France
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
29
|
Rando E, Cutuli SL, Sangiorgi F, Tanzarella ES, Giovannenze F, De Angelis G, Murri R, Antonelli M, Fantoni M, De Pascale G. Cefiderocol-containing regimens for the treatment of carbapenem-resistant A. baumannii ventilator-associated pneumonia: a propensity-weighted cohort study. JAC Antimicrob Resist 2023; 5:dlad085. [PMID: 37484029 PMCID: PMC10359102 DOI: 10.1093/jacamr/dlad085] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Background Cefiderocol is a novel β-lactam with activity against carbapenem-resistant Acinetobacter baumannii (CRAB), but its role in CRAB pulmonary infections is controversial due to limited evidence. Objectives To assess the association between cefiderocol-containing regimens treatment and 28-day mortality in carbapenem-resistant A. baumannii ventilator-associated pneumonia (VAP). Methods An observational cohort study including critically ill COVID-19 patients with CRAB-VAP admitted to two ICUs of a large academic hospital in Rome between September 2020 and December 2022. The primary outcome was 28-day all-cause mortality. A propensity score was created to balance the cefiderocol- and non-cefiderocol-containing groups. A propensity-weighted multiple logistic regression model was calculated to evaluate risk factors for 28-day mortality. Survival curves were calculated using the Kaplan-Meier method. Results 121 patients were enrolled, 55 were treated with cefiderocol- and 66 with non-cefiderocol-containing regimens. The 28-day all-cause mortality was 56% (68/121). A statistically significant difference in 28-day mortality was found between cefiderocol- and non-cefiderocol- containing regimens groups (44% versus 67%, P = 0.011). In the propensity-adjusted multiple logistic regression, cefiderocol (OR 0.35 95% CI 0.14, 0.83) was a predictor of 28-day survival, Charlson comorbidity index (OR 1.36 95% CI 1.16, 1.78), SOFA score (OR 1.24 95% CI 1.09, 1.57) and septic shock (OR 3.71 95% CI 1.44, 12.73) were all associated with increased 28-day mortality. Conclusion Cefiderocol-containing regimens were associated with reduced 28-day mortality in CRAB-VAP. The sample size and the observational design limit the study's conclusions. Future RCTs are needed to establish cefiderocol's definite role in these infections.
Collapse
Affiliation(s)
| | - Salvatore Lucio Cutuli
- Dipartimento di Scienza dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Flavio Sangiorgi
- Dipartimento di Sicurezza e Bioetica—Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eloisa Sofia Tanzarella
- Dipartimento di Scienza dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Francesca Giovannenze
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Giulia De Angelis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rita Murri
- Dipartimento di Sicurezza e Bioetica—Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Massimo Antonelli
- Dipartimento di Scienza dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Fantoni
- Dipartimento di Sicurezza e Bioetica—Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienza dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
30
|
Kim KS. Editorial: Global excellence in pharmacology of infectious diseases: Australia and Asia. Front Pharmacol 2023; 14:1243284. [PMID: 37521482 PMCID: PMC10374358 DOI: 10.3389/fphar.2023.1243284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- Kwang-sun Kim
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
31
|
Venuti F, Romani L, De Luca M, Tripiciano C, Palma P, Chiriaco M, Finocchi A, Lancella L. Novel Beta Lactam Antibiotics for the Treatment of Multidrug-Resistant Gram-Negative Infections in Children: A Narrative Review. Microorganisms 2023; 11:1798. [PMID: 37512970 PMCID: PMC10385558 DOI: 10.3390/microorganisms11071798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Infections due to carbapenem-resistant Enterobacterales (CRE) are increasingly prevalent in children and are associated with poor clinical outcomes, especially in critically ill patients. Novel beta lactam antibiotics, including ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, and cefiderocol, have been released in recent years to face the emerging challenge of multidrug-resistant (MDR) Gram-negative bacteria. Nonetheless, several novel agents lack pediatric indications approved by the Food and Drug Administration (FDA) and the European Medicine Agency (EMA), leading to uncertain pediatric-specific treatment strategies and uncertain dosing regimens in the pediatric population. In this narrative review we have summarized the available clinical and pharmacological data, current limitations and future prospects of novel beta lactam antibiotics in the pediatric population.
Collapse
Affiliation(s)
- Francesco Venuti
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy
| | - Lorenza Romani
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Maia De Luca
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Costanza Tripiciano
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Paolo Palma
- Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Chiriaco
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Laura Lancella
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
32
|
Brauncajs M, Bielec F, Macieja A, Pastuszak-Lewandoska D. In Vitro Activity of Eravacycline against Carbapenemase-Producing Gram-Negative Bacilli Clinical Isolates in Central Poland. Biomedicines 2023; 11:1784. [PMID: 37509424 PMCID: PMC10376096 DOI: 10.3390/biomedicines11071784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Eravacycline is a novel antibiotic of the tetracycline class with activity against a broad spectrum of clinically significant bacteria, including multi-drug-resistant organisms. For this reason, it may be an alternative to treating critical infections of this etiology. We aimed to assess the in vitro effectiveness of eravacycline to carbapenemase-producing Gram-negative bacilli clinical isolates identified in hospitals in Łódź, Poland. We analyzed 102 strains producing KPC, MBL, OXA-48, GES, and other carbapenemases. Eravacycline susceptibility was determined following the EUCAST guidelines. The highest susceptibility was found in KPC (73%) and MBL (59%) strains. Our results confirmed in vitro the efficacy of this drug against carbapenem-resistant strains. However, eravacycline has been indicated only for treating complicated intra-abdominal infections, significantly limiting its use. This aspect should be further explored to expand the indications for using eravacycline supported by evidence-based medicine. Eravacycline is one of the drugs that could play a role in reducing the spread of multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Małgorzata Brauncajs
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Filip Bielec
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Anna Macieja
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
33
|
Domingues S, Lima T, Saavedra MJ, Da Silva GJ. An Overview of Cefiderocol's Therapeutic Potential and Underlying Resistance Mechanisms. Life (Basel) 2023; 13:1427. [PMID: 37511802 PMCID: PMC10382032 DOI: 10.3390/life13071427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance continues to increase globally and treatment of difficult-to-treat (DTT) infections, mostly associated with carbapenem-resistant (CR) Pseudomonas aeruginosa, CR Acinetobacter baumannii, and CR- and third-generation-cephalosporins-resistant Enterobacterales remains a challenge for the clinician. The recent approval of cefiderocol has broaden the armamentarium for the treatment of patients with DTT infections. Cefiderocol is a siderophore cephalosporin that has shown excellent antibacterial activity, in part due to its innovative way of cell permeation. It is relatively stable compared to most commonly found carbapenamases. However, some resistant mechanisms to cefiderocol have already been identified and reduced susceptibility has developed during patient treatment, highlighting that the clinical use of cefiderocol must be rational. In this review, we summarize the current available treatments against the former resistant bacteria, and we revise and discuss the mechanism of action of cefiderocol, underlying the biological function of siderophores, the therapeutic potential of cefiderocol, and the mechanisms of resistance reported so far.
Collapse
Affiliation(s)
- Sara Domingues
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Tiago Lima
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria José Saavedra
- CITAB-Inov4Agro, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-AL4AnimalS, Animal and Veterinary Research Center, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Gabriela Jorge Da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
34
|
Gulyás D, Kamotsay K, Szabó D, Kocsis B. Investigation of Delafloxacin Resistance in Multidrug-Resistant Escherichia coli Strains and the Detection of E. coli ST43 International High-Risk Clone. Microorganisms 2023; 11:1602. [PMID: 37375104 DOI: 10.3390/microorganisms11061602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Delafloxacin is a novel fluoroquinolone agent that is approved for clinical application. In this study, we analyzed the antibacterial efficacy of delafloxacin in a collection of 47 Escherichia coli strains. Antimicrobial susceptibility testing was performed by the broth microdilution method and minimum inhibitory concentration (MIC) values were determined for delafloxacin, ciprofloxacin, levofloxacin, moxifloxacin, ceftazidime, cefotaxime, and imipenem. Two multidrug-resistant E. coli strains, which exhibited delafloxacin and ciprofloxacin resistance as well as extended-spectrum beta-lactamase (ESBL) phenotype, were selected for whole-genome sequencing (WGS). In our study, delafloxacin and ciprofloxacin resistance rates were 47% (22/47) and 51% (24/47), respectively. In the strain collection, 46 E. coli were associated with ESBL production. The MIC50 value for delafloxacin was 0.125 mg/L, while all other fluoroquinolones had an MIC50 value of 0.25 mg/L in our collection. Delafloxacin susceptibility was detected in 20 ESBL positive and ciprofloxacin resistant E. coli strains; by contrast, E. coli strains that exhibited a ciprofloxacin MIC value above 1 mg/L were delafloxacin-resistant. WGS analysis on the two selected E. coli strains (920/1 and 951/2) demonstrated that delafloxacin resistance is mediated by multiple chromosomal mutations, namely, five mutations in E. coli 920/1 (gyrA S83L, D87N, parC S80I, E84V, and parE I529L) and four mutations in E. coli 951/2 (gyrA S83L, D87N, parC S80I, and E84V). Both strains carried an ESBL gene, blaCTX-M-1 in E. coli 920/1 and blaCTX-M-15 in E. coli 951/2. Based on multilocus sequence typing, both strains belong to the E. coli sequence type 43 (ST43). In this paper, we report a remarkable high rate (47%) of delafloxacin resistance among multidrug-resistant E. coli as well as the E. coli ST43 international high-risk clone in Hungary.
Collapse
Affiliation(s)
- Dániel Gulyás
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| | - Katalin Kamotsay
- Central Microbiology Laboratory, National Institute of Hematology and Infectious Disease, Central Hospital of Southern-Pest, 1097 Budapest, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- Human Microbiota Study Group, Semmelweis University-Eötvös Lóránd Research Network, 1089 Budapest, Hungary
| | - Béla Kocsis
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
35
|
Palombo M, Bovo F, Amadesi S, Gaibani P. Synergistic Activity of Cefiderocol in Combination with Piperacillin-Tazobactam, Fosfomycin, Ampicillin-Sulbactam, Imipenem-Relebactam and Ceftazidime-Avibactam against Carbapenem-Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:858. [PMID: 37237761 PMCID: PMC10215675 DOI: 10.3390/antibiotics12050858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Limited treatment options are among the main reasons why antimicrobial resistance has become a leading major public health problem. In particular, carbapenem-resistant Enterobacteriales (CRE), Pseudomonas aeruginosa and Acinetobacter baumannii have been included by the World Health Organization (WHO) among the pathogens for which new therapeutic agents are needed. The combination of antibiotics represents an effective strategy to treat multidrug-resistant (MDR) pathogen infections. In this context, the aim of this study is to evaluate the in vitro activity of cefiderocol (CFD) in combination with different antimicrobial molecules against a collection of well-characterized clinical strains, exhibiting different patterns of antimicrobial susceptibility. Clinical strains were genomically characterized using Illumina iSeq100 platform. Synergy analyses were performed by combining CFD with piperacillin-tazobactam (PIP-TAZ), fosfomycin (FOS), ampicillin-sulbactam (AMP-SULB), ceftazidime-avibactam (CAZ-AVI), meropenem-vaborbactam (MER-VAB) and imipenem-relebactam (IMI-REL). Our results demonstrated the synergistic effect of CFD in combination with FOS and CAZ-AVI against CRE and carbapenem-resistant Acinetobacter baumannii (CR-Ab) clinical strains owing CFD-resistant profile, while the CFD and AMP-SULB combination was effective against CR-Pa strain displaying AMP-SULB-resistant profile. Moreover, the combination of CAZ-AVI/SULB showed synergistic activity in CAZ-AVI-resistant CRE strain. In conclusion, although further analyses are needed to confirm these results, our work showed the efficacy of CFD when used for synergistic formulations.
Collapse
Affiliation(s)
- Marta Palombo
- Microbiology Unit, IRCCS Azienda Ospedaliera-University of Bologna, 40126 Bologna, Italy
| | - Federica Bovo
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Stefano Amadesi
- Microbiology Unit, IRCCS Azienda Ospedaliera-University of Bologna, 40126 Bologna, Italy
| | - Paolo Gaibani
- Microbiology Unit, IRCCS Azienda Ospedaliera-University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
36
|
Khalid K, Rox K. All Roads Lead to Rome: Enhancing the Probability of Target Attainment with Different Pharmacokinetic/Pharmacodynamic Modelling Approaches. Antibiotics (Basel) 2023; 12:antibiotics12040690. [PMID: 37107052 PMCID: PMC10135278 DOI: 10.3390/antibiotics12040690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
In light of rising antimicrobial resistance and a decreasing number of antibiotics with novel modes of action, it is of utmost importance to accelerate development of novel treatment options. One aspect of acceleration is to understand pharmacokinetics (PK) and pharmacodynamics (PD) of drugs and to assess the probability of target attainment (PTA). Several in vitro and in vivo methods are deployed to determine these parameters, such as time-kill-curves, hollow-fiber infection models or animal models. However, to date the use of in silico methods to predict PK/PD and PTA is increasing. Since there is not just one way to perform the in silico analysis, we embarked on reviewing for which indications and how PK and PK/PD models as well as PTA analysis has been used to contribute to the understanding of the PK and PD of a drug. Therefore, we examined four recent examples in more detail, namely ceftazidime-avibactam, omadacycline, gepotidacin and zoliflodacin as well as cefiderocol. Whereas the first two compound classes mainly relied on the ‘classical’ development path and PK/PD was only deployed after approval, cefiderocol highly profited from in silico techniques that led to its approval. Finally, this review shall highlight current developments and possibilities to accelerate drug development, especially for anti-infectives.
Collapse
Affiliation(s)
- Kashaf Khalid
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
37
|
Fendian ÁM, Albanell-Fernández M, Tuset M, Pitart C, Castro P, Soy D, Bodro M, Soriano A, Del Río A, Martínez JA. Real-Life Data on the Effectiveness and Safety of Cefiderocol in Severely Infected Patients: A Case Series. Infect Dis Ther 2023; 12:1205-1216. [PMID: 36943617 PMCID: PMC10029777 DOI: 10.1007/s40121-023-00776-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/08/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Real-life data about cefiderocol use to treat extensively drug-resistant bacteria are scarce. We aim to report our early experience in patients with difficult-to-treat infections and limited therapeutic options. METHODS Patients treated with cefiderocol from March 2018 to April 2022 in a tertiary-care hospital in Spain were included. Demographic, clinical, and microbiological data were collected up to 90 days after the end of treatment or until death. Survival status was recorded at 30 and 90 days. RESULTS Ten patients were included, seven of them critically ill. Ventilator-associated pneumonia (40%) and bacteremia (40%) were the main infections. Multidrug-resistant or extensively drug-resistant P. aeruginosa was the most frequently isolated pathogen (70%, of which six patients were infected with bacteria with difficult-to-treat resistance), followed by A. baumannii, E. coli, and A. xylosoxidans (10% each). Seven patients received combination therapy. Clinical and microbiological cures were achieved in 90% and 80% of patients, respectively. Two previously susceptible strains (20%) developed resistance to cefiderocol. Overall, 30-day and 90-day mortality rates were 10% and 50%, respectively, although two out of five patients died due to the infection. No serious adverse events were reported, except for one patient who developed thrombocytopenia. CONCLUSION Cefiderocol seems to be an effective and safe rescue therapy for patients infected with difficult-to-treat pathogens, although there is a definite risk of the emergence of resistance.
Collapse
Affiliation(s)
- Ángel Marcos Fendian
- Pharmacy Service, Division of Medicines, Hospital Clinic of Barcelona, Barcelona, Spain.
| | | | - Montse Tuset
- Pharmacy Service, Division of Medicines, Hospital Clinic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Cristina Pitart
- Department of Microbiology, Hospital Clinic, University of Barcelona, ISGLOBAL, Barcelona, Spain
| | - Pedro Castro
- Medical Intensive Care Unit, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Dolors Soy
- Pharmacy Service, Division of Medicines, Hospital Clinic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Marta Bodro
- Department of Infectious Diseases, Hospital Clinic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ana Del Río
- Department of Infectious Diseases, Hospital Clinic of Barcelona, Barcelona, Spain
| | - José Antonio Martínez
- Department of Infectious Diseases, Hospital Clinic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
38
|
Bovo F, Lazzarotto T, Ambretti S, Gaibani P. Comparison of Broth Microdilution, Disk Diffusion and Strip Test Methods for Cefiderocol Antimicrobial Susceptibility Testing on KPC-Producing Klebsiella pneumoniae. Antibiotics (Basel) 2023; 12:antibiotics12030614. [PMID: 36978482 PMCID: PMC10045316 DOI: 10.3390/antibiotics12030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this study was to compare the reference broth microdilution (BMD) method with the Disk Diffusion (DD) test and strip test against a collection of 75 well-characterized Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPC-Kp) clinical strains to assess cefiderocol (CFD) antimicrobial activity. Whole-genome sequencing was performed on KPC-Kp strains by Illumina iSeq100 platform. The Categorical Agreement (CA) between the BMD method and DD test was 92% (69/75) with a Major Error (ME) of 16.7% (6/36). Additionally, the CA between the BMD method and test strip was 90.7% (68/75) with a Very Major Error (VME) of 17.9% (7/39) and 82.7% (62/75) between the strip test and DD with a ME of 30.2%. KPC-Kp strains showing resistance to CFD were 27 out of 75 (36%) by three methods. Specifically, 51.9% (14/27) of KPC-Kp resistant to CFD harbored blaKPC-3, while 48.1% (13/27) harbored mutated blaKPC-3. Moreover, KPC-Kp strains carrying a mutated blaKPC-3 gene exhibited high MIC values (p value < 0.001) compared to wild-type blaKPC-3. In conclusion, the DD test resulted as a valid alternative to the BMD method to determine the in vitro susceptibility to CFD, while the strip test exhibited major limitations.
Collapse
Affiliation(s)
- Federica Bovo
- Microbiology Operative Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Operative Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Simone Ambretti
- Microbiology Operative Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Paolo Gaibani
- Microbiology Operative Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
39
|
Peykov S, Strateva T. Whole-Genome Sequencing-Based Resistome Analysis of Nosocomial Multidrug-Resistant Non-Fermenting Gram-Negative Pathogens from the Balkans. Microorganisms 2023; 11:microorganisms11030651. [PMID: 36985224 PMCID: PMC10051916 DOI: 10.3390/microorganisms11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Non-fermenting Gram-negative bacilli (NFGNB), such as Pseudomonas aeruginosa and Acinetobacter baumannii, are among the major opportunistic pathogens involved in the global antibiotic resistance epidemic. They are designated as urgent/serious threats by the Centers for Disease Control and Prevention and are part of the World Health Organization’s list of critical priority pathogens. Also, Stenotrophomonas maltophilia is increasingly recognized as an emerging cause for healthcare-associated infections in intensive care units, life-threatening diseases in immunocompromised patients, and severe pulmonary infections in cystic fibrosis and COVID-19 individuals. The last annual report of the ECDC showed drastic differences in the proportions of NFGNB with resistance towards key antibiotics in different European Union/European Economic Area countries. The data for the Balkans are of particular concern, indicating more than 80% and 30% of invasive Acinetobacter spp. and P. aeruginosa isolates, respectively, to be carbapenem-resistant. Moreover, multidrug-resistant and extensively drug-resistant S. maltophilia from the region have been recently reported. The current situation in the Balkans includes a migrant crisis and reshaping of the Schengen Area border. This results in collision of diverse human populations subjected to different protocols for antimicrobial stewardship and infection control. The present review article summarizes the findings of whole-genome sequencing-based resistome analyses of nosocomial multidrug-resistant NFGNBs in the Balkan countries.
Collapse
Affiliation(s)
- Slavil Peykov
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111, Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| | - Tanya Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| |
Collapse
|
40
|
Fast and Sensitive Analysis of Cefiderocol in Human Plasma Microsamples by Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry for Therapeutic Drug Monitoring. Antibiotics (Basel) 2023; 12:antibiotics12020213. [PMID: 36830124 PMCID: PMC9952754 DOI: 10.3390/antibiotics12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Cefiderocol (C) is a parenteral siderophore cephalosporin with relevant inter-individual pharmacokinetic variability among critically ill patients, which may potentially affect effective drug exposure. Therapeutic drug monitoring (TDM) may concur in improving the real-time management of C therapy in clinics. In this study, we developed and validated a fast and sensitive Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry (LC-ITD-MS/MS) method for measuring C in human plasma microsamples, as small as 3 microliters. Analysis was preceded by a user-friendly pre-analytical single-step and was performed by means of a very fast chromatographic run of 4 min, followed by positive electrospray ionization and detection on a high sensitivity triple quadrupole tandem mass spectrometer operated in multiple reaction monitoring mode. The straightforward analytical procedure was successfully validated, based on the European Medicines Agency (EMA) guidelines, in terms of specificity, sensitivity, linearity, precision, accuracy, matrix effect, extraction recovery, limit of quantification, and stability. The novel method was successfully applied to TDM of C in more than 50 cases of critically carbapenem-resistant Gram-negative bacterial infections and enabled us to optimize antibiotic therapy.
Collapse
|
41
|
Almeida MC, da Costa PM, Sousa E, Resende DISP. Emerging Target-Directed Approaches for the Treatment and Diagnosis of Microbial Infections. J Med Chem 2023; 66:32-70. [PMID: 36586133 DOI: 10.1021/acs.jmedchem.2c01212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the rising levels of drug resistance, developing efficient antimicrobial therapies has become a priority. A promising strategy is the conjugation of antibiotics with relevant moieties that can potentiate their activity by target-directing. The conjugation of siderophores with antibiotics allows them to act as Trojan horses by hijacking the microorganisms' highly developed iron transport systems and using them to carry the antibiotic into the cell. Through the analysis of relevant examples of the past decade, this Perspective aims to reveal the potential of siderophore-antibiotic Trojan horses for the treatment of infections and the role of siderophores in diagnostic techniques. Other conjugated molecules will be the subject of discussion, namely those involving vitamin B12, carbohydrates, and amino acids, as well as conjugated compounds targeting protein degradation and β-lactamase activated prodrugs.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Paulo M da Costa
- CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
42
|
Retamar-Gentil P, Cantón R, de Medrano VAL, Barberán J, Blasco AC, Gutiérrez CD, García-Vidal C, Escartín NL, Lora-Tamayo J, Marcos FJM, Ruíz CM, Liaño JP, Rascado P, Peláez ÓS, Girao GY, Horcajada JP. Antimicrobial resistance in Gram-negative bacilli in Spain: an experts' view. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2023; 36:65-81. [PMID: 36510684 PMCID: PMC9910669 DOI: 10.37201/req/119.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Antibiotic resistance in Gram-negative bacilli poses a serious problem for public health. In hospitals, in addition to high mortality rates, the emergence and spread of resistance to practically all antibiotics restricts therapeutic options against serious and frequent infections. OBJECTIVE The aim of this work is to present the views of a group of experts on the following aspects regarding resistance to antimicrobial agents in Gram-negative bacilli: 1) the current epidemiology in Spain, 2) how it is related to local clinical practice and 3) new therapies in this area, based on currently available evidence. METHODS After reviewing the most noteworthy evidence, the most relevant data on these three aspects were presented at a national meeting to 99 experts in infectious diseases, clinical microbiology, internal medicine, intensive care medicine, anaesthesiology and hospital pharmacy. RESULTS AND CONCLUSIONS Subsequent local debates among these experts led to conclusions in this matter, including the opinion that the approval of new antibiotics makes it necessary to train the specialists involved in order to optimise how they use them and improve health outcomes; microbiology laboratories in hospitals must be available throughout a continuous timetable; all antibiotics must be available when needed and it is necessary to learn to use them correctly; and the Antimicrobial Stewardship Programs (ASP) play a key role in quickly allocating the new antibiotics within the guidelines and ensure appropriate use of them.
Collapse
Affiliation(s)
- Pilar Retamar-Gentil
- UGC Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla. Departamento de Medicina, Universidad de Sevilla/ IBiS /CSIC. Sevilla. Spain.,CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Madrid. Spain
| | - Rafael Cantón
- CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Madrid. Spain.,Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid. Spain.,Correspondence: Rafael Cantón. Servicio de Microbiología. Hospital Universitario Ramón y Cajal-IRYCIS. Madrid. Phone: (+34) 91336883030; (+34) 913368832. E-mail:
| | | | - José Barberán
- Servicio de Medicina Interna-Enfermedades Infecciosas, Hospital Universitario HM Montepríncipe. Universidad San Pablo CEU. Madrid. Spain
| | - Andrés Canut Blasco
- Servicio de Microbiología, Hospital Universitario de Álava. Vitoria-Gasteiz. Spain
| | - Carlos Dueñas Gutiérrez
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Hospital Clínico Universitario. Valladolid. Spain
| | - Carolina García-Vidal
- Servicio de Enfermedades Infecciosas, Hospital Clínico Universitario de Barcelona. Barcelona. Spain
| | - Nieves Larrosa Escartín
- CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Madrid. Spain.,Servicio de Microbiología, Hospital Universitario Vall d’Hebron de Barcelona and Vall d’Hebron Institut de Recerca (VHIR). Barcelona. Spain
| | - Jaime Lora-Tamayo
- CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Madrid. Spain.,Servicio de Medicina Interna. Hospital Universitario 12 de Octubre. Instituto de Investigación Biomédica “imas12” Hospital 12 de Octubre. Madrid. Spain
| | | | - Carlos Martín Ruíz
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Complejo Hospitalario Universitario de Cáceres. Cáceres. Spain
| | - Juan Pasquau Liaño
- Servicio de Enfermedades Infecciosas, Hospital Universitario Virgen de las Nieves. Granada. Spain
| | - Pedro Rascado
- Servicio de Medicina Intensiva, Complejo Hospitalario Universitario de Santiago Compostela. Santiago de Compostela. Spain
| | - Óscar Sanz Peláez
- Unidad de Enfermedades Infecciosas, Hospital Universitario Dr. Negrín. Las Palmas de Gran Canaria. Spain
| | - Genoveva Yagüe Girao
- Servicio de Microbiología, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigaciones Biomédicas (IMIB). Universidad de Murcia. Murcia. Spain
| | - Juan P. Horcajada
- CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Madrid. Spain.,Servicio de Enfermedades Infecciosas. Hospital del Mar. Instituto Hospital del Mar de Investigaciones Médicas (IMIM). Universitat Pompeu Fabra (UPF). Barcelona. Spain
| |
Collapse
|
43
|
Aksoyalp ZŞ, Temel A, Erdogan BR. Iron in infectious diseases friend or foe?: The role of gut microbiota. J Trace Elem Med Biol 2023; 75:127093. [PMID: 36240616 DOI: 10.1016/j.jtemb.2022.127093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 12/07/2022]
Abstract
Iron is a trace element involved in metabolic functions for all organisms, from microorganisms to mammalians. Iron deficiency is a prevalent health problem that affects billions of people worldwide, and iron overload could have some hazardous effect. The complex microbial community in the human body, also called microbiota, influences the host immune defence against infections. An imbalance in gut microbiota, dysbiosis, changes the host's susceptibility to infections by regulating the immune system. In recent years, the number of studies on the relationship between infectious diseases and microbiota has increased. Gut microbiota is affected by different parameters, including mode of delivery, hygiene habits, diet, drugs, and plasma iron levels during the lifetime. Gut microbiota may influence iron levels in the body, and iron overload and deficiency can also affect gut microbiota composition. Novel researches on microbiota shed light on the fact that the bidirectional interactions between gut microbiota and iron play a role in the pathogenesis of many diseases, especially infections. A better understanding of these interactions may help us to comprehend the pathogenesis of many infectious and metabolic diseases affecting people worldwide and following the development of more effective preventive and/or therapeutic strategies. In this review, we aimed to present the iron-mediated host-gut microbiota interactions, susceptibility to bacterial infections, and iron-targeted therapy approaches for infections.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey.
| | - Aybala Temel
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Izmir, Turkey.
| | - Betul Rabia Erdogan
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey.
| |
Collapse
|
44
|
Upadhayay A, Ling J, Pal D, Xie Y, Ping FF, Kumar A. Resistance-proof antimicrobial drug discovery to combat global antimicrobial resistance threat. Drug Resist Updat 2023; 66:100890. [PMID: 36455341 DOI: 10.1016/j.drup.2022.100890] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Drug resistance is well-defined as a serious problem in our living world. To survive, microbes develop defense strategies against antimicrobial drugs. Drugs exhibit less or no effective results against microbes after the emergence of resistance because they are unable to cross the microbial membrane, in order to alter enzymatic systems, and/or upregulate efflux pumps, etc. Drug resistance issues can be addressed effectively if a "Resistance-Proof" or "Resistance-Resistant" antimicrobial agent is developed. This article discusses first the need for resistance-proof drugs, the imminent properties of resistance-proof drugs, current and future research progress in the discovery of resistance-proof antimicrobials, the inherent challenges, and opportunities. A molecule having imminent resistance-proof properties could target microbes efficiently, increase potency, and rule out the possibility of early resistance. This review triggers the scientific community to think about how an upsurge in drug resistance can be averted and emphasizes the discussion on the development of next-generation antimicrobials that will provide a novel effective solution to combat the global problem of drug resistance. Hence, resistance-proof drug development is not just a requirement but rather a compulsion in the drug discovery field so that resistance can be battled effectively. We discuss several properties of resistance-proof drugs which could initiate new ways of thinking about next-generation antimicrobials to resolve the drug resistance problem. This article sheds light on the issues of drug resistance and discusses solutions in terms of the resistance-proof properties of a molecule. In summary, the article is a foundation to break new ground in the development of resistance-proof therapeutics in the field of infection biology.
Collapse
Affiliation(s)
- Aditya Upadhayay
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Jingjing Ling
- Department of Good Clinical Practice, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, China
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology, Raipur 492010, CG, India
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, New York, NY 11439, USA
| | - Feng-Feng Ping
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
45
|
Zhang W, Yan CY, Li SR, Fan TT, Cao SS, Cui B, Li MY, Fan BY, Ji B, Wang L, Cui F, Cui J, Wang L, Guan Y, Wang JW. Efficacy and safety of piperacillin-tazobactam compared with meropenem in treating complicated urinary tract infections including acute pyelonephritis due to extended-spectrum β-lactamase-producing Enterobacteriaceae. Front Cell Infect Microbiol 2023; 13:1093842. [PMID: 37207190 PMCID: PMC10188998 DOI: 10.3389/fcimb.2023.1093842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/14/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae pose a huge threat to human health, especially in the context of complicated urinary tract infections (cUTIs). Carbapenems and piperacillin-tazobactam (PTZ) are two antimicrobial agents commonly used to treat cUTIs. Methods A monocentric retrospective cohort study focused on the treatment of cUTIs in adults was conducted from January 2019 to November 2021. Patients with a positive urine culture strain yielding ≥ 103 colony-forming units per milliliter (CFU/mL), and sensitive to PTZ and carbapenems, were included. The primary endpoint was clinical success after antibiotic therapy. The secondary endpoint included rehospitalization and 90-day recurrence of cUTIs caused by ESBL-producing Enterobacteriaceae. Results Of the 195 patients included in this study, 110 were treated with PTZ while 85 were administered meropenem. The rate of clinical cure was similar between the PTZ and meropenem groups (80% vs. 78.8%, p = 0.84). However, the PTZ group had a lower duration of total antibiotic use (6 vs. 9; p < 0.01), lower duration of effective antibiotic therapy (6 vs. 8; p < 0.01), and lower duration of hospitalization (16 vs. 22; p < 0.01). Discussion In terms of adverse events, the safety of PTZ was higher than that of meropenem in the treatment of cUTIs.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Chun-Yu Yan
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shu-Rui Li
- Department of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ting-Ting Fan
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Shan-Shan Cao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Bin Cui
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meng-Ying Li
- Department of Endocrinology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Bo-Yuan Fan
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bo Ji
- Department of Pharmacy, Yan’an University Affiliated Hospital, Yan’an, China
| | - Li Wang
- Department of Pharmacy, Yan’an University Affiliated Hospital, Yan’an, China
| | - Fei Cui
- Department of Pharmacy, Luoyang First People’s Hospital, Luoyang, China
| | - Jia Cui
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Lei Wang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Yue Guan, ; Jing-Wen Wang,
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Yue Guan, ; Jing-Wen Wang,
| |
Collapse
|
46
|
Marino A, Stracquadanio S, Campanella E, Munafò A, Gussio M, Ceccarelli M, Bernardini R, Nunnari G, Cacopardo B. Intravenous Fosfomycin: A Potential Good Partner for Cefiderocol. Clinical Experience and Considerations. Antibiotics (Basel) 2022; 12:antibiotics12010049. [PMID: 36671250 PMCID: PMC9854867 DOI: 10.3390/antibiotics12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Multidrug resistant Gram-negative bacteremia represents a therapeutic challenge clinicians have to deal with. This concern becomes more difficult when causing germs are represented by carbapenem resistant Acinetobacter baumannii or difficult-to-treat Pseudomonas aeruginosa. Few antibiotics are available against these cumbersome bacteria, although literature data are not conclusive, especially for Acinetobacter. Cefiderocol could represent a valid antibiotic choice, being a molecule with an innovative mechanism of action capable of overcoming common resistance pathways, whereas intravenous fosfomycin may be an appropriate partner either enhancing cefiderocol activity or avoiding resistance development. Here we report two patients with MDR Gram negative bacteremia who were successfully treated with a cefiderocol/fosfomycin combination.
Collapse
Affiliation(s)
- Andrea Marino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Edoardo Campanella
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| | - Antonio Munafò
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Maria Gussio
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| | - Manuela Ceccarelli
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| | - Renato Bernardini
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Bruno Cacopardo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
47
|
Alaoui Mdarhri H, Benmessaoud R, Yacoubi H, Seffar L, Guennouni Assimi H, Hamam M, Boussettine R, Filali-Ansari N, Lahlou FA, Diawara I, Ennaji MM, Kettani-Halabi M. Alternatives Therapeutic Approaches to Conventional Antibiotics: Advantages, Limitations and Potential Application in Medicine. Antibiotics (Basel) 2022; 11:1826. [PMID: 36551487 PMCID: PMC9774722 DOI: 10.3390/antibiotics11121826] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Resistance to antimicrobials and particularly multidrug resistance is one of the greatest challenges in the health system nowadays. The continual increase in the rates of antimicrobial resistance worldwide boosted by the ongoing COVID-19 pandemic poses a major public health threat. Different approaches have been employed to minimize the effect of resistance and control this threat, but the question still lingers as to their safety and efficiency. In this context, new anti-infectious approaches against multidrug resistance are being examined. Use of new antibiotics and their combination with new β-lactamase inhibitors, phage therapy, antimicrobial peptides, nanoparticles, and antisense antimicrobial therapeutics are considered as one such promising approach for overcoming bacterial resistance. In this review, we provide insights into these emerging alternative therapies that are currently being evaluated and which may be developed in the future to break the progression of antimicrobial resistance. We focus on their advantages and limitations and potential application in medicine. We further highlight the importance of the combination therapy approach, wherein two or more therapies are used in combination in order to more effectively combat infectious disease and increasing access to quality healthcare. These advances could give an alternate solution to overcome antimicrobial drug resistance. We eventually hope to provide useful information for clinicians who are seeking solutions to the problems caused by antimicrobial resistance.
Collapse
Affiliation(s)
- Hiba Alaoui Mdarhri
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rachid Benmessaoud
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Yacoubi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Lina Seffar
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Guennouni Assimi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Mouhsine Hamam
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rihabe Boussettine
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Najoie Filali-Ansari
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Fatima Azzahra Lahlou
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Idrissa Diawara
- Department of Biological Engineering, Higher Institute of Bioscience and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Mohamed Kettani-Halabi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| |
Collapse
|
48
|
Cefiderocol against Multi-Drug and Extensively Drug-Resistant Escherichia coli: An In Vitro Study in Poland. Pathogens 2022; 11:pathogens11121508. [PMID: 36558842 PMCID: PMC9785875 DOI: 10.3390/pathogens11121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cefiderocol (CFDC) is a novel, broad-spectrum siderophore cephalosporin with potential activity against multi-drug (MDR) and extensively drug-resistant (XDR) Enterobacterales, including carbapenem-resistant strains. We assessed the in vitro susceptibility to CFDC of MDR, and XDR E. coli isolates derived from clinical samples of hospitalized patients. Disk diffusion (DD) and MIC (minimum inhibitory concentration) test strip (MTS) methods were used. The results were interpreted based on EUCAST (version 12.0 2022) recommendations. Among all E. coli isolates, 98 (94.2%) and 99 (95.2%) were susceptible to CFDC when the DD and MTS methods were used, respectively (MIC range: <0.016−4 µg/mL, MIC50: 0.19 µg/mL, MIC90: 0.75 µg/mL). With the DD and MTS methods, all (MIC range: 0.016−2 µg/mL, MIC50: 0.19 µg/mL, MIC90: 0.75 µg/mL) but three (96.6%) ESBL-positive isolates were susceptible to CFDC. Out of all the metallo-beta-lactamase-positive E. coli isolates (MIC range: 0.016−4 µg/mL, MIC50: 0.5 µg/mL, MIC90: 1.5 µg/mL), 16.7% were resistant to CFDC with the DD method, while 11.1% were resistant to CFDC when the MTS method was used. CFDC is a novel therapeutic option against MDR and XDR E. coli isolates and is promising in the treatment of carbapenem-resistant E. coli strains, also for those carrying Verona integron-encoded metallo-beta-lactamases, when new beta-lactam-beta-lactamase inhibitors cannot be used.
Collapse
|
49
|
Larcher R, Laffont-Lozes P, Roger C, Doncesco R, Groul-Viaud C, Martin A, Loubet P, Lavigne JP, Pantel A, Sotto A. Last resort beta-lactam antibiotics for treatment of New-Delhi Metallo-Beta-Lactamase producing Enterobacterales and other Difficult-to-Treat Resistance in Gram-negative bacteria: A real-life study. Front Cell Infect Microbiol 2022; 12:1048633. [PMID: 36544909 PMCID: PMC9762507 DOI: 10.3389/fcimb.2022.1048633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Novel last resort beta-lactam antibiotics are now available for management of infections due to New-Delhi Metallo-Beta-Lactamase (NDM) producing Enterobacterales and non-fermenters with Difficult-to-Treat Resistance. However, data regarding the use of imipenem-cilastatin-relebactam (IMI-REL), cefiderocol (CFD) and ceftazidime-avibactam plus aztreonam (CAZ-AVI-ATM) are scarce in real-life settings. This study aimed to describe the use of last resort beta-lactam antibiotics, the microbiology and the outcome, in patients hospitalized in a tertiary hospital. Methods We conducted a monocentric observational cohort study from 2020/01/01, to 2022/08/31. We screened all patients admitted to Nimes University Hospital who have received ≥ 1 dose of last resort beta-lactam antibiotics during the study period, using the Pharmacy database. We included patients treated with IMI-REL, CFD and CAZ-AVI-ATM. The primary endpoint was the infection-free survival rate. We also calculated rates of microbiological and clinical cure, recurrent infection, death and adverse events. Results Twenty-seven patients were included in the study and 30 treatment courses were analyzed: CFD (N=24; 80%), CAZ-AVI-ATM (N=3; 10%) and IMI-REL (N=3; 10%). Antibiotics were used in 21 males (70%) and 9 females (30%) with a median age at 65-year-old [50-73.5] and a median Charlson index at 1 [0-2]. Almost all the patients had ≥ 1 risk factor for carbapenem resistant bacteria, a half of them was hospitalized for severe COVID-19, and most of antibiotic courses (N=26; 87%) were associated with ICU admission. In the study population, the probability of infection-free survival at day-90 after last resort beta-lactam therapy initiation was 48.4% CI95% [33.2-70.5]. Clinical failure rate was at 30%, microbiological failure rate at 33% and mortality rate at 23%. Adverse events were documented in 5 antibiotic courses (17%). In details, P. aeruginosa were mainly treated with CFD and IMI-REL, S. maltophilia with CFD and CAZ-AVI-ATM, A. baumannii with CFD, and NDM producing-K. pneumoniae with CAZ-AVI-ATM and CFD. After a treatment course with CFD, CAZ-AVI-ATM and IMI-REL, the probability of infection-free survival was 48% CI95% [10.4-73.5], 33.3% CI95% [6.7-100], 66.7% CI95% [30-100], respectively. Discussion/conclusion Use of last resort beta-lactam antimicrobials in real-life settings was a safe and efficient therapeutic option for severe infections related to Gram-negative bacteria with Difficult-to-Treat Resistance.
Collapse
Affiliation(s)
- Romaric Larcher
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France,PhyMedExp (Physiology and Experimental Medicine), INSERM (French Institute of Health and Medical Research), CNRS (French National Centre for Scientific Research), University of Montpellier, Montpellier, France,*Correspondence: Romaric Larcher,
| | | | - Claire Roger
- Anesthesiology and Critical Care Medicine, Nimes University Hospital, Nimes, France
| | - Regine Doncesco
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France
| | - Celine Groul-Viaud
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, Nimes, France
| | - Aurelie Martin
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France
| | - Paul Loubet
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| | - Albert Sotto
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| |
Collapse
|
50
|
Rodríguez A, Moreno G, Bodi M, Martín-Loeches I. Antibiotics in development for multiresistant gram-negative bacilli. Med Intensiva 2022; 46:630-640. [PMID: 36302707 DOI: 10.1016/j.medine.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
The rapid increase in antibiotic(ATB) resistance among Gram-negative bacilli(BGN), especially in strains of Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii, with high resistance patterns (XDR), poses a huge threat to health systems worldwide. In the last decade, different ATBs have been developed against XDR, some of which combine a lactam β along with a β-lactamase inhibitor, while others use non-β-lactam inhibitors. Most of them have adequate "in vitro" activity on several β-lactamases of class A, C and D of Ambler. However, combinations such as Ceftazidime/avibactam, Ceftolozane/Tazobactam and Meropenem/vaborbactam have no activity against metallo-β-lactamases(MβL). New combinations such as Aztreonan/AVI, Cefepime/Zidebactam, or new cephalosporins such as Cefiderocol, have efficacy against MβL enzymes. Although some of these combinations are already approved and in the commercialization phase, many of them have yet to define their place within the treatment of microorganisms with high resistance through clinical studies.
Collapse
Affiliation(s)
- A Rodríguez
- Servicio de Medicina Intensiva, Hospital Universitario Joan XXIII, Tarragona, Spain; IISPV/CIBERES, Tarragona, Spain.
| | - G Moreno
- Servicio de Medicina Intensiva, Hospital Universitario Joan XXIII, Tarragona, Spain
| | - M Bodi
- Servicio de Medicina Intensiva, Hospital Universitario Joan XXIII, Tarragona, Spain; IISPV/CIBERES, Tarragona, Spain
| | - I Martín-Loeches
- Trinity College Dublin, School of Medicine, Intensive Care Medicine St James's Hospital, Dublín, Ireland
| |
Collapse
|