1
|
Hafez HM, Abed El Baky MF, Mokhemer SA, Hassan SM, Mohamed MZ. Vinpocetine Alleviates Valproic Acid-Induced Hepatotoxicity and Neurotoxicity Through Activation of cAMP and PI3K/AKT/CREB Pathway in Rats. J Biochem Mol Toxicol 2025; 39:e70316. [PMID: 40421768 DOI: 10.1002/jbt.70316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 04/17/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025]
Abstract
Valproic acid (VPA) is a frequently prescribed treatment for many psychiatric disorders, particularly for epilepsy. However, it has been associated with possible side effects including hepatotoxicity and neurotoxicity. The present study investigated the protective effect of vinpocetine (Vinpo) against VPA-induced hepatotoxicity and hippocampal neurotoxicity in rats. Vinpo (5 and 10 mg/kg/day; p.o) was given for 14 days, with/without VPA (500 mg/kg/day; p.o) in adult male Wistar rats. VPA showed marked increase in hepatic and hippocampal MDA levels with increased liver function enzymes as well as a marked decline in serum total antioxidant capacity (TAC). Simultaneously, VPA administration resulted in a significant reduction in cAMP, cAMP response element binding protein (CREB), and PI3K/AKT protein levels in liver tissue and hippocampus. These results were confirmed by histological degenerative changes in both tissues. VPA also associated with increased hepatic and dentate gyrus nuclear factor kappa (NF-κB) immunoexpression with increased Glial fibrillary acidic protein (GFAP) expression in the dentate gyrus. Administration of Vinpo markedly attenuated VPA-induced toxicity in rats by its anti-oxidant effect on MDA and TAC levels. Vinpo resulted in a significant increase in the levels of cAMP/CREB and PI3K/AKT in liver and hippocampus tissues, together with significant decrease in NF-κB nuclear expression. Vinpo ameliorated astrogliosis as indicated by reduction in the expression of GFAP. Vinpo exerted a hepatoprotective and neuroprotective role against VPA-induced toxicity by cAMP and PI3K/AKT dependent activation of CREB and this hold a promise as a safe and effective adjuvant while treating psychiatric patients with VPA.
Collapse
Affiliation(s)
- Heba M Hafez
- Department of Pharmacology, Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Mohamed F Abed El Baky
- Department of Biochemistr, Department of Biochemistry, Avalon University School of Medicine, Piscaderaweg, Curacao
| | - Sahar A Mokhemer
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Salma M Hassan
- Department of Anatomy, Faculty of Medicine, Minia University, Minia, Egypt
| | - Mervat Z Mohamed
- Department of Pharmacology, Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
2
|
Ezhilarasan D, Karthikeyan S, Najimi M, Vijayalakshmi P, Bhavani G, Jansi Rani M. Preclinical liver toxicity models: Advantages, limitations and recommendations. Toxicology 2025; 511:154020. [PMID: 39637935 DOI: 10.1016/j.tox.2024.154020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Experimental animal models are crucial for elucidating the pathophysiology of liver injuries and for assessing new hepatoprotective agents. Drugs and chemicals such as acetaminophen, isoniazid, valproic acid, ethanol, carbon tetrachloride (CCl4), dimethylnitrosamine (DMN), and thioacetamide (TAA) are metabolized by the CYP2E1 enzyme, producing hepatotoxic metabolites that lead to both acute and chronic liver injuries. In experimental settings, acetaminophen (centrilobular necrosis), carbamazepine (centrilobular necrosis and inflammation), sodium valproate (necrosis, hydropic degeneration and mild inflammation), methotrexate (sinusoidal congestion and inflammation), and TAA (centrilobular necrosis and inflammation) are commonly used to induce various types of acute liver injuries. Repeated and intermittent low-dose administration of CCl4, TAA, and DMN activates quiescent hepatic stellate cells, transdifferentiating them into myofibroblasts, which results in abnormal extracellular matrix production and fibrosis induction, more rapidly with DMN and CCL4 than TAA (DMN > CCl4 > TAA). Regarding toxicity and mortality, CCl4 is more toxic than DMN and TAA (CCl4 > DMN > TAA). Models used to induce metabolic dysfunction-associated liver disease (MAFLD) vary, but MAFLD's multifactorial nature driven by factors like obesity, fatty liver, dyslipidaemia, type II diabetes, hypertension, and cardiovascular disease makes it challenging to replicate human metabolic dysfunction-associated steatohepatitis accurately. From an experimental point of view, the degree and pattern of liver injury are influenced by various factors, including the type of hepatotoxic agent, exposure duration, route of exposure, dosage, frequency of administration, and the animal model utilized. Therefore, there is a pressing need for standardized protocols and regulatory guidelines to streamline the selection of animal models in preclinical studies.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sivanesan Karthikeyan
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Paramasivan Vijayalakshmi
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Asan Memorial Dental College and Hospital, Chengalpattu, Tamil Nadu, India
| | - Ganapathy Bhavani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Muthukrishnan Jansi Rani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
3
|
Watson A, Shah P, Lee D, Liang S, Joshi G, Metitiri E, Chowdhury WH, Bacich D, Dube P, Xiang Y, Hanley D, Martinez-Sobrido L, Rodriguez R. Valproic acid use is associated with diminished risk of contracting COVID-19, and diminished disease severity: Epidemiologic and in vitro analysis reveal mechanistic insights. PLoS One 2024; 19:e0307154. [PMID: 39093886 PMCID: PMC11296636 DOI: 10.1371/journal.pone.0307154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
The SARS-CoV-2 pandemic has caused unprecedented worldwide infections from persistent mutant variants with various degrees of infectivity and virulence. The elusiveness of a highly penetrant, worldwide vaccination strategy suggests that the complete eradication of SARS-CoV-2 is unlikely. Even with the advent of new antiviral agents, the disease burden worldwide continues to exceed current preventative and therapeutic strategies. Greater interest has been placed towards the development of affordable,broadly effective antiviral therapeutics. Here, we report that the small branched-chain fatty acid Valproic acid (VPA), approved for maintenance of seizure and bipolar disorder, has a novel anti- coronavirus activity that can be augmented with the addition of a long-chain, polyunsaturated omega-3 fatty acid, Docosahexaenoic acid (DHA). An EMR-based epidemiological study of patients tested for COVID-19 demonstrated a correlation exists between a reduced infection rate in patients treated withVPA of up to 25%, as well as a decreased risk of emergency room visits, hospitalization, ICU admission,and use of mechanical ventilation. In vitro studies have demonstrated that VPA modifies gene expression in MRC5 cells. Interestingly, VPA correlates with the inhibition of several SARS-CoV2 interacting genes and the greater inhibition of alpha-coronavirus HCoV-229E (a "common cold" virus) and SARS-CoV2. The VPA-DHA combination activates pre-existing intracellular antiviral mechanisms normally repressed by coronaviruses. Gene expression profiles demonstrate subtle differences in overall gene expression between VPA-treated and VPA-DHA-treated cells. HCoV-229E infection caused an intensely different response with a marked induction of multiple intracellular inflammatory genes. Changes in gene expression took at least 24 hours to manifest and most likely why prior drug screens failed to identify any antiviral VPA activity despite in silico predictions. This report demonstrates an interaction between HDAC inhibition and the potent activation of cellular antiviral responses. A foundation now exists for a low-cost, highly effective antiviral strategy when supplemented with DHA.
Collapse
Affiliation(s)
- Amanda Watson
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Pankil Shah
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Doug Lee
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Sitai Liang
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Geeta Joshi
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Ediri Metitiri
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Wasim H. Chowdhury
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Dean Bacich
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Peter Dube
- Boehringer Ingelheim in Ames, Ames, Iowa, United States of America
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio San Antonio, Texas, United States of America
| | - Daniel Hanley
- Department of Neurology & Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | | | - Ronald Rodriguez
- Department of Medical Education, and Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
4
|
Emad D, Bayoumi AMA, Gebril SM, Ali DME, Waz S. Modulation of keap-1/Nrf2/HO-1 and NF-ĸb/caspase-3 signaling pathways by dihydromyricetin ameliorates sodium valproate-induced liver injury. Arch Biochem Biophys 2024; 758:110084. [PMID: 38971420 DOI: 10.1016/j.abb.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Nuclear factor erythroid factor 2 (Nrf2) is the key regulatory of the antioxidant response elements. Also, Nrf2 interacts with nuclear factor kappa B (NF-ĸB) to inhibit subsequent inflammatory cascade. Activation of Nrf2 signaling ameliorates drug-induced liver injury. Sodium valproate (SVP) is an anti-epilepsy drug with a hepatotoxic adverse effect that restricts its clinical use. In this study, coadministration of Dihydromyricetin (DHM), a natural flavonoid, with SVP to rats upregulated gene expression of Nrf2 and its downstream gene, heme oxygenase 1 (HO-1), while suppressed the Nrf2 repressor, Keap-1. Additionally, DHM led to downregulation of proinflammatory factors in liver tissues, including NF-ĸB, interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α). This was accompanied by a decrease in the proapoptotic protein (cleaved caspase-3) expression level. Furthermore, biochemical and histopathological studies showed that DHM treatment improved liver function and lipid profile while decreased inflammatory cell infiltration, congestion, and hepatocellular damage. According to our knowledge, prior research has not examined the protective effect of DHM on the liver injury induced by SVP. Consequently, this study provides DHM as a promising herbal medication that, when used with SVP, can prevent its induced hepatotoxicity owing to its potential anti-oxidative, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Doaa Emad
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt.
| | - Sahar M Gebril
- Department of Histology and Cell biology, Faculty of Medicine, Sohag University, Sohag, Egypt.
| | | | - Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt.
| |
Collapse
|
5
|
Atef MM, Abou Hashish NA, Hafez YM, Selim AF, Ibrahim HA, Eltabaa EF, Rizk FH, Shalaby AM, Ezzat N, Alabiad MA, Elshamy AM. The potential protective effect of liraglutide on valproic acid induced liver injury in rats: Targeting HMGB1/RAGE axis and RIPK3/MLKL mediated necroptosis. Cell Biochem Funct 2023; 41:1209-1219. [PMID: 37771193 DOI: 10.1002/cbf.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023]
Abstract
Valproic acid (VPA) is a commonly used drug for management of epilepsy. Prolonged VPA administration increases the risk of hepatotoxicity. Liraglutide is a glucagon-like peptide 1 receptor (GLP-1R) agonist that act as a novel antidiabetic drug with broad-spectrum anti-inflammatory and antioxidant effects. This study tested the protective effect of liraglutide against VPA-induced hepatotoxicity elucidating the possible underlying molecular mechanisms. Forty adult male rats were allocated in to four equally sized groups; Group I (control group) received oral distilled water and subcutaneous normal saline for 2 weeks followed by subcutaneous normal saline only for 2 weeks. Group II (liraglutide group) received subcutaneous liraglutide dissolved in normal saline daily for 4 weeks. Group III (valproic acid-treated group) received sodium valproate dissolved in distilled water for 2 weeks. Group IV (Combined valproic acid & liraglutide treated group) received valproic acid plus liraglutide daily for 2 weeks which was continued for additional 2 weeks after valproic acid administration. The hepatic index was calculated. Serum AST, ALT, GGT, and ALP activities were estimated. Hepatic tissue homogenate MDA, GSH, SOD, HMGB1, MAPK, RIPK1, and RIPK3 levels were evaluated using ELISA. However, hepatic RAGE and MLKL messenger RNA expression levels using the QRT-PCR technique. Hepatic NF-κB and TNF-α were detected immunohistochemically. Results proved that liraglutide coadministration significantly decreased liver enzymes, MDA, HMGB1, MAPK, RIPK1 RIPK3, RAGE, and MLKL with concomitant increased GSH and SOD in comparison to the correspondent values in VPA-hepatotoxicity group. Conclusions: Liraglutide's protective effects against VPA-induced hepatotoxicity are triggered by ameliorating oxidative stress, inflammation, and necroptosis.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Yasser Mostafa Hafez
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed Fawzy Selim
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Fawzy Eltabaa
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fatma H Rizk
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Nadia Ezzat
- Department of Toxicology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Tanta, Egypt
| | - Amira M Elshamy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Verdoodt F, Watanangura A, Bhatti SFM, Schmidt T, Suchodolski JS, Van Ham L, Meller S, Volk HA, Hesta M. The role of nutrition in canine idiopathic epilepsy management: Fact or fiction? Vet J 2022; 290:105917. [PMID: 36341888 DOI: 10.1016/j.tvjl.2022.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
In the last decade, nutrition has gained interest in the management of canine idiopathic epilepsy (IE) based on growing scientific evidence. Diets can serve their functions through many pathways. One potential pathway includes the microbiota-gut-brain axis, which highlights the relationship between the brain and the intestines. Changing the brain's energy source and a number of dietary sourced anti-inflammatory and neuroprotective factors appears to be the basis for improved outcomes in IE. Selecting a diet with anti-seizure effects and avoiding risks of proconvulsant mediators as well as interference with anti-seizure drugs should all be considered in canine IE. This literature review provides information about preclinical and clinical evidence, including a systematic evaluation of the level of evidence, suggested mechanism of action and interaction with anti-seizure drugs as well as pros and cons of each potential dietary adaptation in canine IE.
Collapse
Affiliation(s)
- Fien Verdoodt
- Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Antja Watanangura
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany; Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Teresa Schmidt
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Luc Van Ham
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Myriam Hesta
- Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
7
|
Ezhilarasan D, Mani U. Valproic acid induced liver injury: An insight into molecular toxicological mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103967. [PMID: 36058508 DOI: 10.1016/j.etap.2022.103967] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Valproic acid (VPA) is an anti-seizure drug that causes idiosyncratic liver injury. 2-propyl-4-pentenoic acid (Δ4VPA), a metabolite of VPA, has been implicated in VPA-induced hepatotoxicity. This review summarizes the pathogenesis involved in VPA-induced liver injury. The VPA induce liver injury mainly by i) liberation of Δ4VPA metabolites; ii) decrease in glutathione stores and antioxidants, resulting in oxidative stress; iii) inhibition of fatty acid β-oxidation, inducing mitochondrial DNA depletion and hypermethylation; a decrease in proton leak; oxidative phosphorylation impairment and ATP synthesis decrease; iv) induction of fatty liver via inhibition of carnitine palmitoyltransferase I, enhancing nuclear receptor peroxisome proliferator-activated receptor-gamma and acyl-CoA thioesterase 1, and inducing long-chain fatty acid uptake and triglyceride synthesis. VPA administration aggravates liver injury in individuals with metabolic syndromes. Therapeutic drug monitoring, routine serum levels of transaminases, ammonia, and lipid parameters during VPA therapy may thus be beneficial in improving the safety profile or preventing the progression of DILI.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600 077, India.
| | - Uthirappan Mani
- Animal House Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
8
|
Ghusn W, Bouchard C, Frye MA, Acosta A. Weight-centric treatment of depression and chronic pain. OBESITY PILLARS 2022; 3:100025. [PMID: 37990725 PMCID: PMC10661995 DOI: 10.1016/j.obpill.2022.100025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2023]
Abstract
BACKGROUND Depression and chronic pain are two major chronic non-communicable diseases (CNCD). Considering the bidirectional relationship between obesity and CNCD, it is of the utmost importance to understand the effect of medications utilized to treat these diseases on body weight. METHODS This is a clinical review on the effect of medications for depression and chronic pain on body weight. We searched PubMed, Scopus, MEDLINE, and Google Scholar databases for studies on the topic from January 1, 1950 to April 1, 2022 in English language. Additionally, we present expert opinions in the fields of obesity, depression and chronic pain, providing a weight-centric approach to treat depression and chronic pain. RESULTS Several antidepressant and chronic pain medications are associated with weight gain. Selective serotonin reuptake inhibitors, serotonin and norepinephrine reuptake inhibitors, tricyclic antidepressants, monoamine oxidases, mirtazapine and trazodone are common antidepressants that can increase body weight while bupropion is significantly associated with weight loss. Gabapentin and pregabalin are common chronic pain medications that are linked to weight gain. On the other hand, topiramate is associated with significant weight loss. Obesity, depression and chronic pain experts recommend avoiding medications that can increase body weight if another effective alternative is available. CONCLUSION By shifting prescribing practices toward a weight-conscious approach (i.e., switching from weight gain medications to weight loss/neutral), it is possible to mitigate the incidence of drug-induced weight gain.
Collapse
Affiliation(s)
- Wissam Ghusn
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Mark A. Frye
- Department of Psychiatry, Mayo Clinic, Rochester, MN, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Gheena S, Ezhilarasan D, Shree Harini K, Rajeshkumar S. Syringic acid and silymarin concurrent administration inhibits sodium valproate-induced liver injury in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:2143-2152. [PMID: 35543257 DOI: 10.1002/tox.23557] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Sodium valproate (SV) is a well-known anti-epileptic drug, also used to control convulsions, bipolar disorders and migraines. SV has been shown to induce liver toxicity in clinical subjects. Syringic acid (SA), a natural polyphenolic compound has potential antioxidant, anti-inflammatory and several beneficial effects. Therefore, in this study, we evaluated hepatoprotective effect of SA against SV-induced liver injury in rats. Wistar rats were treated with SV orally at a dose of 500 mg/kg, once daily, for 14 days. Another three groups of rats were administered with SV and concurrently treated with SA (40 and 80 mg/kg) and silymarin (SIL) (100 mg/kg) for 14 days. SV administration for 14 days caused significant (p < .001) elevation of liver transaminases and ALP in serum. Liver MDA level was significantly (p < .001) increased with a concomitant decrease (p < .001) in enzymic antioxidants activities in SV administered rats. SV administration also caused the upregulation of proinflammatory markers such as tumor necrosis factor α, c-Jun N-terminal kinase, nuclear factor kappa B, cyclooxygenase-2 and Interleukin 6 expressions in liver tissue. Histopathological studies also revealed the presence of inflammatory cell infiltration and hepatocellular necrosis upon SV administration. At both doses, concurrent administration of SA and SIL significantly (p < .001) inhibited the liver transaminase activities in serum, oxidative stress, and proinflammatory markers expression in liver tissue. Our current results suggest that SA can be a promising herbal drug that can inhibit SV-induced hepatotoxicity when administered together due its potential anti-inflammatory effects.
Collapse
Affiliation(s)
- Sukumaran Gheena
- Department of Oral Pathology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Karthik Shree Harini
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Shanmugam Rajeshkumar
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Brotzmann K, Escher SE, Walker P, Braunbeck T. Potential of the zebrafish (Danio rerio) embryo test to discriminate between chemicals of similar molecular structure-a study with valproic acid and 14 of its analogues. Arch Toxicol 2022; 96:3033-3051. [PMID: 35920856 PMCID: PMC9525359 DOI: 10.1007/s00204-022-03340-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
Valproic acid is a frequently used antiepileptic drug and known pediatric hepatotoxic agent. In search of pharmaceuticals with increased effectiveness and reduced toxicity, analogue chemicals came into focus. So far, toxicity and teratogenicity data of drugs and metabolites have usually been collected from mammalian model systems such as mice and rats. However, in an attempt to reduce mammalian testing while maintaining the reliability of toxicity testing of new industrial chemicals and drugs, alternative test methods are being developed. To this end, the potential of the zebrafish (Danio rerio) embryo to discriminate between valproic acid and 14 analogues was investigated by exposing zebrafish embryos for 120 h post fertilization in the extended version of the fish embryo acute toxicity test (FET; OECD TG 236), and analyzing liver histology to evaluate the correlation of liver effects and the molecular structure of each compound. Although histological evaluation of zebrafish liver did not identify steatosis as the prominent adverse effect typical in human and mice, the structure–activity relationship (SAR) derived was comparable not only to human HepG2 cells, but also to available in vivo mouse and rat data. Thus, there is evidence that zebrafish embryos might serve as a tool to bridge the gap between subcellular, cell-based systems and vertebrate models.
Collapse
Affiliation(s)
- Katharina Brotzmann
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Paul Walker
- Cyprotex Discovery, No. 24 Mereside, Alderley Park, Nether Alderley, Cheshire, SK10 4TG, UK
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
The Effect of Coenzyme Q10 on Liver Injury Induced by Valproic Acid and Its Antiepileptic Activity in Rats. Biomedicines 2022; 10:biomedicines10010168. [PMID: 35052847 PMCID: PMC8773341 DOI: 10.3390/biomedicines10010168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022] Open
Abstract
Valproic acid (VPA) has toxic metabolites that can elevate oxidative stress markers, and the hepatotoxicity of VPA has been reported. Coenzyme Q10 (CoQ10) is one of the most widely used antioxidants. The effect of CoQ10 on epileptogenesis and VPA hepatotoxicity were examined. Rats were randomly divided into five groups: the control group received 0.5% methylcellulose by oral gavages daily and saline by intraperitoneal injection three times weekly. The PTZ group received 1% methylcellulose by gavages daily and 30 mg/kg PTZ by intraperitoneal injection three times weekly. The valproic acid group received 500 mg/kg valproic acid by gavage and 30 mg/kg PTZ, as above. The CoQ10 group received 200 mg/kg CoQ10 by gavages daily and 30 mg/kg PTZ, as above. The Valproic acid + CoQ10 group received valproic acid and CoQ10, as above. Results: CoQ10 exhibited anticonvulsant activity and potentiated the anticonvulsant effect of VPA. CoQ10 combined with VPA induced a more significant reduction in oxidative stress and improved the histopathological changes in the brain and liver compared to VPA treatment. In addition, CoQ10 reduced the level of toxic VPA metabolites. These findings suggest that the co-administration of CoQ10 with VPA in epilepsy might have therapeutic potential by increasing antiepileptic activity and reducing the hepatotoxicity of VPA.
Collapse
|
12
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
13
|
Escher SE, Aguayo-Orozco A, Benfenati E, Bitsch A, Braunbeck T, Brotzmann K, Bois F, van der Burg B, Castel J, Exner T, Gadaleta D, Gardner I, Goldmann D, Hatley O, Golbamaki N, Graepel R, Jennings P, Limonciel A, Long A, Maclennan R, Mombelli E, Norinder U, Jain S, Capinha LS, Taboureau OT, Tolosa L, Vrijenhoek NG, van Vugt-Lussenburg BMA, Walker P, van de Water B, Wehr M, White A, Zdrazil B, Fisher C. A read-across case study on chronic toxicity of branched carboxylic acids (1): Integration of mechanistic evidence from new approach methodologies (NAMs) to explore a common mode of action. Toxicol In Vitro 2021; 79:105269. [PMID: 34757180 DOI: 10.1016/j.tiv.2021.105269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 02/04/2023]
Abstract
This read-across case study characterises thirteen, structurally similar carboxylic acids demonstrating the application of in vitro and in silico human-based new approach methods, to determine biological similarity. Based on data from in vivo animal studies, the read-across hypothesis is that all analogues are steatotic and so should be considered hazardous. Transcriptomic analysis to determine differentially expressed genes (DEGs) in hepatocytes served as first tier testing to confirm a common mode-of-action and identify differences in the potency of the analogues. An adverse outcome pathway (AOP) network for hepatic steatosis, informed the design of an in vitro testing battery, targeting AOP relevant MIEs and KEs, and Dempster-Shafer decision theory was used to systematically quantify uncertainty and to define the minimal testing scope. The case study shows that the read-across hypothesis is the critical core to designing a robust, NAM-based testing strategy. By summarising the current mechanistic understanding, an AOP enables the selection of NAMs covering MIEs, early KEs, and late KEs. Experimental coverage of the AOP in this way is vital since MIEs and early KEs alone are not confirmatory of progression to the AO. This strategy exemplifies the workflow previously published by the EUTOXRISK project driving a paradigm shift towards NAM-based NGRA.
Collapse
Affiliation(s)
- Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Germany.
| | | | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Katharina Brotzmann
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Frederic Bois
- Certara UK Ltd, Simcyp Division, Sheffield, United Kingdom
| | | | - Jose Castel
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - Domenico Gadaleta
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Iain Gardner
- Certara UK Ltd, Simcyp Division, Sheffield, United Kingdom
| | - Daria Goldmann
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Vienna, Austria
| | - Oliver Hatley
- Certara UK Ltd, Simcyp Division, Sheffield, United Kingdom
| | | | - Rabea Graepel
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Paul Jennings
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | - Sankalp Jain
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Vienna, Austria
| | | | | | - Laia Tolosa
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Nanette G Vrijenhoek
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | | | | | - Bob van de Water
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Matthias Wehr
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Germany
| | - Andrew White
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Barbara Zdrazil
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Vienna, Austria
| | - Ciarán Fisher
- Certara UK Ltd, Simcyp Division, Sheffield, United Kingdom
| |
Collapse
|
14
|
Ata Yaseen Abdulqader Y, Abdel Kawy HS, Mohammed Alkreathy H, Abdullah Rajeh N. The potential antiepileptic activity of astaxanthin in epileptic rats treated with valproic acid. Saudi Pharm J 2021; 29:418-426. [PMID: 34135667 PMCID: PMC8180462 DOI: 10.1016/j.jsps.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 11/20/2022] Open
Abstract
Objectives Epilepsy is a neurological disease characterized by sudden, abnormal, and hyper- discharges in the central nervous system (CNS). Valproic acid (VPA) is commonly used as a broad-spectrum antiepileptic therapeutic. However, in many cases, patients develop resistance to VPA treatment due to overwhelming oxidative stress, which in turn might be a major catalyst for disease progression. Therefore, antioxidants can potentially become therapeutic agents by counteracting reactive oxygen species (ROS)-mediated damage. The present study is aimed to evaluate the potential antiepileptic effect of astaxanthin (ASTA) in pentylenetetrazol (PTZ) induced epileptic model rats that are chronically treated with VPA for 8 weeks. Method Fifty-male Wistar rats were randomly divided into five groups: Non-PTZ group, PTZ, PTZ/VPA, PTZ/ASTA, and PTZ/VPA/ASTA treated groups. Results PTZ/VPA treated group showed a neuroprotective effect with improvement in antioxidant levels, behavioral test, and histopathological changes induced by PTZ. VPA also exhibited an anti-inflammatory effect as its treatment resulted in the reduction of tumor necrosis factor-α (TNF-α). ASTA exhibited an anticonvulsant effect and enhanced anti-inflammatory effect as compared to VPA. During the combined therapy, ASTA potentiated the antiepileptic effect of the VPA by reducing the oxidative stress and TNF-α as well as increased the glutathione (GSH) levels. Also, there were substantial improvements in the behavioral and histopathological changes in the VPA/ASTA treated group as compared to the VPA treated group. Conclusion ASTA could have an antiepileptic and anti-inflammatory effect by reducing ROS generation. Therefore, co-administration of both the therapeutics (VPA/ASTA) has a synergistic effect in treating epilepsy and could potentially minimize recurrence and/or exacerbation of seizures.
Collapse
Key Words
- AED, Antiepileptic drugs
- ASTA, Astaxanthin
- Astaxanthin
- BBB, Blood brain barrier
- CNS, Central nervous system
- Epilepsy
- GFAP, Glial fibrillary acidic protein
- GSH, Reduced glutathione
- GTCS, Generalized tonic-clonic seizure
- HPLC, High performance liquid chromatography
- MDA, Malondialdehyde
- NO, Nitrous oxide
- OPA, o-Phthalaldehyde
- PC, Protein carbonyl
- PTZ, Pentylenetetrazol
- Pentylenetetrazol
- ROS
- ROS, Reactive oxygen species
- TNF-α, Tumor necrosis factor-α
- VPA, Valproic acid
- Valproic acid
Collapse
Affiliation(s)
- Yussra Ata Yaseen Abdulqader
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,King Abdullah Medical Complex, Jeddah, Saudi Arabia
| | - Hala Salah Abdel Kawy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nisreen Abdullah Rajeh
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Mohammed MA, Gharib DM, Reyad HR, Mohamed AA, Elroby FA, Mahmoud HS. Antioxidant and anti-inflammatory properties of alpha-lipoic acid protect against valproic acid-induced liver injury. Can J Physiol Pharmacol 2021; 99:499-505. [PMID: 33275538 DOI: 10.1139/cjpp-2019-0456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Valproic acid (VPA) is one of the most used antiepileptic drugs despite of its many adverse effects such as anemia, leucopenia, thrombocytopenia, and liver toxicity. The hepatoprotective effect of alpha-lipoic acid (ALA) was confirmed. The aim of this study was to detect the protective effect of ALA against the adverse effects of VPA. To study this, 30 white albino Wistar male rats were divided into four groups. Group I was the control group; Group II included rats that received ALA (100 mg·kg-1·day-1) orally for 14 days; Group III and Group IV included rats that received VPA (500 mg·kg-1·day-1) for 15 days intraperitoneally, but Group IV rats received ALA (100 mg·kg-1·day-1) orally for 14 days prior to VPA. Blood samples were collected and livers were excised from rats for colorimetric analysis and quantitative real-time PCR. The rats that received VPA showed leucopenia, thrombocytopenia, a significant decrease of superoxide dismutase, glutathione, nuclear factor erythroid 2-related factor 2, and sirtuin 1, besides a significant increase of malondialdehyde and tumor necrosis factor α. Prior treatment with ALA prevented all these results; ALA protected against VPA-induced liver damage and hematological disturbance via antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
| | | | - Hoda Ramadan Reyad
- Department of Biochemistry, Faculty of Medicine, Beni-Suef University, Egypt
| | - Alaa Aboud Mohamed
- Department of Biochemistry, Faculty of Medicine, Beni-Suef University, Egypt
| | - Fadwa A Elroby
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hoda Sayed Mahmoud
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Beni-Suef University, Egypt
| |
Collapse
|
16
|
Protective Effect of Thyme Honey against Valproic Acid Hepatotoxicity in Wistar Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8839898. [PMID: 33688502 PMCID: PMC7920727 DOI: 10.1155/2021/8839898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
Introduction Valproic acid is a medication most commonly used in the treatment of emotional and neurological depression, psychological imbalances, epilepsy, and bipolar disorder. Dark honey, like thyme honey, contains more antioxidant compounds than other samples. The purpose of this study was to evaluate the effect of thyme honey on the potential hepatic effects of valproic acid. Methods In this study, 48 male rats were randomly divided into 8 groups (n = 6): G1 (control): healthy rats (normal saline 0.9%), G2: thyme honey (1 g/kg), G3: thyme honey (2 g/kg dose), G4: thyme honey (3 g/kg dose), G5: VPA (500 mg/kg), G6: VPA (500 mg/kg) and thyme honey (1 g/kg), G7: VPA (500 mg/kg) and thyme honey (2 g/kg dose), and G8: VPA (500 mg/kg) and thyme honey (3 g/kg dose). Groups G1 to G5 received the drug for 28 days. On day 14, administration of thyme honey for G6 to G8 groups was carried out using gavage until day 28. VPA was administered one hour after honey. To carry out the biochemical evaluation, blood samples were collected from all the groups and their serums were used for MDA, TAC, and liver enzymes (AST, ALT, and GGT). Tissue samples of each rat were also removed for histological studies with hematoxylin-eosin and Masson's trichrome staining. Results The use of thyme honey significantly improved the histopathological parameters of the liver tissue, including hypertrophic degeneration and nucleus alteration, expansion of sinusoids, fibrosis and hepatic necrosis, and inflammation as well as hypertrophy of Kupffer cells. In the groups receiving VPA, the rate of lipid peroxidation increased, which indicates the destruction of the liver cell membrane due to drug consumption. TAC levels also increased following increase in thyme honey dosage (p ≤ 0.05). The results of liver enzyme analysis showed a decrease in AST and ALT levels in the G6 group and a decrease in GGT level in the G8 group (p ≤ 0.05). Conclusion Based on the results of this study, it seems that high percentage of antioxidants in thyme honey enabled it to improve hepatic complications and reduce the rate of hepatocellular destruction.
Collapse
|
17
|
Mekky G, Seeds M, Diab AEAA, Shehata AM, Ahmed-Farid OAH, Alzebdeh D, Bishop C, Atala A. The potential toxic effects of magnesium oxide nanoparticles and valproate on liver tissue. J Biochem Mol Toxicol 2020; 35:e22676. [PMID: 33315275 DOI: 10.1002/jbt.22676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/24/2020] [Accepted: 12/03/2020] [Indexed: 02/02/2023]
Abstract
The liver is the main organ responsible for drug and xenobiotic metabolism and detoxification in the body. There are many antiepileptic drugs and nanoparticles that have been reported to cause serious untoward biological responses and hepatotoxicity. The aim of this study is to investigate the potential toxic effect of aspartic acid-coated magnesium oxide nanoparticles (Mg nano) and valproate (valp) using an in vitro three-dimensional (3D) human liver organoid model and an in vivo pentylenetetrazole (PTZ)-induced convulsion model in rats. Here, 3D human liver organoids were treated with valp or valp + Mg nano for 24 h and then incubated with PTZ for an extra 24 h. As the in vivo model, rats were treated with valp, Mg nano, or valp + Mg nano for 4 weeks and then they were treated with PTZ for 24 h. Toxicity in the liver organoids was demonstrated by reduced cell viability, decreased ATP, and increased reactive oxygen species. In the rat convulsion model, results revealed elevated serum alanine aminotransferase and aspartate aminotransferase levels. Both the in vitro and in vivo data demonstrated the potential toxic effects of valp + Mg nano on the liver tissues.
Collapse
Affiliation(s)
- Gehad Mekky
- Zoology Department, Faculty of Science, Zagazige, Egypt.,Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Michael Seeds
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | | | - Ahmed M Shehata
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Omar A-H Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Dalia Alzebdeh
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
18
|
Abdelkader NF, Elyamany M, Gad AM, Assaf N, Fawzy HM, Elesawy WH. Ellagic acid attenuates liver toxicity induced by valproic acid in rats. J Pharmacol Sci 2020; 143:23-29. [PMID: 32139333 DOI: 10.1016/j.jphs.2020.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023] Open
Abstract
Valproic acid is a commonly used drug for many psychiatric disorders, particularly for epilepsy. However, it has been reported that its use is associated with possible side effects including hepatotoxicity. The present study investigated the hepatoprotective effect of ellagic acid against valproic acid-induced hepatotoxicity in rats. Ellagic acid (60 mg/kg/day; p.o) was treated for one week, followed by concomitant injection of valproic acid (250 mg/kg/day; i.p.) for another 14 consecutive days to induce hepatocellular damage in adult Sprague-Dawley rats. Valproic acid showed a marked increase in serum enzyme activities, AST, ALT, ALP and GGT. In addition, it significantly increased MDA and NO along with a marked decline in reduced GSH content. At the same time, valproic acid administration resulted in marked elevation in hydroxyproline, TNF-α production and NF-kB expression. These results were confirmed by histopathological examination. Treatment with ellagic acid markedly attenuated valproic acid-induced hepatic injury in rats.
Collapse
Affiliation(s)
- Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohammed Elyamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Naglaa Assaf
- Department of Pharmacology, Misr University for Science and Technology (MUST), 6 October, Egypt
| | - Hala M Fawzy
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Wesam H Elesawy
- Department of Pharmacology, Misr University for Science and Technology (MUST), 6 October, Egypt
| |
Collapse
|
19
|
Abdelkader NF, Elyamany M, Gad AM, Assaf N, Fawzy HM, Elesawy WH. Ellagic acid attenuates liver toxicity induced by valproic acid in rats. J Pharmacol Sci 2020. [DOI: https://doi.org/10.1016/j.jphs.2020.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Bie N, Han L, Meng M, Yan Z, Wang C. The immunomodulatory effect of docosahexaenoic acid (DHA) on the RAW264.7 cells by modification of the membrane structure and function. Food Funct 2020; 11:2603-2616. [DOI: 10.1039/c9fo02618e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DHA can regulate various physiological functions of cells. Our group has clarified the immunomodulatory activity and molecular mechanism of DHA on RAW264.7 cells.
Collapse
Affiliation(s)
- Nana Bie
- “State Key Laboratory of Food Nutrition and Safety”
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Lirong Han
- “State Key Laboratory of Food Nutrition and Safety”
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Meng Meng
- “State Key Laboratory of Food Nutrition and Safety”
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Zhongli Yan
- “State Key Laboratory of Food Nutrition and Safety”
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Chunling Wang
- “State Key Laboratory of Food Nutrition and Safety”
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
| |
Collapse
|
21
|
Sesamin, a Naturally Occurring Lignan, Inhibits Ligand-Induced Lipogenesis through Interaction with Liver X Receptor Alpha (LXR α) and Pregnane X Receptor (PXR). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9401648. [PMID: 31976003 PMCID: PMC6959160 DOI: 10.1155/2019/9401648] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022]
Abstract
Liver X receptor (LXR) is a nuclear receptor that regulates various biological processes, including de novo lipogenesis, cholesterol metabolism, and inflammation. Selective inhibition of LXR may aid the treatment of nonalcoholic fatty liver disease (NAFLD). Sesamin is a naturally occurring lignan in many dietary plants and has a wide range of beneficial effects on metabolism. The mechanism underlying sesamin action especially on the regulation of LXR remains elusive. Reporter assays, mRNA and protein expression, and in silico modeling were used to identify sesamin as an antagonist of LXRα. Sesamin was applied to the hepatic HepaRG and intestinal LS174T cells and showed that it markedly ameliorated lipid accumulation in the HepaRG cells, by reducing LXRα transactivation, inhibiting the expression of downstream target genes. This effect was associated with the stimulation of AMP-activated protein kinase (AMPK) signaling pathway, followed by decreased T0901317-LXRα-induced expression of SREBP-1c and its downstream target genes. Mechanistically, sesamin reduced the recruitment of SRC-1 but enhanced that of SMILE to the SREBP-1c promoter region under T0901317 treatment. It regulated the transcriptional control exerted by LXRα by influencing its interaction with coregulators and thus decreased mRNA and protein levels of genes downstream of LXRα and reduced lipid accumulation in hepatic cells. Additionally, sesamin reduced valproate- and rifampin-induced LXRα and pregnane X receptor (PXR) transactivation. This was associated with reduced expression of target genes and decreased lipid accumulation. Thus, sesamin is an antagonist of LXRα and PXR and suggests that it may alleviate drug-induced lipogenesis via the suppression of LXRα and PXR signaling.
Collapse
|
22
|
Zhou L, Chen L, Zeng X, Liao J, Ouyang D. Ginsenoside compound K alleviates sodium valproate-induced hepatotoxicity in rats via antioxidant effect, regulation of peroxisome pathway and iron homeostasis. Toxicol Appl Pharmacol 2019; 386:114829. [PMID: 31734319 DOI: 10.1016/j.taap.2019.114829] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Sodium valproate (SVP) is a first-line treatment for various forms of epilepsy; however, it can cause severe liver injury. Ginsenoside compound K (G-CK) is the main active ingredient of the traditional herbal medicine ginseng. According to our previous research, SVP-induced elevation of ALT and AST levels, as well as pathological changes of liver tissue, was believed to be significantly reversed by G-CK in LiCl-pilocarpine induced epileptic rats. Thus, we aimed to evaluate the protective effect of G-CK on hepatotoxicity caused by SVP. The rats treated with SVP showed liver injury with evident increases in hepatic index, transaminases activity, alkaline phosphatase level, hepatic triglyceride and lipid peroxidation; significant decreases in plasma albumin level and antioxidant capacity; and obvious changes in histopathological and subcellular structures. All of these changes could be mitigated by co-administration with G-CK. Proteomic analysis indicated that hepcidin, soluble epoxide hydrolase (sEH, UniProt ID P80299), and the peroxisome pathway were involved in the hepatoprotective effect of G-CK. Changes in protein expression of hepcidin and sEH were verified by ELISA and Western blot analysis, respectively. In addition, we observed that the hepatic iron rose in SVP group and decreased in the combination group. In summary, our findings demonstrate the clear hepatoprotective effect of G-CK against SVP-induced hepatotoxicity through the antioxidant effect, regulation of peroxisome pathway relying on sEH (P80299) downregulation, as well as regulation of iron homeostasis dependent on hepcidin upregulation.
Collapse
Affiliation(s)
- Luping Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P.R. China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P.R. China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Lulu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P.R. China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P.R. China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan 410000, P.R. China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P.R. China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P.R. China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jianwei Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P.R. China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P.R. China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P.R. China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P.R. China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan 410000, P.R. China.
| |
Collapse
|
23
|
Rawat C, Kukal S, Kushwaha S, Agarwal R, Sharma S, Srivastava AK, Kukreti R. Elevated serum alkaline phosphatase in epilepsy: effect of age and treatment. Br J Biomed Sci 2019; 77:44-47. [DOI: 10.1080/09674845.2019.1663781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- C Rawat
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - S Kukal
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - S Kushwaha
- Department of Neurology, Institute of Human Behaviour & Allied Sciences (IHBAS), Delhi, India
| | - R Agarwal
- Department of Neurochemistry, All India Institute of Medical Sciences, Delhi, India
| | - S Sharma
- Department of Neuropsychopharmacology, Institute of Human Behaviour & Allied Sciences (IHBAS), Delhi, India
| | - AK Srivastava
- Department of Neurochemistry, All India Institute of Medical Sciences, Delhi, India
| | - R Kukreti
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| |
Collapse
|
24
|
Jaccob AA, Ahmed ZH, Aljasani BM. Vitamin C, omega-3 and paracetamol pharmacokinetic interactions using saliva specimens as determiners. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2019-0011. [PMID: 31393833 DOI: 10.1515/jbcpp-2019-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
Background With its low side effects profile and availability as an over-the-counter drug, paracetamol has been utilized extensively worldwide as an antipyretic and analgesic agent for decades. This is associated with the increasing concern over its ease of access and/or unawareness of the consumers to this issue of paracetamol-induced hepatotoxicity. Paracetamol-induced liver injury today is a big problem where most of the researchers are interested in the possible role of the naturally available antioxidants to ameliorate hepatotoxicity through kinetic interference. So the present study was designed to evaluate the effect of vitamin C and omega-3 on the pharmacokinetic property of paracetamol. Methods Six young (average age 29) healthy volunteers participated in the study. The study included three consecutive periods, each of which preceded by overnight fasting and separated by 6 day washout periods. The first period involved the ingestion of a single paracetamol dose. The second one included the ingestion of paracetamol and vitamin C concomitantly, and the final period included paracetamol plus omega-3. Saliva samples were collected and prepared for High-performance liquid chromatography analysis. Results There was a significant increase in saliva paracetamol level after 30 min of administration when given concomitantly with vitamin C compared with the remaining groups. No significant differences in the paracetamol concentration profile between the subjects for each group were observed at 60, 90, 120 and 150 min in all treated groups. Conclusion Concurrent administration of vitamin C with paracetamol increases significantly the Cmax level (maximum measured concentration) in saliva and increases the extent of absorption and the possibility of drug-drug interaction and risk of side effects.
Collapse
Affiliation(s)
- Ausama Ayob Jaccob
- Department of Pharmacology and Toxicology, College of Pharmacy, Basrah University, Basrah City, Iraq
| | - Zainab Haroon Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Basrah University, Basrah City, Iraq
| | - Baan Majid Aljasani
- Department of Pharmacology and Toxicology, College of Pharmacy, Basrah University, Basrah City, Iraq
| |
Collapse
|
25
|
Research Progress on the Animal Models of Drug-Induced Liver Injury: Current Status and Further Perspectives. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1283824. [PMID: 31119149 PMCID: PMC6500714 DOI: 10.1155/2019/1283824] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is a major concern in clinical studies as well as in postmarketing surveillance. It is necessary to establish an animal model of DILI for thorough investigation of mechanisms of DILI and searching for protective medications. This article reviews the current status and future perspective on establishment of DILI models based on different hepatotoxic drugs, as well as the underlying mechanisms of liver function damage induced by specific medicine. Therefore, information from this article can help researchers make a suitable selection of animal models for further study.
Collapse
|
26
|
Lee SI, Kang KS. Omega-3 fatty acids modulate cyclophosphamide induced markers of immunosuppression and oxidative stress in pigs. Sci Rep 2019; 9:2684. [PMID: 30804435 PMCID: PMC6389924 DOI: 10.1038/s41598-019-39458-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/22/2019] [Indexed: 12/18/2022] Open
Abstract
Immunosuppression directly correlates with economic benefits in livestock. Although omega-3, known as an energy source, is used as a pharmaceutical molecule, it remains unknown whether dietary supplementation with omega-3 can alleviate cyclophosphamide-induced immunosuppression in pigs. Omega-3 treatment increased the number of white blood cell, lymphocytes, and monocytes and decreased tumor necrosis factor (TNF)-α production under CTX challenge. In addition, we confirmed that omega-3 decreased the expression of nuclear factor (NF)-κB, TNF-α, interferon (IFN)-γ, and interleukin (IL)-8 in peripheral blood mononuclear cells. Additionally, omega-3 alleviated the activities of liver injury markers (alanine transaminase [ALT] and aspartate transaminase [AST]) and modulated oxidative stress markers (superoxide dismutase [SOD], malondialdehyde [MDA], and glutathione peroxidase [GPx]) in the blood serum after the CTX challenge. Based on these results, we suggest that omega-3 treatment modulates CTX-induced immunosuppression and oxidative stress in pigs. These results may have important implications in the development of new therapeutic approaches to improve immunosuppression, hepatic injury and dysfunction, and oxidative stress in pigs.
Collapse
Affiliation(s)
- Sang In Lee
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam, 330-714, Republic of Korea
| | - Kyung Soo Kang
- Bio Division, Medikinetics, Inc., Hansan-gil, Pyeongtaek-si, Gyeonggi-do, 17792, Republic of Korea.
| |
Collapse
|
27
|
Li Q, Li QQ, Jia JN, Liu ZQ, Zhou HH, Mao XY. Targeting gap junction in epilepsy: Perspectives and challenges. Biomed Pharmacother 2018; 109:57-65. [PMID: 30396092 DOI: 10.1016/j.biopha.2018.10.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Gap junctions (GJs) are multiple cellular intercellular connections that allow ions to pass directly into the cytoplasm of neighboring cells. Electrical coupling mediated by GJs plays a role in the generation of highly synchronous electrical activity. Accumulative investigations show that GJs in the brain are involved in the generation, synchronization and maintenance of seizure events. At the same time, GJ blockers exert potent curative potential on epilepsy in vivo or in vitro. This review aims to shed light on the role of GJs in epileptogenesis. Targeting GJs is likely to be served as a novel therapeutic approach on epileptic patients.
Collapse
Affiliation(s)
- Qin Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Qiu-Qi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Ji-Ning Jia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
28
|
Ibrahim FAS, Ghebremeskel K, Abdel-Rahman ME, Ahmed AAM, Mohmed IM, Osman G, Elseed M, Hamed A, Rabinowicz AL, Salih MAM, Elbashir MI, Daak AA. The differential effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on seizure frequency in patients with drug-resistant epilepsy - A randomized, double-blind, placebo-controlled trial. Epilepsy Behav 2018; 87:32-38. [PMID: 30170260 DOI: 10.1016/j.yebeh.2018.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/14/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The omega-3 (n-3) fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known to play an important role in maintenance and modulation of neuronal functions. There is evidence that omega-3 fatty acids may have anticonvulsant effects. The effect of DHA and EPA on seizure rate in patients with drug-resistant epilepsy (DRE) was investigated. METHODS A double-blind, randomized, placebo-controlled clinical trial included ninety-nine (n = 99) subjects with DRE, aged 5-16 years (n = 85) and 17-45 years (n = 14). After randomization, subjects were given two, four, or six capsules per day of DHA (417.8 mg DHA and 50.8 mg EPA/capsule, n = 33), EPA (385.6 mg EPA and 81.2 mg DHA/capsule, n = 33), or placebo (high oleic acid sunflower oil, n = 33) for one year. The primary endpoint was the effect of treatment on rate of seizure. Random-effects negative binomial regression models were fitted to model the patients' total count of seizures per month. The treatment effects on seizure incidence rate ratio (IRR) were tested after controlling for the covariate effects of gender, age, rate of seizure per week at enrollment, type of seizure, and number of antiepileptic drug (AED) combinations used at enrollment. RESULTS Fifty-nine subjects (n = 59) completed the study (59.6%). The average number of seizures per month were 9.7 ± 1.2 in the EPA group, 11.7 ± 1.5 in the DHA group, and 16.6 ± 1.5 in the placebo group. Age, gender, and seizure-type adjusted seizure IRRs of the EPA and DHA groups compared with the placebo group were 0.61 (CI = 0.42-0.88, p = 0.008, 42% reduction) and 0.67 (CI = 0.46-1.0, p = 0.04, 39% reduction), respectively. There was no difference in IRR between the EPA and DHA groups (p = 0.56). Both treatment groups had a significantly higher number of seizure-free days compared with the placebo group (p < 0.05). SIGNIFICANCE This study demonstrates that EPA and DHA are effective in reducing seizure frequency in patients with DRE.
Collapse
Affiliation(s)
| | - Kebreab Ghebremeskel
- Lipidomics and Nutrition Research Centre, London Metropolitan University, London, UK
| | - Manar E Abdel-Rahman
- College of Health Sciences, Department of Public Health, Qatar University, Qatar
| | - Amar A M Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam M Mohmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ghada Osman
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ahlam Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Adrian L Rabinowicz
- Sancilio Pharmaceuticals Company, FL, USA; Center of Molecular Biology and Biotechnology (CMBB), Florida Atlantic University (FAU), USA
| | | | | | - Ahmed A Daak
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan; Lipidomics and Nutrition Research Centre, London Metropolitan University, London, UK; Sancilio Pharmaceuticals Company, FL, USA; Center of Molecular Biology and Biotechnology (CMBB), Florida Atlantic University (FAU), USA.
| |
Collapse
|
29
|
Ahmed N, Aljuhani N, Al-Hujaili HS, Al-Hujaili MA, Elkablawy MA, Noah MM, Abo-Haded H, El-Agamy DS. Agmatine protects against sodium valproate-induced hepatic injury in mice via modulation of nuclear factor-κB/inducible nitric oxide synthetase pathway. J Biochem Mol Toxicol 2018; 32:e22227. [PMID: 30273971 DOI: 10.1002/jbt.22227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
Abstract
Valproate is a widely used drug against epilepsy and several other neurological disorders although it has deleterious hepatotoxic side effects. The current study was designed to test if agmatine as nitric oxide modulator has protective effects against valproate-induced hepatic injury. Male Swiss albino mice were treated with sodium valproate (SVP) with or without agmatine for 7 days. Serum and liver samples were collected for analysis. Results have revealed that agmatine exerted hepatoprotective effects against SVP-associated hepatic injury. Agmatine ameliorated SVP-induced elevated serum biochemical markers of hepatic damage such as serum transaminases, alkaline phosphatase, γ-glutamyl transferase, and lactate dehydrogenase. Histopathological examination of the liver showed improvement of hepatic lesions in case of agmatine treatment. Furthermore, agmatine attenuated oxidative stress and enhanced antioxidants in liver tissue. Agmatine inhibited the activation of nuclear factor-κB and ameliorated the immunoexpression of inducible nitric oxide synthetase. This was accompanied by decrease in the level of inflammatory markers as nitrite/nitrate, tumor necrosis factor-α, and interleukin-6. These data provide new evidence of the hepatoprotective activity of agmatine against SVP-induced hepatotoxic effects.
Collapse
Affiliation(s)
- Nishat Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.,Hepatology Research team, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Naif Aljuhani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.,Hepatology Research team, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Hind S Al-Hujaili
- Hepatology Research team, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Manar A Al-Hujaili
- Hepatology Research team, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Mohamed A Elkablawy
- Department of Pathology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Magdy M Noah
- Department of Pathology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.,Department of Pathology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hany Abo-Haded
- Cardiology Unit, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.,Hepatology Research team, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
30
|
Gad AM. Study on the influence of caffeic acid against sodium valproate-induced nephrotoxicity in rats. J Biochem Mol Toxicol 2018; 32:e22175. [PMID: 29968957 DOI: 10.1002/jbt.22175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/05/2023]
Abstract
Renal injury is a hallmark adverse reaction to sodium valproate (SVP), and caffeic acid (CAFF) is a phenolic compound that has anti-inflammatory and antioxsidant properties. So, this investigation was assessed to evaluate the nephrotoxic potential of SVP and the defensive impact of CAFF against SVP nephrotoxicity. SVP was given at a dose of 500 mg/kg (i.p.) once daily for 2 weeks, while CAFF was given at a dose of 50 mg/kg (orally), simultaneously with SVP. Concurrent treatment with CAFF reduced urea and creatinine, lipid peroxidation (malondialdehyde), tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), nuclear factor kappa B (NF-κB/p65), and transforming growth factor β (TGF-β) levels. However, with increased glutathione content, CAFF also halted the activated Notch signaling cascade. Furthermore, CAFF suppressed caspase-3 and inducible nitric oxide synthase expressions. To conclude, on the basis of the results obtained, CAFF proved to protect against SVP-induced nephrotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research, Cairo, Egypt
| |
Collapse
|
31
|
Zaky HS, Gad AM, Nemr E, Hassan W, Abd El-Raouf OM, Ali AA. Modulatory effects of some natural products on hepatotoxicity induced by combination of sodium valproate and paracetamol in rats. J Biochem Mol Toxicol 2018; 32:e22162. [PMID: 29799656 DOI: 10.1002/jbt.22162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/09/2018] [Indexed: 02/05/2023]
Abstract
Possible hepatoprotective effect of Curcuma longa and/or Nigella sativa against hepatotoxicity induced by coadministration of sodium valproate (SV) and paracetamol was studied. Rats were divided into 10 groups, control groups 1, 2, 3, and 4 received vehicles, C. longa (200 mg/kg, p.o.), N. sativa (250 mg/kg, p.o.), or both herbs for 21 days, respectively. Toxicity groups 5, 6, and 7 received SV (300 mg/kg, i.p.), paracetamol (1000 mg/kg, p.o.) for the last 4 days or both for 21 days, respectively. Protection groups 8, 9, and 10 received C. longa, N. sativa, or both, respectively, 1 h before the administration of both the drugs for 21 days. SV and/or paracetamol significantly increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, relative liver/body weight ratio, malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), and caspase-3 (Casp-3) while significantly decreased albumin, total protein, glutathione (GSH) reduced, GSH peroxidase, and superoxide dismutase (SOD). Preadministration of C. longa and/or N. sativa caused protective effect against the hepatotoxicity induced by both drugs.
Collapse
Affiliation(s)
- Hanan S Zaky
- Central Administration of Pharmaceutical Affairs, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Ekram Nemr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Wedad Hassan
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Ola M Abd El-Raouf
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Aza A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
32
|
Han L, Yu J, Chen Y, Cheng D, Wang X, Wang C. Immunomodulatory Activity of Docosahexenoic Acid on RAW264.7 Cells Activation through GPR120-Mediated Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:926-934. [PMID: 29307174 DOI: 10.1021/acs.jafc.7b05894] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we elucidated the immunomodulatory activity of docosahexaenoic acid (DHA) on protein expression in RAW264.7 cells and its molecular mechanism. The results showed that the proliferation index of RAW264.7 cells at 48 h was about 173.03 ± 7.82% after the treatment of 2.4 μM DHA. DHA could activate RAW264.7 cells by the G-protein coupled cell membrane receptor GPR120-C-Raf- mitogen-activated protein kinases (MAPKs)-nuclear factor κB (NF-κB) p65 pathway. In addition, 2.4 μM of DHA could significantly increase (P < 0.01) the mRNA and protein expression of inducible nitric oxide synthase (iNOS), which is consistent with the result of the NO release. ELISA results revealed that DHA could enhance the protein expression of cytokines IL-1β, IL-6, IL-10, IL-12, TNF-α, IFN-γ, and TGF-β. These results indicated that the immunomodulatory mechanism of RAW264.7 cells by DHA was associated with the release of NO and cytokines by stimulating the GPR120, C-Raf, and MAPKs to the NF-κB p65 pathway.
Collapse
Affiliation(s)
- Lirong Han
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of food Engineering and Biotechnology, Tianjin University of Science and Technology , No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Jun Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of food Engineering and Biotechnology, Tianjin University of Science and Technology , No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Yuanyuan Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of food Engineering and Biotechnology, Tianjin University of Science and Technology , No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Dai Cheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of food Engineering and Biotechnology, Tianjin University of Science and Technology , No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Xu Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of food Engineering and Biotechnology, Tianjin University of Science and Technology , No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Chunling Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of food Engineering and Biotechnology, Tianjin University of Science and Technology , No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| |
Collapse
|
33
|
Goda K, Saito K, Muta K, Kobayashi A, Saito Y, Sugai S. Ether-phosphatidylcholine characterized by consolidated plasma and liver lipidomics is a predictive biomarker for valproic acid-induced hepatic steatosis. J Toxicol Sci 2018; 43:395-405. [DOI: 10.2131/jts.43.395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Keisuke Goda
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO Inc
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences
| | - Kyotaka Muta
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO Inc
| | - Akio Kobayashi
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO Inc
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences
| | - Shoichiro Sugai
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO Inc
| |
Collapse
|
34
|
Shaaban AA, El-Agamy DS. Cytoprotective effects of diallyl trisulfide against valproate-induced hepatotoxicity: new anticonvulsant strategy. Naunyn Schmiedebergs Arch Pharmacol 2017. [PMID: 28646254 DOI: 10.1007/s00210-017-1393-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sodium valproate (VP) is an important antiepileptic drug, although it can produce deleterious hepatotoxic reactions. Diallyl trisulfide (DATS) is the principle component of garlic oil that possesses antioxidant properties. This study explored the potential hepatoprotective activity of DATS against VP-induced hepatic damage and its underlying mechanisms. In addition, the study assessed the effect of DATS on VP antiepileptic activity. Rats were given DATS once daily at two different doses along with VP for 2 weeks. Results have shown the ability of DATS to counteract VP-induced hepatic damage as it decreased elevated serum transaminases (aspartate aminotransferase and alanine aminotransferase) and alkaline phosphatase. Liver histopathology indicated that DATS preserved the hepatic structural integrity and protected against VP-induced hepatic steatosis and necro-inflammation injury. DATS ameliorated VP-induced oxidative stress and increased the antioxidant capacity of the liver. Immunohistochemical analysis showed activation of nuclear factor kappa-B along with high expression of cyclo-oxygenase-2 (COX-2) upon VP administration. This was accompanied by overproduction of proinflammatory mediators (TNF-α, IL-1β, IL-6). Tracing the apoptotic pathway, VP administration induced marked apoptosis using TUNEL staining. Furthermore, VP-treated animals exhibited high immunoexpression of Bax protein and increased levels of Bax and caspase-3 while level of Bcl2 was significantly decreased in hepatic tissue. However, DATS simultaneous treatment counteracted all of these molecular pathological changes. Using pentylenetetrazole (PTZ)-induced seizures model in mice, the effect of DATS on the anticonvulsant activity of VP was found to be positive, meaning that combination of DATS with VP can confer protection against VP-induced hepatic injurious effects through its antioxidant, antiinflammatory, and antiapoptotic properties without affecting VP antiepileptic activity.
Collapse
Affiliation(s)
- Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
35
|
Bai X, Hong W, Cai P, Chen Y, Xu C, Cao D, Yu W, Zhao Z, Huang M, Jin J. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol 2017; 324:12-25. [PMID: 28366540 DOI: 10.1016/j.taap.2017.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 03/28/2017] [Indexed: 02/07/2023]
Abstract
Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) - extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xupeng Bai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weipeng Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiheng Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yibei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuncao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weibang Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
36
|
Gomes LM, Carvalho-Silva M, Teixeira LJ, Rebelo J, Mota IT, Bilesimo R, Michels M, Arent CO, Mariot E, Dal-Pizzol F, Scaini G, Quevedo J, Streck EL. Omega-3 fatty acids and mood stabilizers alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration. Metab Brain Dis 2017; 32:519-528. [PMID: 27987060 DOI: 10.1007/s11011-016-9942-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022]
Abstract
Studies have shown that oxidative stress is involved in the pathophysiology of bipolar disorder (BD). It is suggested that omega-3 (ω3) fatty acids are fundamental to maintaining the functional integrity of the central nervous system. The animal model used in this study displayed fenproporex-induced hyperactivity, a symptom similar to manic BD. Our results showed that the administration of fenproporex, in the prevent treatment protocol, increased lipid peroxidation in the prefrontal cortex (143%), hippocampus (58%) and striatum (181%), and ω3 fatty acids alone prevented this change in the prefrontal cortex and hippocampus, whereas the co-administration of ω3 fatty acids with VPA prevented the lipoperoxidation in all analyzed brain areas, and the co-administration of ω3 fatty acids with Li prevented this increase only in the prefrontal cortex and striatum. Moreover, superoxide dismutase (SOD) activity was decreased in the striatum (54%) in the prevention treatment, and the administration of ω3 fatty acids alone or in combination with Li and VPA partially prevented this inhibition. On the other hand, in the reversal treatment protocol, the administration of fenproporex increased carbonyl content in the prefrontal cortex (25%), hippocampus (114%) and striatum (91%), and in prefrontal coxter the administration of ω3 fatty acids alone or in combination with Li and VPA reversed this change, whereas in the hippocampus and striatum only ω3 fatty acids alone or in combination with VPA reversed this effect. Additionally, the administration of fenproporex resulted in a marked increase of TBARS in the hippocampus and striatum, and ω3 fatty acids alone or in combination with Li and VPA reversed this change. Finally, fenproporex administration decreased SOD activity in the prefrontal cortex (85%), hippocampus (52%) and striatum (76%), and the ω3 fatty acids in combination with VPA reversed this change in the prefrontal cortex and striatum, while the co-administration of ω3 fatty acids with Li reversed this inhibition in the hippocampus and striatum. In conclusion, our results support other studies showing the importance of ω3 fatty acids in the brain and the potential for these fatty acids to aid in the treatment of BD.
Collapse
Affiliation(s)
- Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Letícia J Teixeira
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Joyce Rebelo
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Isabella T Mota
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rafaela Bilesimo
- Laboratório de Fisiopatologia, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Camila O Arent
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Edemilson Mariot
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Ste, 5102, Houston, TX, USA.
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Ste, 5102, Houston, TX, USA
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
37
|
DeGiorgio CM, Taha AY. Omega-3 fatty acids (ῳ-3 fatty acids) in epilepsy: animal models and human clinical trials. Expert Rev Neurother 2016; 16:1141-5. [DOI: 10.1080/14737175.2016.1226135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
El-Mowafy AM, Katary MM, Pye C, Ibrahim AS, Elmarakby AA. Novel molecular triggers underlie valproate-induced liver injury and its alleviation by the omega-3 fatty acid DHA: role of inflammation and apoptosis. Heliyon 2016; 2:e00130. [PMID: 27441301 PMCID: PMC4946287 DOI: 10.1016/j.heliyon.2016.e00130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 06/24/2016] [Indexed: 12/21/2022] Open
Abstract
Background/Aim Hepatic injury is a hallmark adverse reaction to Valproate (VPA), a common used drug in the management of numerous CNS disorders, including epilepsy. DHA has a myriad of health benefits, including renal- and hepato-protective effects. Unfortunately, however, the underpinnings of such liver-pertinent VPA- and DHA-actions remain largely undefined. Accordingly, this study attempted to unveil the cellular and molecular triggers whereby VPA evokes, while DHA abates, hepatotoxicity. Methods We evaluated activity and/or expression of cellular markers of oxidative stress, inflammation, and apoptosis in rat liver, following treatment with VPA (500 mg/kg/day) with and without concurrent treatment with DHA (250 mg/kg/day) for two weeks. Results and conclusion VPA promoted hepatic oxidative stress as evidenced by enhancing activity/expression of NADPH-oxidase and its subunits, a ROS-generator, and by accumulation of lipid-peroxides. Moreover, VPA enhanced hepatic phosphorylation/activation of mitogen-activated protein kinase (MAPK), and expression of cyclooxygenase-2(COX-2), as proinflammatory signals. Besides, VPA promoted hepatocellular apoptosis, as attested by enhanced expression of cleaved caspase-9 and increased number of TUNEL-positive hepatocytes. Lastly, VPA upregulated levels of hypoxia-inducible factor-1-alpha (HIF-1α), a multifaceted modulator of hepatocytic biology, and activity of its downstream antioxidant enzyme heme-oxygenase-1(HO-1). These changes were significantly blunted by co-administration of DHA. Our findings demonstrate that VPA activated NADPH-oxidase and HIF-1α to induce oxidative-stress and hypoxia as initiators of hepatic injury. These changes were further aggravated by up-regulation of inflammatory (MAPK and COX-2) and apoptotic cascades, but could be partly lessened by HO-1 activation. Concurrent administration of DHA mitigated all VPA-induced anomalies.
Collapse
Affiliation(s)
- Abdalla M El-Mowafy
- Department of Pharmacology, Department of Clinical Biochemistry, Faculty of Pharmacy, Mansoura University, Egypt; Department of Pharmacology, Faculty of Pharmaceutical Sciences and Industries, Future University, Egypt
| | - Mohamed M Katary
- Department of Oral Biology and Pharmacology, Augusta University, Augusta, Georgia 30912, USA; Department of Pharmacology, Faculty of Pharmacy, Damanhur University, Egypt
| | - Chelsey Pye
- Department of Oral Biology and Pharmacology, Augusta University, Augusta, Georgia 30912, USA
| | - Ahmed S Ibrahim
- Department of Pharmacology, Department of Clinical Biochemistry, Faculty of Pharmacy, Mansoura University, Egypt; Department of Oral Biology and Pharmacology, Augusta University, Augusta, Georgia 30912, USA
| | - Ahmed A Elmarakby
- Department of Oral Biology and Pharmacology, Augusta University, Augusta, Georgia 30912, USA
| |
Collapse
|
39
|
Okajima A, Yamaguchi K, Taketani H, Hara T, Ishiba H, Seko Y, Nishimura T, Nishikawa T, Fujii H, Moriguchi M, Mitsuyoshi H, Sumida Y, Yasui K, Minami M, Itoh Y. Drug-induced liver injury in a chronic hepatitis C patient treated by peginterferon, ribavirin and simeprevir. Hepatol Res 2015; 45:E156-60. [PMID: 25581068 DOI: 10.1111/hepr.12477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 12/22/2014] [Accepted: 01/04/2015] [Indexed: 12/13/2022]
Abstract
A 56-year-old male patient with chronic hepatitis C was treated with pegylated interferon (PEG IFN)-α-2b and ribavirin (RBV) for 72 weeks in 2006. The patient achieved an early virological response (EVR); however, hepatitis C relapsed 12 weeks after discontinuation of PEG IFN and RBV. In 2012, the patient was treated with a PEG IFN/RBV/telaprevir combination therapy. After 5 days of treatment, he suffered from a telaprevir-associated skin rash on his body and four limbs. He chose to be treated with PEG IFN and RBV until 60 weeks. He again achieved EVR but no sustained virological response. In 2014, he was treated with PEG IFN/RBV/simeprevir combination therapy. He achieved rapid virological response, but after 6 weeks of therapy, a striking elevation of serum aminotransferase level was recorded with no accompanying skin rash; he was admitted to our hospital. PEG IFN/RBV/simeprevir was stopped, but sodium valproate (400 mg/day), which had been administrated for more than 10 years to prevent epilepsy was continued. Liver biopsy revealed typical features of drug-induced liver injury. After stopping PEG IFN/RBV/simeprevir, serum aminotransferase levels soon returned to the normal range. We diagnosed this case to be simeprevir-induced hepatitis clinically and histologically. Physicians need to stay alert to the possibility of drug-induced liver injury in using simeprevir.
Collapse
Affiliation(s)
- Akira Okajima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyoshi Taketani
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tasuku Hara
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ishiba
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Nishimura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taichiroh Nishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Fujii
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hironori Mitsuyoshi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshio Sumida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kohichiroh Yasui
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahito Minami
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
40
|
Willebrords J, Pereira IVA, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B, Da Silva TC, de Oliveira CPMS, Andraus W, Alves VA, Cogliati B, Vinken M. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 2015; 59:106-125. [PMID: 26073454 PMCID: PMC4596006 DOI: 10.1016/j.plipres.2015.05.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease encompasses a spectrum of liver diseases, including simple steatosis, steatohepatitis, liver fibrosis and cirrhosis and hepatocellular carcinoma. Non-alcoholic fatty liver disease is currently the most dominant chronic liver disease in Western countries due to the fact that hepatic steatosis is associated with insulin resistance, type 2 diabetes mellitus, obesity, metabolic syndrome and drug-induced injury. A variety of chemicals, mainly drugs, and diets is known to cause hepatic steatosis in humans and rodents. Experimental non-alcoholic fatty liver disease models rely on the application of a diet or the administration of drugs to laboratory animals or the exposure of hepatic cell lines to these drugs. More recently, genetically modified rodents or zebrafish have been introduced as non-alcoholic fatty liver disease models. Considerable interest now lies in the discovery and development of novel non-invasive biomarkers of non-alcoholic fatty liver disease, with specific focus on hepatic steatosis. Experimental diagnostic biomarkers of non-alcoholic fatty liver disease, such as (epi)genetic parameters and '-omics'-based read-outs are still in their infancy, but show great promise. In this paper, the array of tools and models for the study of liver steatosis is discussed. Furthermore, the current state-of-art regarding experimental biomarkers such as epigenetic, genetic, transcriptomic, proteomic and metabonomic biomarkers will be reviewed.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabelle Colle
- Department of Hepatology and Gastroenterology, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium.
| | - Bert Van Den Bossche
- Department of Abdominal Surgery and Hepato-Pancreatico-Biliary Surgery, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium.
| | - Tereza Cristina Da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | | | - Wellington Andraus
- Department of Gastroenterology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| | - Venâncio Avancini Alves
- Laboratory of Medical Investigation, Department of Pathology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|