1
|
Huang D, Wang X, Takagi H, Wang Z, Wang C, Yang L, Huang B. Effects of sodium bicarbonate on 200 m time trial performance and physiological responses in swimmers: a systematic review and meta-analysis of randomized controlled trials. Res Sports Med 2025; 33:291-307. [PMID: 39841595 DOI: 10.1080/15438627.2025.2456630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
This systematic review and meta-analysis evaluated the effects of sodium bicarbonate (NaHCO₃) supplementation on 200 m time trial performance and physiological responses in swimmers, following PRISMA guidelines. A comprehensive search across five databases identified eligible randomized controlled trials comparing NaHCO₃ with placebo. Outcomes were 200 m time, blood bicarbonate, blood lactate, and blood pH. Results showed significant increases in blood bicarbonate (SMD = 1.09, 95% CI = 0.38 to 1.79, P<0.01), blood lactate (SMD = 0.76, 95% CI = 0.24 to 1.29, P<0.01) and blood pH (SMD = 1.02, 95% CI = 0.33 to 1.71, P<0.01), but no effect on 200 m time (SMD = 0.26, 95% CI -0.58 to 1.10). These findings suggest NaHCO₃ enhances certain physiological responses but does not improve 200 m performance, though data limitations require cautious interpretation.
Collapse
Affiliation(s)
- Dongxiang Huang
- School of Physical Education, Shaoguan University, Shaoguan, Guangdong, P.R. China
| | - Xiaobing Wang
- School of Physical Education, Shaoguan University, Shaoguan, Guangdong, P.R. China
| | - Hideki Takagi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zhongzheng Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong, P.R. China
| | - Chen Wang
- Department of Culture and Sports, Zhejiang Wanli University, Ningbo Zhejiang, P.R. China
| | - Ling Yang
- School of Physical Education, Shaoguan University, Shaoguan, Guangdong, P.R. China
| | - Bo Huang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
2
|
Cheng G, Zhang Z, Shi Z, Qiu Y. An investigation into how the timing of nutritional supplements affects the recovery from post-exercise fatigue: a systematic review and meta-analysis. Front Nutr 2025; 12:1567438. [PMID: 40352254 PMCID: PMC12061868 DOI: 10.3389/fnut.2025.1567438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Background This study used a systematic evaluation and meta-analysis to determine how the timing of nutritional supplements affected the recovery from post-exercise weariness. A vital component of enhancing athletic performance and advancing health is post-exercise recovery, where nutritional supplements are crucial. Although it has been demonstrated that supplementing timing may affect recovery outcomes, there is conflicting evidence about the best time to take supplements. Methods We thoroughly searched several academic databases and screened for inclusion of randomized controlled trials, clinical trials, and observational studies that satisfied the criteria in order to examine the effects of varying nutritional supplementation timing (immediate vs. delayed supplementation) on fatigue recovery. Results The findings demonstrated that, in comparison to delayed supplementation, protein and carbohydrate supplementation right after exercise dramatically expedited muscle recovery, glycogen recovery, and decreased tiredness. Furthermore, the impact of supplementation timing on recovery effects differed depending on the individual and the type of exercise (e.g., strength training, endurance exercise, and high-intensity interval training). Conclusion Recovery from post-exercise weariness is significantly impacted by the timing of nutritional intake. Supplementing with protein and carbohydrates right after exercise, particularly after intense exercise, can help with tiredness relief, muscle recovery, and glycogen replenishment.
Collapse
Affiliation(s)
- Guangxin Cheng
- School of Sports, Southwest University, Chongqing, China
| | - Zhongchen Zhang
- School of Sports, Southwest University, Chongqing, China
- College of Physical Education and Health, Yili Normal University, Yining, China
| | - Zhiming Shi
- College of Artificial Intelligence, Southwest University, Chongqing, China
- National and Local Joint Engineering Research Center of Intelligent Transmission and Control Technology, Chongqing, China
| | - Yepeng Qiu
- College of Physical Education and Health Science, Chongqing Normal University, Chongqing, China
| |
Collapse
|
3
|
Miguel-Ortega Á, Barrenetxea-Garcia J, Rodríguez-Rodrigo MA, García-Ordóñez E, Mielgo-Ayuso J, Calleja-González J. Ergonutrition Supplementation and Recovery in Water Polo: A Systematic Review. Nutrients 2025; 17:1319. [PMID: 40284184 PMCID: PMC12029977 DOI: 10.3390/nu17081319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Water polo (WP) is a high-intensity team sport that requires a combination of physical endurance, muscular strength, speed, and specific technical skills. Due to the demanding and prolonged nature of this sport, adequate and balanced nutrition plays a fundamental role in athletes' performance, recovery, and overall health maintenance. OBJECTIVES We aimed to compile all available information on the importance of ergonutrition and supplementation in the recovery of WP players. This will help in understanding this sport's specific challenges and requirements, enabling players and coaches to design more effective recovery plans to optimize performance, achieve goals, and successfully cope with intense training and competition. METHOD English-language publications were searched in databases such as Web of Science, Scopus, SciELO Citation Index, Medline (PubMed), KCI Korean Journal Database, and Current Contents Connect using a series of keywords such as WP, nutrition, recovery, and ergogenic aids individually or in combination. RESULTS In the field of ergonutritional recovery in WP, certain supplements such as whey protein, beta-alanine, L-arginine, spirulina, and copper can be beneficial for improving performance and recovery. In some cases, WP athletes may consider using ergogenic supplements to further improve their performance and recovery process. However, it is important to bear in mind that any supplement should be carefully evaluated under the supervision of a health professional or a sports nutritionist, as some supplements may present side effects or unwanted interactions. CONCLUSIONS Adequate ergogenic nutrition adapted to the needs of WP players is essential not only to optimize their athletic performance but also to ensure effective recovery and maintain their long-term health and general well-being. The application of these strategies should be evidence-based and tailored to the individual needs of the players and the specific demands of the sport. Future experimental research that can confirm our results is essential.
Collapse
Affiliation(s)
- Álvaro Miguel-Ortega
- Faculty of Education, Alfonso X ‘El Sabio’ University (UAX), 28691 Madrid, Spain
- Regional Ministry of Castilla y León Board of Education, HS Conde Diego Porcelos, 09006 Burgos, Spain;
| | | | | | | | - Juan Mielgo-Ayuso
- Faculty of Health Sciences, University of Burgos (UBU), 09001 Burgos, Spain;
| | - Julio Calleja-González
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain
- Faculty of Kinesiology, University of Zagreb, 10110 Zagreb, Croatia
| |
Collapse
|
4
|
Cairns SP, Lindinger MI. Lactic acidosis: implications for human exercise performance. Eur J Appl Physiol 2025:10.1007/s00421-025-05750-0. [PMID: 40088272 DOI: 10.1007/s00421-025-05750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
During high-intensity exercise a lactic-acidosis occurs with raised myoplasmic and plasma concentrations of lactate- and protons ([lactate-], [H+] or pH). We critically evaluate whether this causes/contributes to fatigue during human exercise. Increases of [lactate-] per se (to 25 mM in plasma, 50 mM intracellularly) exert little detrimental effect on muscle performance while ingestion/infusion of lactate- can be ergogenic. An exercise-induced intracellular acidosis at the whole-muscle level (pHi falls from 7.1-7.0 to 6.9-6.3), incorporates small changes in slow-twitch fibres (pHi ~ 6.9) and large changes in fast-twitch fibres (pHi ~ 6.2). The relationship between peak force/power and acidosis during fatiguing contractions varies across exercise regimes implying that acidosis is not the sole cause of fatigue. Concomitant changes of other putative fatigue factors include phosphate metabolites, glycogen, ions and reactive oxygen species. Acidosis to pHi 6.7-6.6 at physiological temperatures (during recovery from exercise or induced in non-fatigued muscle), has minimal effect on force/power. Acidosis to pHi ~ 6.5-6.2 per se reduces maximum force (~12%), slows shortening velocity (~5%), and lowers peak power (~22%) in non-fatigued muscles/individuals. A pre-exercise induced-acidosis with ammonium chloride impairs exercise performance in humans and accelerates the decline of force/power (15-40% initial) in animal muscles stimulated repeatedly in situ. Raised [H+]i and diprotonated inorganic phosphate ([H2PO4-]i) act on myofilament proteins to reduce maximum cross-bridge activity, Ca2+-sensitivity, and myosin ATPase activity. Acidosis/[lactate-]o attenuates detrimental effects of large K+-disturbances on action potentials and force in non-fatigued muscle. We propose that depressive effects of acidosis and [H2PO4-]i on myofilament function dominate over the protective effects of acidosis/lactate- on action potentials during fatigue. Raised extracellular [H+]/[lactate-] do not usually cause central fatigue but do contribute to elevated perceived exertion and fatigue sensations by activating group III/IV muscle afferents. Modulation of H+/lactate- regulation (via extracellular H+-buffers, monocarboxylate transporters, carbonic anhydrase, carnosine) supports a role for intracellular acidosis in fatigue. In conclusion, current evidence advocates that severe acidosis in fast-twitch fibres can contribute to force/power fatigue during intense human exercise.
Collapse
Affiliation(s)
- Simeon P Cairns
- Sport and Recreation Research Institute New Zealand, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1020, New Zealand.
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 1020, New Zealand.
| | - Michael I Lindinger
- Research and Development, The Nutraceutical Alliance Inc, Guelph, ON, L8N 3Z5, Canada
| |
Collapse
|
5
|
Montalvo-Alonso JJ, Munilla C, Garriga-Alonso L, Ferragut C, Valadés D, Gonzalo-Encabo P, Pérez-López A. Acute Co-Ingestion of Caffeine and Sodium Bicarbonate on Muscular Endurance Performance. Nutrients 2024; 16:4382. [PMID: 39771003 PMCID: PMC11677328 DOI: 10.3390/nu16244382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Caffeine and sodium bicarbonate individually enhance muscular endurance by delaying fatigue, but their combined effects have scarcely been studied. Objectives: This study aimed to evaluate the acute effects of co-ingesting caffeine and sodium bicarbonate on muscular endurance at different loads in bench press and back squat exercises. Methods: Twenty-seven recreationally trained participants (female/male: 14/14; age: 23 ± 3.6 years) were randomized to four conditions in a double-blind, crossover design: (a) sodium bicarbonate and caffeine (NaHCO3 + CAF); (b) sodium bicarbonate (NaHCO3); (c) caffeine (CAF); (d) placebo (PLA); ingesting 0.3 g/kg NaHCO3, 3 mg/kg caffeine or placebo (maltodextrin). Participants performed two muscle endurance tests on bench press and back squat exercises at 65% and 85% 1RM, performing as many repetitions as possible in one set until task failure. Results: CAF increased the number of repetitions (p < 0.001; ηp2 = 0.111), mean velocity (Vmean, p = 0.043, ηp2 = 0.16), and mean power output (Wmean, p = 0.034, ηp2 = 0.15) compared to placebo. These effects were observed in back squat exercise at 65%1RM in Vmean (3.7%, p = 0.050, g = 1.144) and Wmean (5.2%, p = 0.047, g = 0.986) and at 85%1RM in Vmean (5.4%, p = 0.043, g = 0.22) and Wmean (5.5%, p = 0.050, g = 0.25). No ergogenic effects were found in NaHCO3 + CAF) or NaHCO3 conditions. Conclusions: CAF increased muscular endurance performance in male and female participants by increasing the number of repetitions, mean velocity, and power output; however, when NaHCO3 was ingested, these effects were not detected.
Collapse
|
6
|
Huang D, Wang X, Gonjo T, Takagi H, Huang B, Huang W, Shan Q, Chow DHK. Effects of Creatine Supplementation on the Performance, Physiological Response, and Body Composition Among Swimmers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. SPORTS MEDICINE - OPEN 2024; 10:115. [PMID: 39441446 PMCID: PMC11499511 DOI: 10.1186/s40798-024-00784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Although recent studies have increasingly focused on examining the potential benefits of creatine supplementation to improve performance in swimming events, the impact of creatine supplementation on swimming performance remains a topic of debate and controversy. A comprehensive meta-analytical review was undertaken to evaluate the effects of creatine supplementation on the performance, physiological response, and body composition among swimmers. METHODS The research methodology adhered strictly to the guidelines outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A comprehensive search was conducted across six databases (Cochrane Library, Web of Science, Scopus, Embase, PubMed, and SPORTDiscus) until March 23, 2024. Eligible studies that investigated the impact of creatine supplementation on swimming time, physiological parameters, and body composition in swimmers were included. For the meta-analysis, a random-effects model was employed to determine the collective effect and assess variations across distinct subgroups defined by swimming time, physiological metrics, and body composition. Meta-regression analysis was conducted on datasets comprising ten or more studies. Standardized mean differences (SMD) along with their corresponding 95% confidence intervals (CI) were calculated. To evaluate the methodological rigor of the included studies, the Physiotherapy Evidence Database (PEDro) scale was utilized. RESULTS The systematic review included seventeen studies with a total of 361 subjects. No significant differences were observed in the overall effect during single sprint swimming (SMD: -0.05, 95% CI: -0.26, 0.15; p = 0.61), repeated interval swimming (SMD: -0.11; 95% CI: -0.46, 0.25; p = 0.56), physiological response (SMD: 0.04, 95% CI: -0.16, 0.23; p = 0.71), and body composition (SMD: 0.18; 95% CI: -0.05, 0.41; p = 0.12) between creatine and placebo groups. CONCLUSIONS Creatine supplementation exhibited ineffectiveness in enhancing the performance, physiological response, and body composition among swimmers.
Collapse
Affiliation(s)
- Dongxiang Huang
- School of Physical Education, Shaoguan University, Shaoguan, P.R. China
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, P.R. China
| | - Xiaobing Wang
- School of Physical Education, Shaoguan University, Shaoguan, P.R. China
| | - Tomohiro Gonjo
- Institute for Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Hideki Takagi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bo Huang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, P.R. China
| | - Wenrui Huang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P.R. China
| | - Qi Shan
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, P.R. China
| | - Daniel Hung-Kay Chow
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, P.R. China.
| |
Collapse
|
7
|
Kaçoğlu C, Kirkaya İ, Ceylan Hİ, de Assis GG, Almeida-Neto P, Bayrakdaroğlu S, Chaves Oliveira C, Özkan A, Nikolaidis PT. Pre-Exercise Caffeine and Sodium Bicarbonate: Their Effects on Isometric Mid-Thigh Pull Performance in a Crossover, Double-Blind, Placebo-Controlled Study. Sports (Basel) 2024; 12:206. [PMID: 39195582 PMCID: PMC11359456 DOI: 10.3390/sports12080206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Caffeine and sodium bicarbonate are extensively researched ergogenic aids known for their potential to enhance exercise performance. The stimulant properties of caffeine on the central nervous system, coupled with the buffering capacity of sodium bicarbonate, have been associated with improved athletic performance. This has led to investigations of their combined effects on strength. The aim of the present study is to investigate the effect of isolated and combined caffeine and sodium bicarbonate consumption on strength using the isometric mid-thigh pull test (IMTP). Nineteen male college students (age 23.6 ± 1.6 years) participated in this crossover, double-blind, placebo-controlled study. They were exposed to the following conditions: control (no supplement), placebo (20 g maltodextrin), caffeine (6 mg/kg), sodium bicarbonate (0.3 g/kg), and a combination of caffeine and sodium bicarbonate. Supplements and placebo were diluted in water and consumed 60 min prior to the IMTP tests. Two 5 s IMTP trials were performed at 40-60% and 60-80% of One Repetition of Maximum (1RM) with a 60 s rest between. Consumption of caffeine or Caf + NaHCO3 did not significantly change peak IMTP strength values at any intensity (p = 0.110). The peak IMTP values did not show significant differences between conditions or from control condition values (1091 ± 100 N) to Caf (1224 ± 92 N), NaHCO3 (1222 ± 74 N), and Caf ± NaHCO3 (1152 ± 109 N). However, the test of the results of the ANOVA analysis of repeated measures of effect within the caffeine condition was significant for the increase in IMTP relative strength compared to control (p < 0.05). Thus, the IMTP force values increased significantly from control to Caf (p = 0.016) and from Pla to Caf (p = 0.008), but not for other comparisons (p > 0.05). In summary, caffeine supplementation alone, taken 60 min before exercise, positively affects submaximal strength performance. In contrast, sodium bicarbonate, whether taken alone or in combination with caffeine, does not enhance submaximal strength in the IMTP tests.
Collapse
Affiliation(s)
- Celil Kaçoğlu
- Department of Coaching Education, Faculty of Sport Sciences, Eskişehir Technical University, Eskişehir 26555, Türkiye;
| | - İzzet Kirkaya
- Department of Coaching Education, Faculty of Sport Sciences, Yozgat Bozok University, Yozgat 66100, Türkiye; (İ.K.); (A.Ö.)
| | - Halil İbrahim Ceylan
- Department of Physical Education of Sports Teaching, Faculty of Sports Sciences, Atatürk University, Erzurum 25240, Türkiye;
| | - Gilmara Gomes de Assis
- Araraquara School of Dentistry, São Paulo State University (UNESP), Araraquara 01049-010, Brazil;
| | - Paulo Almeida-Neto
- Department of Physical Education, Federal University of Rio Grande do Norte, CCS-UFNR, Natal 59078-900, Brazil;
| | - Serdar Bayrakdaroğlu
- Department of Coaching Education, Movement and Training Sciences, School of Education and Sport, Gumushane University, Gumushane 29100, Türkiye;
| | - César Chaves Oliveira
- Polytechnic Institute of Viana do Castelo, School of Sports and Leisure, 4960-320 Viana do Castelo, Portugal;
| | - Ali Özkan
- Department of Coaching Education, Faculty of Sport Sciences, Yozgat Bozok University, Yozgat 66100, Türkiye; (İ.K.); (A.Ö.)
| | | |
Collapse
|
8
|
Macedo AG, Massini DA, Almeida TAF, dos Reis LM, Galdino G, Santos ATS, da Silva Júnior OT, Venditti Júnior R, Pessôa Filho DM. Effects of Resistance Exercise with and without Blood Flow Restriction on Acute Hemodynamic Responses: A Systematic Review and Meta-Analysis. Life (Basel) 2024; 14:826. [PMID: 39063580 PMCID: PMC11277576 DOI: 10.3390/life14070826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Low-load intensity resistance exercise with blood flow restriction (BFR) is an alternative method for enhancing strength and muscle mass. However, acute cardiovascular responses to a complete training session remain uncertain compared to high-load intensity resistance exercise (HI). Therefore, the objective of this study to examine acute and post-exercise hemodynamic responses to low-load BFR and HI protocols. This systematic review and meta-analysis (RD42022308697) followed PRISMA guidelines to investigate whether the responses of heart rate (HR), blood systolic (SBP), blood diastolic pressure (DBP), and rate pressure product (RPP) immediately after and up to 60 min post-exercise from BFR were consistent with those reported after resistance exercises performed at HI in healthy individuals. Searches using PICO descriptors were conducted in databases from January 2011 to December 2023, and effect sizes were determined by Hedge's g. The selected studies involved 160 participants in nine articles, for which the responses immediately after BFR and HI exercises showed no differences in HR (p = 0.23) or SBP (p = 0.57), but significantly higher DBP (p < 0.01) and lower RPP (p < 0.01) responses were found when comparing BFR to HI. Furthermore, the BFR and HI protocols showed no differences regarding SBP (p = 0.21) or DBP (p = 0.68) responses during a 15 to 60 min post-exercise period. Thus, these results indicated that hemodynamic responses are similar between BFR and HI, with a similar hypotensive effect up to 60 min following exercise.
Collapse
Affiliation(s)
- Anderson Geremias Macedo
- Institute of Motricity Sciences, Federal University of Alfenas (UNIFAL), Alfenas 37133-840, MG, Brazil; (A.G.M.); (L.M.d.R.); (G.G.); (A.T.S.S.)
- Pos-Graduation Program in Rehabilitation Sciences, Institute of Motricity Sciences, Federal University of Alfenas, Santa Clara Campus, Alfenas 37133-840, MG, Brazil
- Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (O.T.d.S.J.); (R.V.J.)
| | - Danilo Alexandre Massini
- Department of Physical Education, School of Sciences (FC), São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil; (D.A.M.); (T.A.F.A.)
| | - Tiago André Freire Almeida
- Department of Physical Education, School of Sciences (FC), São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil; (D.A.M.); (T.A.F.A.)
| | - Luciana Maria dos Reis
- Institute of Motricity Sciences, Federal University of Alfenas (UNIFAL), Alfenas 37133-840, MG, Brazil; (A.G.M.); (L.M.d.R.); (G.G.); (A.T.S.S.)
- Pos-Graduation Program in Rehabilitation Sciences, Institute of Motricity Sciences, Federal University of Alfenas, Santa Clara Campus, Alfenas 37133-840, MG, Brazil
| | - Giovane Galdino
- Institute of Motricity Sciences, Federal University of Alfenas (UNIFAL), Alfenas 37133-840, MG, Brazil; (A.G.M.); (L.M.d.R.); (G.G.); (A.T.S.S.)
- Pos-Graduation Program in Rehabilitation Sciences, Institute of Motricity Sciences, Federal University of Alfenas, Santa Clara Campus, Alfenas 37133-840, MG, Brazil
| | - Adriana Teresa Silva Santos
- Institute of Motricity Sciences, Federal University of Alfenas (UNIFAL), Alfenas 37133-840, MG, Brazil; (A.G.M.); (L.M.d.R.); (G.G.); (A.T.S.S.)
- Pos-Graduation Program in Rehabilitation Sciences, Institute of Motricity Sciences, Federal University of Alfenas, Santa Clara Campus, Alfenas 37133-840, MG, Brazil
| | - Osvaldo Tadeu da Silva Júnior
- Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (O.T.d.S.J.); (R.V.J.)
| | - Rubens Venditti Júnior
- Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (O.T.d.S.J.); (R.V.J.)
- Department of Physical Education, School of Sciences (FC), São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil; (D.A.M.); (T.A.F.A.)
| | - Dalton Muller Pessôa Filho
- Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (O.T.d.S.J.); (R.V.J.)
- Department of Physical Education, School of Sciences (FC), São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil; (D.A.M.); (T.A.F.A.)
| |
Collapse
|
9
|
Brauwers B, Machado FVC, Beijers RJHCG, Spruit MA, Franssen FME. Combined Exercise Training and Nutritional Interventions or Pharmacological Treatments to Improve Exercise Capacity and Body Composition in Chronic Obstructive Pulmonary Disease: A Narrative Review. Nutrients 2023; 15:5136. [PMID: 38140395 PMCID: PMC10747351 DOI: 10.3390/nu15245136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that is associated with significant morbidity, mortality, and healthcare costs. The burden of respiratory symptoms and airflow limitation can translate to reduced physical activity, in turn contributing to poor exercise capacity, muscle dysfunction, and body composition abnormalities. These extrapulmonary features of the disease are targeted during pulmonary rehabilitation, which provides patients with tailored therapies to improve the physical and emotional status. Patients with COPD can be divided into metabolic phenotypes, including cachectic, sarcopenic, normal weight, obese, and sarcopenic with hidden obesity. To date, there have been many studies performed investigating the individual effects of exercise training programs as well as nutritional and pharmacological treatments to improve exercise capacity and body composition in patients with COPD. However, little research is available investigating the combined effect of exercise training with nutritional or pharmacological treatments on these outcomes. Therefore, this review focuses on exploring the potential additional beneficial effects of combinations of exercise training and nutritional or pharmacological treatments to target exercise capacity and body composition in patients with COPD with different metabolic phenotypes.
Collapse
Affiliation(s)
- Bente Brauwers
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine, Life Sciences, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Felipe V. C. Machado
- BIOMED (Biomedical Research Institute), REVAL (Rehabilitation Research Centre), Hasselt University, 3590 Hasselt, Belgium;
| | - Rosanne J. H. C. G. Beijers
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| | - Martijn A. Spruit
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| | - Frits M. E. Franssen
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| |
Collapse
|
10
|
Solon-Júnior LJF, Boullosa Alvarez DA, Martinez Gonzalez B, da Silva Machado DG, de Lima-Junior D, de Sousa Fortes L. The effect of tyrosine supplementation on whole-body endurance performance in physically active population: A systematic review and meta-analysis including GRADE qualification. J Sports Sci 2023; 41:2045-2053. [PMID: 38290812 DOI: 10.1080/02640414.2024.2309434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Although tyrosine supplementation is well recognized to improve cognitive function, its impact on endurance performance is debatable and needs to be clarified further. The purpose of this systematic review and meta-analysis was to evaluate the effects of tyrosine supplementation on whole-body endurance performance in physically active population. The search strategy follow the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), using four databases (Cochrane Library, Web of Science, Scopus, PsycINFO, and PubMed) until 3 August 2023. The effect of tyrosine (experimental condition) was compared against placebo (control condition). The methodological quality of the included studies was evaluated using the Physiotherapy Evidence Database (PEDro) scale. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE Pro software) System was also used to assess the quality of evidence. A total of 10 interventions from 8 studies were included. The sub-group analysis revealed no significant differences between tyrosine and placebo conditions for time to exhaustion (SMD = 0.02; p = 0.94) and time trial performance (SMD = -0.04; p = 0.85). The level of evidence as qualified with GRADE was moderate. In conclusion, moderate-quality evidence suggests that tyrosine supplementation is ineffective on endurance performance in the physically active population, independently of the endurance task (TTE or ETT).
Collapse
Affiliation(s)
| | - Daniel Alexandre Boullosa Alvarez
- Faculty of Physical Activity and Sports Sciences, Universidad de León, León, Spain
- Integrated Institute of Health, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| | | | | | | | | |
Collapse
|
11
|
Chen C, Yang S, Tang Y, Yu X, Chen C, Zhang C, Luo F. Correlation between strength/endurance of paraspinal muscles and sagittal parameters in patients with degenerative spinal deformity. BMC Musculoskelet Disord 2023; 24:643. [PMID: 37563700 PMCID: PMC10413613 DOI: 10.1186/s12891-023-06747-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Sagittal imbalance is a common cause of low back pain and dysfunction in patients with degenerative spinal deformity (DSD), which greatly affects their quality of life. Strength and endurance are important functional physical indexes for assessing muscle condition. However, the correlation between sagittal parameters and paraspinal muscle strength/endurance is not yet clear. The purpose of this study was to analyze the correlation between strength/endurance of paraspinal muscles and sagittal parameters in patients with DSD. METHODS There were 105 patients with DSD and 52 healthy volunteers (control group) enrolled. They were divided into the balance group [sagittal vertical axis (SVA) < 5 cm, n = 68] and imbalance group (SVA ≥ 5 cm, n = 37). The maximal voluntary exertion (MVE)/Endurance time (ET) of paravertebral muscles were assessed using the prone position test stand, and the sagittal parameters of the subjects were measured, namely, SVA, thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). Pearson coefficients were used to assess the correlation between paraspinal muscle MVE/ET and sagittal parameters. RESULTS MVE and ET of paravertebral muscles in the control group were significantly higher than those in the balance and imbalance groups (P < 0.05), whereas MVE in the balance group was significantly higher than that in the imbalance group (P < 0.05). SVA in the imbalance group was significantly higher than those in the control and balance groups (P < 0.05). SS and TK in the control group were significantly higher than those in the imbalance group (P < 0.05), and PT and PI in the control group were significantly lower than those in the balance and imbalance groups (P < 0.05). LL in the imbalance group was significantly lower than that in the balance and control groups (P < 0.05). MVE, MVE/BH, and MVE/BW of paraspinal muscles in the imbalance group were negatively correlated with SVA and PT. Moreover, they were positively correlated with LL. CONCLUSIONS Deformity may cause the decrease of MVE and ET of paraspinal muscles in the prone position in patients with DSD. Furthermore, the decline in MVE of paraspinal muscles may be a predisposing factor for the imbalance observed. The decrease of MVE/BW of paraspinal muscles may be involved in spinal compensation, and it is a sensitive indicator for sagittal imbalance and lumbar lordosis.
Collapse
Affiliation(s)
- Can Chen
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), No 30, Gaotanyan Street, 400038 Shapingba, Chongqing, China
- Department for Combat Casualty Care Training, Training Base for Army Health Care, Army Medical University (Third Military Medical University), 400038 Chongqing, China
| | - Sen Yang
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), No 30, Gaotanyan Street, 400038 Shapingba, Chongqing, China
- Department of Orthopaedics, The Hospital of Eighty-third Army, Xinxiang Medical College, 210 Wenhua Street, Hongqi District, 453000 Xinxiang, Henan province China
| | - Yong Tang
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), No 30, Gaotanyan Street, 400038 Shapingba, Chongqing, China
| | - Xueke Yu
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), No 30, Gaotanyan Street, 400038 Shapingba, Chongqing, China
| | - Chunhua Chen
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), No 30, Gaotanyan Street, 400038 Shapingba, Chongqing, China
| | - Chengmin Zhang
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), No 30, Gaotanyan Street, 400038 Shapingba, Chongqing, China
| | - Fei Luo
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), No 30, Gaotanyan Street, 400038 Shapingba, Chongqing, China
| |
Collapse
|
12
|
Pellicer-Caller R, Vaquero-Cristóbal R, González-Gálvez N, Abenza-Cano L, Horcajo J, de la Vega-Marcos R. Influence of Exogenous Factors Related to Nutritional and Hydration Strategies and Environmental Conditions on Fatigue in Endurance Sports: A Systematic Review with Meta-Analysis. Nutrients 2023; 15:2700. [PMID: 37375605 DOI: 10.3390/nu15122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this systematic review with meta-analysis was to examine the influence of exogenous factors related to nutritional and hydration strategies and environmental conditions, as modulators of fatigue, including factors associated with performance fatigability and perceived fatigability, in endurance tests lasting 45 min to 3 h. A search was carried out using four databases: PubMed, Web of Science, SPORTDiscus, and EBSCO. A total of 5103 articles were screened, with 34 included in the meta-analysis. The review was registered with PROSPERO (CRD42022327203) and adhered to the PRISMA guidelines. The study quality was evaluated according to the PEDro score and assessed using Rosenthal's fail-safe N. Carbohydrate (CHO) intake increased the time to exhaustion (p < 0.001) and decreased the heart rate (HR) during the test (p = 0.018). Carbohydrate with protein intake (CHO + PROT) increased lactate during the test (p = 0.039). With respect to hydration, dehydrated individuals showed a higher rate of perceived exertion (RPE) (p = 0.016) and had a higher body mass loss (p = 0.018). In hot conditions, athletes showed significant increases in RPE (p < 0.001), HR (p < 0.001), and skin temperature (p = 0.002), and a decrease in the temperature gradient (p < 0.001) after the test. No differences were found when athletes were subjected to altitude or cold conditions. In conclusion, the results revealed that exogenous factors, such as nutritional and hydration strategies, as well as environmental conditions, affected fatigue in endurance sports, including factors associated with performance fatigability and perceived fatigability.
Collapse
Affiliation(s)
- Roberto Pellicer-Caller
- Facultad de Deporte, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain
- Caller Energy Labs, Caller SportEnergy S.L., 39005 Santander, Spain
| | | | | | - Lucía Abenza-Cano
- Facultad de Deporte, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain
| | - Javier Horcajo
- Department of Social Psychology and Methodology, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Ricardo de la Vega-Marcos
- Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, 28049 Madrid, Spain
| |
Collapse
|
13
|
Mildenhall MJ, Maunder ED, Plews DJ, Lindinger MI, Cairns SP. Plasma Acidosis and Peak Power after a Supramaximal Trial in Elite Sprint and Endurance Cyclists: Effect of Bicarbonate. Med Sci Sports Exerc 2023; 55:932-944. [PMID: 36729629 DOI: 10.1249/mss.0000000000003104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE This study aimed to determine whether (i) a plasma acidosis contributes to a reduction of mechanical performance and (ii) bicarbonate supplementation blunts plasma acidosis and arterial oxygen desaturation to resist fatigue during the end spurt of a supramaximal trial in elite sprint and endurance cyclists. METHODS Elite/world-class cyclists ( n = 6 sprint, n = 6 endurance) completed two randomized, double-blind, crossover trials at 105%V̇O 2peak simulating 3 min of a 4-km individual pursuit, 90 min after ingestion of 0.3 g·kg -1 BM sodium bicarbonate (BIC) or placebo (PLA). Peak power output (PPO), optimal cadence and optimal peak torque, and fatigue were assessed using a 6-s "all-out sprint" before (PPO1) and after (PPO2) each trial. Plasma pH, bicarbonate, lactate - , K + , Na + , Ca 2+ , and arterial hemoglobin saturation (SpO 2 (%)), were measured. RESULTS Sprint cyclists exhibited a higher PPO, optimal pedal torque, and anaerobic power reserve (APR) than endurance cyclists. The trial reduced PPO (PLA) more for sprint (to 47% initial) than endurance cyclists (to 61% initial). Optimal cadence fell from ~151 to 92 rpm and cyclists with higher APR exhibited a reduced optimal peak torque. Plasma pH fell from 7.35 to 7.13 and plasma [lactate - ] increased from 1.2 to 19.6 mM (PLA), yet neither correlated with PPO loss. Sprint cyclists displayed a lesser plasma acidosis but greater fatigue than endurance cyclists. BIC increased plasma [HCO 3- ] (+6.8 mM) and plasma pH after PPO1 (+0.09) and PPO2 (+0.07) yet failed to influence mechanical performance. SpO 2 fell from 99% to 96% but was unrelated to the plasma acidosis and unaltered with BIC. CONCLUSIONS Plasma acidosis was not associated with the decline of PPO in a supramaximal trial with elite cyclists. BIC attenuated acid-base disturbances yet did not improve arterial oxygen desaturation or mechanical performance at the end-spurt stage.
Collapse
Affiliation(s)
| | - E D Maunder
- SPRINZ, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, NEW ZEALAND
| | - Daniel J Plews
- SPRINZ, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, NEW ZEALAND
| | - Michael I Lindinger
- Research and Development, The Nutraceutical Alliance, Burlington, Ontario, CANADA
| | - Simeon P Cairns
- SPRINZ, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, NEW ZEALAND
| |
Collapse
|
14
|
Held S, Rappelt L, Donath L. Acute and Chronic Performance Enhancement in Rowing: A Network Meta-analytical Approach on the Effects of Nutrition and Training. Sports Med 2023; 53:1137-1159. [PMID: 37097415 DOI: 10.1007/s40279-023-01827-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION This systematic review and network meta-analysis assessed via direct and indirect comparison the occurrence and magnitude of effects following different nutritional supplementation strategies and exercise interventions on acute and chronic rowing performance and its surrogates. METHODS PubMed, Web of Science, PsycNET and SPORTDiscus searches were conducted until March 2022 to identify studies that met the following inclusion criteria: (a) controlled trials, (b) rowing performance and its surrogate parameters as outcomes, and (c) peer-reviewed and published in English. Frequentist network meta-analytical approaches were calculated based on standardized mean differences (SMD) using random effects models. RESULTS 71 studies with 1229 healthy rowers (aged 21.5 ± 3.0 years) were included and two main networks (acute and chronic) with each two subnetworks for nutrition and exercise have been created. Both networks revealed low heterogeneity and non-significant inconsistency (I2 ≤ 35.0% and Q statistics: p ≥ 0.12). Based on P-score rankings, while caffeine (P-score 84%; SMD 0.43) revealed relevantly favorable effects in terms of acute rowing performance enhancement, whilst prior weight reduction (P-score 10%; SMD - 0.48) and extensive preload (P-score 18%; SMD - 0.34) impaired acute rowing performance. Chronic blood flow restriction training (P-score 96%; SMD 1.26) and the combination of β-hydroxy-β-methylbutyrate and creatine (P-score 91%; SMD 1.04) induced remarkably large positive effects, while chronic spirulina (P-score 7%; SMD - 1.05) and black currant (P-score 9%; SMD - 0.88) supplementation revealed impairment effects. CONCLUSION Homogeneous and consistent findings from numerous studies indicate that the choice of nutritional supplementation strategy and exercise training regimen are vital for acute and chronic performance enhancement in rowing.
Collapse
Affiliation(s)
- Steffen Held
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany.
- Department of Sport and Management, IST University of Applied Sciences, Duesseldorf, Germany.
| | - Ludwig Rappelt
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany
- Department of Movement and Training Science, University of Wuppertal, Wuppertal, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany
| |
Collapse
|
15
|
Effects of Capsaicin and Capsiate on Endurance Performance: A Meta-Analysis. Nutrients 2022; 14:nu14214531. [PMID: 36364793 PMCID: PMC9655695 DOI: 10.3390/nu14214531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022] Open
Abstract
Several studies have explored the effects of capsaicin and capsiate on endurance performance, with conflicting findings. This systematic review aimed to perform a meta-analysis examining the effects of capsaicin and capsiate vs. placebo on endurance performance in humans. Seven databases were searched to find eligible studies. The effects of capsaicin and capsiate on aerobic endurance (e.g., time-trials or time-to-exhaustion tests), muscular endurance (e.g., repetitions performed to muscular failure), and rating of perceived exertion (RPE) were examined in a random-effects meta-analysis. Fourteen studies (n = 183) were included in the review. Most studies provided capsaicin or capsiate in the dose of 12 mg, 45 min before exercise. In the meta-analysis for aerobic endurance, there was no significant difference between the placebo and capsaicin/capsiate conditions (Cohen’s d: 0.04; 95% confidence interval: −0.16, 0.25; p = 0.69). In subgroup meta-analyses, there were no significant differences between the placebo and capsaicin/capsiate conditions when analyzing only studies that used time-trials (p = 0.20) or time-to-exhaustion tests (p = 0.80). In the meta-analysis for muscular endurance, a significant ergogenic effect of capsaicin/capsiate was found (Cohen’s d: 0.27; 95% confidence interval: 0.10, 0.43; p = 0.002). When analyzing set-specific effects, an ergogenic effect of capsaicin/capsiate was found in set 1, set 2, and set 3 (Cohen’s d: 0.21–29). Capsaicin/capsiate ingestion reduced RPE following muscular endurance (p = 0.03) but not aerobic endurance tests (p = 0.58). In summary, capsaicin/capsiate supplementation acutely enhances muscular endurance, while the effects on aerobic endurance are less clear.
Collapse
|
16
|
Cannataro R, Straface N, Cione E. Nutritional supplements in combat sports: What we know and what we do. HUMAN NUTRITION & METABOLISM 2022; 29:200155. [DOI: 10.1016/j.hnm.2022.200155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
|
17
|
The Effect of Resistance Training on Bone Mineral Density in Older Adults: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2022; 10:healthcare10061129. [PMID: 35742181 PMCID: PMC9222380 DOI: 10.3390/healthcare10061129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Resistance training (RT) has been considered an intervention with effective stimulus on bone mineral formation and is, therefore, recommended to decrease the rate of bone morpho-functional proprieties loss with aging. Thus, this meta-analysis aimed to analyze the effectiveness of RT protocols in promoting changes in bone mineral density (BMD) in older adults. The systematic reviews and meta-analysis followed the PRISMA guidelines (PROSPERO CRD42020170859). The searches were performed in the electronic databases using descriptors according to the PICO strategy. The methodological quality and risk of bias were assessed with the PEDro scale, and the magnitude of the results was determined by Hedges’ g. Seven studies involving 370 elderlies, with the RT planned as a unique exercise mode of intervention, showed designs with four to five exercises for upper- and lower-limbs musculature, two to three sets per exercise, eight to twelve repetitions to failure at 70–90% 1 RM, 60–120 s of rest between sets, and executed three times per week for 12–52 weeks. The RT protocols were classified between good and excellent and evidenced a positive effect on the BMD at the hip (0.64%) and spine (0.62%) but not in the femoral neck (−0.22%) regardless of the intervention length. The narrow range of either positive or negative changes in the BMD after the RT intervention support, at best, a preventive effect against the increasing risk of bone frailty in an older population, which is evident beyond 12 weeks of RT practice engagement.
Collapse
|
18
|
Lopes-Silva JP, Correia-Oliveira CR. Acute effects of sodium bicarbonate ingestion on cycling time-trial performance: A systematic review and meta-analysis of randomized controlled trials. Eur J Sport Sci 2022; 23:943-954. [PMID: 35633035 DOI: 10.1080/17461391.2022.2071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study aimed to investigate the isolated effects of NaHCO3 on cycling time-trial performance. Furthermore, we investigated whether the ingestion time of NaHCO3, standardized or individualized based on time to peak, could be effective in improving cycling time-trial performance. A systematic review was carried out on randomized placebo-controlled studies. A random-effects meta-analysis assessed the standardized mean difference (SMD) between NaHCO3 and placebo conditions. Eighteen studies were qualitatively (systematic review) and quantitatively (meta-analysis) analysed concerning mean power output (Wmean) (n = 182) and time performance (n = 201). The reviewed studies showed a low risk of bias and homogenous results for Wmean (I2 = 0%) and performance time (I2 = 0%). Overall, when compared to placebo, the NaHCO3 ingestion improved the Wmean (SMD: 0.42; 95% CI: 0.21-0.63; P = 0.001) and performance time (SMD: 0.22; 95% CI: 0.02-0.43; P = 0.03). Similarly, the NaHCO3 ingestion using a time-to-peak strategy improved the Wmean (SMD: 0.39; 95% CI: 0.03-0.75; P = 0.04; I2 = 15%) and performance time (SMD: 0.34; 95% CI: 0.07-0.61, P = 0.01, I2 = 0%). The present findings reveal that NaHCO3 ingestion has the potential to increase the overall performance time and Wmean in cycling time trials. HighlightsNaHCO3 is an effective strategy to increase cycling time-trial performance.The standardized protocol did not improve the cycling time-trial performance parameters.The individualized time-to-peak NaHCO3 ingestion has a positive effect on time and Wmean during cycling time-trial performance.
Collapse
Affiliation(s)
- João Paulo Lopes-Silva
- Applied Research Group to Performance and Health, CESMAC University Center, Maceió, Brazil
| | | |
Collapse
|
19
|
Guidelines for performing systematic reviews in sports science. Biol Sport 2022; 39:463-471. [PMID: 35309539 PMCID: PMC8919872 DOI: 10.5114/biolsport.2022.106386] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Abstract
Most of the reviews carried out in sports science have used the general items suggested by Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA). Due to the specific requirements of each knowledge area, several modifications of the PRISMA are necessary to optimize the process of the systematic reviews and, in consequence, the quality of the conclusions provided in this type of study. Therefore, this work aimed to adapt PRISMA to provide specific guidelines to carry out systematic reviews in sports science. The methodology criteria (search strategy, databases, and eligibility) and the results section (flow diagrams and study contents) were adapted based on previous studies, and several new considerations were added to design the new guidelines. We compiled 28 items suggested by sports science researchers and included two new items: (i) population/problem (i.e., age, level, and country) and (ii) the entire training process, which is monitored and compared between groups (e.g., total training load). To maximize the benefit of this document, we encourage people to read it in conjunction with the PRISMA statement. The main differences between PRISMA and the PRISMA adapted to sports science were related to registration, search strategy, flow diagrams, and results. Application of the new guidelines could improve the information provided to readers and make it easier to generalize and compare the results in sports science.
Collapse
|
20
|
de Oliveira LF, Dolan E, Swinton PA, Durkalec-Michalski K, Artioli GG, McNaughton LR, Saunders B. Extracellular Buffering Supplements to Improve Exercise Capacity and Performance: A Comprehensive Systematic Review and Meta-analysis. Sports Med 2022; 52:505-526. [PMID: 34687438 DOI: 10.1007/s40279-021-01575-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Extracellular buffering supplements [sodium bicarbonate (SB), sodium citrate (SC), sodium/calcium lactate (SL/CL)] are ergogenic supplements, although questions remain about factors which may modify their effect. OBJECTIVE To quantify the main effect of extracellular buffering agents on exercise outcomes, and to investigate the influence of potential moderators on this effect using a systematic review and meta-analytic approach. METHODS This study was designed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Three databases were searched for articles that were screened according to inclusion/exclusion criteria. Bayesian hierarchical meta-analysis and meta-regression models were used to investigate pooled effects of supplementation and moderating effects of a range of factors on exercise and biomarker responses. RESULTS 189 articles with 2019 participants were included, 158 involving SB supplementation, 30 with SC, and seven with CL/SL; four studies provided a combination of buffering supplements together. Supplementation led to a mean estimated increase in blood bicarbonate of + 5.2 mmol L-1 (95% credible interval (CrI) 4.7-5.7). The meta-analysis models identified a positive overall effect of supplementation on exercise capacity and performance compared to placebo [ES0.5 = 0.17 (95% CrI 0.12-0.21)] with potential moderating effects of exercise type and duration, training status and when the exercise test was performed following prior exercise. The greatest ergogenic effects were shown for exercise durations of 0.5-10 min [ES0.5 = 0.18 (0.13-0.24)] and > 10 min [ES0.5 = 0.22 (0.10-0.33)]. Evidence of greater effects on exercise were obtained when blood bicarbonate increases were medium (4-6 mmol L-1) and large (> 6 mmol L-1) compared with small (≤ 4 mmol L-1) [βSmall:Medium = 0.16 (95% CrI 0.02-0.32), βSmall:Large = 0.13 (95% CrI - 0.03 to 0.29)]. SB (192 outcomes) was more effective for performance compared to SC (39 outcomes) [βSC:SB = 0.10 (95% CrI - 0.02 to 0.22)]. CONCLUSIONS Extracellular buffering supplements generate large increases in blood bicarbonate concentration leading to positive overall effects on exercise, with sodium bicarbonate being most effective. Evidence for several group-level moderating factors were identified. These data can guide an athlete's decision as to whether supplementation with buffering agents might be beneficial for their specific aims.
Collapse
Affiliation(s)
- Luana Farias de Oliveira
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | - Eimear Dolan
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| | - Krzysztof Durkalec-Michalski
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Guilherme G Artioli
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Manchester, M1 5GD, UK
| | - Lars R McNaughton
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | - Bryan Saunders
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil.
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland.
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
“Food First but Not Always Food Only”: Recommendations for Using Dietary Supplements in Sport. Int J Sport Nutr Exerc Metab 2022; 32:371-386. [DOI: 10.1123/ijsnem.2021-0335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022]
Abstract
The term “food first” has been widely accepted as the preferred strategy within sport nutrition, although there is no agreed definition of this and often limited consideration of the implications. We propose that food first should mean “where practically possible, nutrient provision should come from whole foods and drinks rather than from isolated food components or dietary supplements.” There are many reasons to commend a food first strategy, including the risk of supplement contamination resulting in anti-doping violations. However, a few supplements can enhance health and/or performance, and therefore a food only approach could be inappropriate. We propose six reasons why a food only approach may not always be optimal for athletes: (a) some nutrients are difficult to obtain in sufficient quantities in the diet, or may require excessive energy intake and/or consumption of other nutrients; (b) some nutrients are abundant only in foods athletes do not eat/like; (c) the nutrient content of some foods with established ergogenic benefits is highly variable; (d) concentrated doses of some nutrients are required to correct deficiencies and/or promote immune tolerance; (e) some foods may be difficult to consume immediately before, during or immediately after exercise; and (f) tested supplements could help where there are concerns about food hygiene or contamination. In these situations, it is acceptable for the athlete to consider sports supplements providing that a comprehensive risk minimization strategy is implemented. As a consequence, it is important to stress that the correct terminology should be “food first but not always food only.”
Collapse
|
22
|
The use of real-time monitoring during flywheel resistance training programmes: how can we measure eccentric overload? A systematic review and meta-analysis. Biol Sport 2021; 38:639-652. [PMID: 34937974 PMCID: PMC8670814 DOI: 10.5114/biolsport.2021.101602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
This systematic review and meta-analysis aimed to analyse the technologies and main training variables used in the literature to monitor flywheel training devices in real time. In addition, as the main research question, we investigated how eccentric overload can be effectively monitored in relation to the training variable, flywheel shaft type device and the moment of inertia selected. The initial search resulted in 11,621 articles that were filtered to twenty-eight and seventeen articles that met the inclusion criteria for the systematic review and meta-analysis, respectively. The main technologies used included force sensors and rotary/linear encoders, mainly to monitor peak or mean force, power or speed. An eccentric overload was not always achieved using flywheel devices. The eccentric overload measurement was related to the main outcome selected. While mean force (p = 0.011, ES = -0.84) and mean power (p < 0.001, ES = -0.30) favoured the concentric phase, peak power (p < 0.001, ES = 0.78) and peak speed (p < 0.001, ES = 0.37) favoured the eccentric phase. In addition, the lower moments of inertia (i.e., from 0.01 to 0.2 kg·m2) and a cylindrical shaft type (i.e., vs conical pulley) showed higher possibilities to achieve eccentric overload. A wide variety of technologies can be used to monitor flywheel devices, but to achieve eccentric overload, a flywheel cylindrical shaft type with low moments of inertia is advised to be used.
Collapse
|
23
|
de Sousa MV, Lundsgaard AM, Christensen PM, Christensen L, Randers MB, Mohr M, Nybo L, Kiens B, Fritzen AM. Nutritional optimization for female elite football players-topical review. Scand J Med Sci Sports 2021; 32 Suppl 1:81-104. [PMID: 34865242 DOI: 10.1111/sms.14102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
Women's football is an intermittent sport characterized by frequent intense actions throughout the match. The high number of matches with limited recovery time played across a long competitive season underlines the importance of nutritional strategies to meet these large physical demands. In order to maximize sport performance and maintain good health, energy intake must be optimal. However, a considerable proportion of female elite football players does not have sufficient energy intake to match the energy expenditure, resulting in low energy availability that might have detrimental physiologic consequences and impair performance. Carbohydrates appear to be the primary fuel covering the total energy supply during match-play, and female elite football players should aim to consume sufficient carbohydrates to meet the requirements of their training program and to optimize the replenishment of muscle glycogen stores between training bouts and matches. However, several macro- and micronutrients are important for ensuring sufficient energy and nutrients for performance optimization and for overall health status in female elite football players. The inadequacy of macro-and micronutrients in the diet of these athletes may impair performance and training adaptations, and increase the risk of health disorders, compromising the player's professional career. In this topical review, we present knowledge and relevant nutritional recommendations for elite female football players for the benefit of sports nutritionists, dietitians, sports scientists, healthcare specialists, and applied researchers. We focus on dietary intake and cover the most pertinent topics in sports nutrition for the relevant physical demands in female elite football players as follows: energy intake, macronutrient and micronutrient requirements and optimal composition of the everyday diet, nutritional and hydration strategies to optimize performance and recovery, potential ergogenic effects of authorized relevant supplements, and future research considerations.
Collapse
Affiliation(s)
- Maysa V de Sousa
- Laboratory of Medical Investigation, LIM-18, Endocrinology Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anne-Marie Lundsgaard
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars Christensen
- Department of Nutrition, Exercise and Sports, Section of Obesity Research, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten B Randers
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark.,School of Sport Sciences, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark.,Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Wilson P. Sport supplements and the athlete's gut: a review. Int J Sports Med 2021; 43:840-849. [PMID: 34814219 DOI: 10.1055/a-1704-3086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vigorous or prolonged exercise poses a challenge to gastrointestinal system functioning and is associated with digestive symptoms. This narrative review addresses 1) the potential of dietary supplements to enhance gut function and reduce exercise-associated gastrointestinal symptoms and 2) strategies for reducing gastrointestinal-related side effects resulting from popular sports supplements. Several supplements, including probiotics, glutamine, and bovine colostrum, have been shown to reduce markers of gastrointestinal damage and permeability with exercise. Yet, the clinical ramifications of these findings are uncertain, as improvements in symptoms have not been consistently observed. Among these supplements, probiotics modestly reduced exercise-associated gastrointestinal symptoms in a few studies, suggesting they are the most evidenced-based choice for athletes looking to manage such symptoms through supplementation. Carbohydrate, caffeine, and sodium bicarbonate are evidence-based supplements that can trigger gastrointestinal symptoms. Using glucose-fructose mixtures is beneficial when carbohydrate ingestion is high (>50 g/h) during exercise, and undertaking multiple gut training sessions prior to competition may also be helpful. Approaches for preventing caffeine-induced gastrointestinal disturbances include using low-to-moderate doses (<500 mg) and avoiding/minimizing exacerbating factors (stress, anxiety, other stimulants, fasting). Adverse gastrointestinal effects of sodium bicarbonate can be avoided by using enteric-coated formulations, low doses (0.2 g/kg), or multi-day loading protocols.
Collapse
Affiliation(s)
- Patrick Wilson
- Human Movement Sciences, Old Dominion University, Norfolk, United States
| |
Collapse
|
25
|
Grgic J, Grgic I, Del Coso J, Schoenfeld BJ, Pedisic Z. Effects of sodium bicarbonate supplementation on exercise performance: an umbrella review. J Int Soc Sports Nutr 2021; 18:71. [PMID: 34794476 PMCID: PMC8600864 DOI: 10.1186/s12970-021-00469-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/03/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We aimed to perform an umbrella review of meta-analyses examining the effects of sodium bicarbonate supplementation on exercise performance. METHODS We systematically searched for meta-analyses that examined the effects of sodium bicarbonate supplementation on exercise performance. The methodological quality of the included reviews was evaluated using the Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR 2) checklist. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework for downgrading the certainty in evidence was used, which included assessments of risk of bias, inconsistency, indirectness, imprecision, and publication bias. RESULTS Eight reviews of moderate and high methodological quality met inclusion criteria. Using the GRADE framework, evidence for the ergogenic effects of sodium bicarbonate supplementation on peak and mean power in the Wingate test and Yo-Yo test performance was classified as being of moderate quality. The evidence for these outcomes did not receive a point on the indirectness GRADE item, as "serious indirectness" was detected. Low-quality evidence was found for the ergogenic effect of sodium bicarbonate supplementation on endurance events lasting ∼45 s to 8 min, muscle endurance, and 2000-m rowing performance. Evidence for these outcomes was classified as low quality, given that risk of bias, indirectness, and publication bias were assessed as "unclear", "serious", and "strongly suspected", respectively. The ergogenic effects ranged from trivial (pooled effect size: 0.09) to large (pooled effect size: 1.26). Still, for most outcomes, sodium bicarbonate elicited comparable ergogenic effects. For example, sodium bicarbonate produced similar effects on performance in endurance events lasting ∼45 s to 8 min, muscle endurance tests, and Yo-Yo test (pooled effect size range: 0.36 to 0.40). No significant differences between the effects of sodium bicarbonate and placebo were found for general mean power, muscle strength, and repeated-sprint ability. CONCLUSION Based on meta-analyses of moderate to high quality, it can be concluded that sodium bicarbonate supplementation acutely enhances peak anaerobic power, anaerobic capacity, performance in endurance events lasting ∼45 s to 8 min, muscle endurance, 2000-m rowing performance, and high-intensity intermittent running. More research is needed among women to improve the generalizability of findings.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, Australia.
| | - Ivana Grgic
- County Hospital Schrobenhausen, Schrobenhausen, Germany
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, Spain
| | | | - Zeljko Pedisic
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
26
|
Grgic J, Pedisic Z, Saunders B, Artioli GG, Schoenfeld BJ, McKenna MJ, Bishop DJ, Kreider RB, Stout JR, Kalman DS, Arent SM, VanDusseldorp TA, Lopez HL, Ziegenfuss TN, Burke LM, Antonio J, Campbell BI. International Society of Sports Nutrition position stand: sodium bicarbonate and exercise performance. J Int Soc Sports Nutr 2021; 18:61. [PMID: 34503527 PMCID: PMC8427947 DOI: 10.1186/s12970-021-00458-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Based on a comprehensive review and critical analysis of the literature regarding the effects of sodium bicarbonate supplementation on exercise performance, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Supplementation with sodium bicarbonate (doses from 0.2 to 0.5 g/kg) improves performance in muscular endurance activities, various combat sports, including boxing, judo, karate, taekwondo, and wrestling, and in high-intensity cycling, running, swimming, and rowing. The ergogenic effects of sodium bicarbonate are mostly established for exercise tasks of high-intensity that last between 30 s and 12 min. 2. Sodium bicarbonate improves performance in single- and multiple-bout exercise. 3. Sodium bicarbonate improves exercise performance in both men and women. 4. For single-dose supplementation protocols, 0.2 g/kg of sodium bicarbonate seems to be the minimum dose required to experience improvements in exercise performance. The optimal dose of sodium bicarbonate dose for ergogenic effects seems to be 0.3 g/kg. Higher doses (e.g., 0.4 or 0.5 g/kg) may not be required in single-dose supplementation protocols, because they do not provide additional benefits (compared with 0.3 g/kg) and are associated with a higher incidence and severity of adverse side-effects. 5. For single-dose supplementation protocols, the recommended timing of sodium bicarbonate ingestion is between 60 and 180 min before exercise or competition. 6. Multiple-day protocols of sodium bicarbonate supplementation can be effective in improving exercise performance. The duration of these protocols is generally between 3 and 7 days before the exercise test, and a total sodium bicarbonate dose of 0.4 or 0.5 g/kg per day produces ergogenic effects. The total daily dose is commonly divided into smaller doses, ingested at multiple points throughout the day (e.g., 0.1 to 0.2 g/kg of sodium bicarbonate consumed at breakfast, lunch, and dinner). The benefit of multiple-day protocols is that they could help reduce the risk of sodium bicarbonate-induced side-effects on the day of competition. 7. Long-term use of sodium bicarbonate (e.g., before every exercise training session) may enhance training adaptations, such as increased time to fatigue and power output. 8. The most common side-effects of sodium bicarbonate supplementation are bloating, nausea, vomiting, and abdominal pain. The incidence and severity of side-effects vary between and within individuals, but it is generally low. Nonetheless, these side-effects following sodium bicarbonate supplementation may negatively impact exercise performance. Ingesting sodium bicarbonate (i) in smaller doses (e.g., 0.2 g/kg or 0.3 g/kg), (ii) around 180 min before exercise or adjusting the timing according to individual responses to side-effects, (iii) alongside a high-carbohydrate meal, and (iv) in enteric-coated capsules are possible strategies to minimize the likelihood and severity of these side-effects. 9. Combining sodium bicarbonate with creatine or beta-alanine may produce additive effects on exercise performance. It is unclear whether combining sodium bicarbonate with caffeine or nitrates produces additive benefits. 10. Sodium bicarbonate improves exercise performance primarily due to a range of its physiological effects. Still, a portion of the ergogenic effect of sodium bicarbonate seems to be placebo-driven.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, Australia.
| | - Zeljko Pedisic
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, Sao Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, Sao Paulo, Brazil
| | - Guilherme G Artioli
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | | | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Jeffrey R Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Douglas S Kalman
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
- Scientific Affairs. Nutrasource, Guelph, ON, Canada
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Hector L Lopez
- The Center for Applied Health Sciences, Stow, OH, USA
- Supplement Safety Solutions, Bedford, MA, 01730, USA
| | | | - Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, 33314, USA
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
27
|
Increased Performance in Elite Runners Following Individualized Timing of Sodium Bicarbonate Supplementation. Int J Sport Nutr Exerc Metab 2021; 31:453-459. [PMID: 34470913 DOI: 10.1123/ijsnem.2020-0352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/11/2021] [Accepted: 06/20/2021] [Indexed: 11/18/2022]
Abstract
The present study investigated individualized sodium bicarbonate (NaHCO3-) supplementation in elite orienteers and its effects on alkalosis and performance in a simulated sprint orienteering competition. Twenty-one Danish male and female elite orienteers (age = 25.2 ± 3.6 years, height = 176.4 ± 10.9 cm, body mass = 66.6 ± 7.9 kg) were tested twice in order to identify individual time to peak blood bicarbonate (HCO3- peak) following supplementation of 0.3 g/kg body mass NaHCO3 with and without warm-up. The athletes also performed two 3.5 km time-trial runs (TT-runs) following individualized timing of NaHCO3 supplementation (SBS) or placebo (PLA) on separate days in a randomized, double-blind, cross-over design. The occurrence of individual peak HCO3- and pH ranged from 60 to 180 min. Mean HCO3- and pH in SBS were significantly higher compared with PLA 10 min before and following the TT-run (p < .01). SBS improved overall performance in the 3.5 km TT-run by 6 s compared with PLA (775.5 ± 16.2 s vs. 781.4 ± 16.1 s, respectively; p < .05). SBS improved performance in the last half of the TT-run compared with PLA (p < .01). In conclusion, supplementation with NaHCO3 followed by warm-up resulted in individualized alkalosis peaks ranging from 60 to 180 min. Individualized timing of SBS in elite orienteers induced significant alkalosis before and after a 3.5 km TT and improved overall performance time by 6 s, which occurred in the last half of the time trial. The present data show that the anaerobic buffer system is important for performance in these types of endurance events lasting 12-15 min.
Collapse
|
28
|
Grgic J, Mikulic P. Ergogenic Effects of Sodium Bicarbonate Supplementation on Middle-, But Not Short-Distance Swimming Tests: A Meta-Analysis. J Diet Suppl 2021; 19:791-802. [PMID: 34151681 DOI: 10.1080/19390211.2021.1942381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This meta-analysis explored the effects of sodium bicarbonate supplementation on swimming performance. Seven databases were searched to find relevant studies. A random-effects meta-analysis of standardized mean differences (SMD) was performed to analyze the data. Nine studies were included in the review. There was no significant difference between placebo and sodium bicarbonate when considering data from all included studies (SMD: -0.10; p = 0.208) or in the subgroup analysis for 91.4-m and 100-m swimming tests (SMD: 0.11; p = 0.261). In the subgroup analysis for 200-m and 400-m swimming tests, there was a significant ergogenic effect of sodium bicarbonate (SMD: -0.22; p < 0.001; -1.3%). Overall, these results suggest that sodium bicarbonate ingestion improves performance in 200-m and 400-m swimming events. The ergogenic effects of this supplement were small, but they may also be of substantial practical importance given that placings in swimming competitions are commonly determined by narrow margins.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Pavle Mikulic
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
29
|
Acute Effect of Citrulline Malate on Repetition Performance During Strength Training: A Systematic Review and Meta-Analysis. Int J Sport Nutr Exerc Metab 2021; 31:350-358. [PMID: 34010809 DOI: 10.1123/ijsnem.2020-0295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/25/2020] [Accepted: 01/31/2021] [Indexed: 11/18/2022]
Abstract
Citrulline malate (CitMal) is a dietary supplement that is suggested to enhance strength training performance. However, there is conflicting evidence on this matter. Thus, the purpose of this meta-analysis was to determine whether supplementing with CitMal prior to strength training could increase the total number of repetitions performed before reaching voluntary muscular failure. A systematic search was conducted wherein the inclusion criteria were double-blind, placebo-controlled studies in healthy participants that examined the effect of CitMal on repetitions to failure during upper body and lower body resistance exercises. The Hedges's g standardized mean differences (SMD) between the placebo and CitMal trials were calculated and used in a random effect model. Two separate subanalyses were performed for upper body and lower body exercises. Eight studies, including 137 participants who consisted of strength-trained men (n = 101) and women (n = 26) in addition to untrained men (n = 9), fulfilled the inclusion criteria. Across the studies, 14 single-joint and multijoint exercises were performed with an average of 51 ± 23 total repetitions during 5 ± 3 sets per exercise at ∼70% of one-repetition maximum. Supplementing with 6-8 g of CitMal 40-60 min before exercise increased repetitions by 3 ± 5 (6.4 ± 7.9%) compared with placebo (p = .022) with a small SMD (0.196). The subanalysis for the lower body resulted in a tendency for an effect of the supplement (8.1 ± 8.4%, SMD: 0.27, p = .051) with no significant effect for the upper body (5.7 ± 8.4%, SMD: 0.16, p = .131). The current analysis observed a small ergogenic effect of CitMal compared with placebo. Acute CitMal supplementation may, therefore, delay fatigue and enhance muscle endurance during high-intensity strength training.
Collapse
|
30
|
Lino RS, Lagares LS, Oliveira CVC, Queiroz CO, Pinto LLT, Almeida LAB, Bonfim ES, Santos CPCD. Effect of sodium bicarbonate supplementation on two different performance indicators in sports: a systematic review with meta-analysis. Phys Act Nutr 2021; 25:7-15. [PMID: 33887823 PMCID: PMC8076585 DOI: 10.20463/pan.2021.0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022] Open
Abstract
[Purpose] Sodium bicarbonate shows ergogenic potential in physical exercise and sports activities, although there is no strong evidence which performance markers show the greatest benefit from this supplement. This study evaluated the effects of sodium bicarbonate supplementation on time trial performance and time to exhaustion in athletes and sports practitioners. [Methods] A systematic review was conducted using three databases, including 17 clinical trials. Among these clinical trials, 11 were considered eligible for the meta-analysis according to the criteria for the assessment of methodological quality using the PEDro Scale. Time to exhaustion was assessed in six studies, while time trial performance was evaluated in five studies. [Results] A significant beneficial effect of supplementation on time to exhaustion was found in a random effects model (1.48; 95% confidence interval [CI], 0.49 to 2.48). There was no significant effect of supplementation on time trial performance in a fixed effects model (slope = −0.75; 95% CI, −2.04 to 0.55) relative to a placebo group. [Conclusion] Sodium bicarbonate has the potential to improve sports performance in general, especially in terms of time to exhaustion.
Collapse
Affiliation(s)
- Ramon Souza Lino
- Research and Study Group on Health and Human Performance, Bahian School of Medicine and Public Health, Bahia, Brazil
| | - Laura Souza Lagares
- Research and Study Group on Health and Human Performance, Bahian School of Medicine and Public Health, Bahia, Brazil
| | | | - Ciro Oliveira Queiroz
- Research and Study Group on Health and Human Performance, Bahian School of Medicine and Public Health, Bahia, Brazil
| | - Lélia Lessa Teixeira Pinto
- Research and Study Group on Health and Human Performance, Bahian School of Medicine and Public Health, Bahia, Brazil
| | | | | | | |
Collapse
|
31
|
New insights into muscle function in chronic kidney disease and metabolic acidosis. Curr Opin Nephrol Hypertens 2021; 30:369-376. [PMID: 33767065 DOI: 10.1097/mnh.0000000000000700] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW : Sarcopenia, defined as decreased muscle mass or function, is prevalent in chronic kidney disease (CKD) increasing the risk of mobility impairment and frailty. CKD leads to metabolic acidosis (MA) and retention of uremic toxins contributing to insulin resistance and impaired muscle mitochondrial energetics. Here we focus on the central role of muscle mitochondrial metabolism in muscle function. RECENT FINDINGS : Mitochondrial dysfunction underlies muscle wasting and poor physical endurance in CKD. Uremic toxins accumulate in muscle disrupting mitochondrial respiration and enzymes. Changes in mitochondrial quantity, quality, and oxidative capacity contribute to mobility impairment in CKD. Major determinants of muscle mitochondrial function are kidney function, inflammation, and oxidative stress. In CKD, MA is the major determinant of muscle mitochondrial function. Metabolomics reveals defects in pathways linked to mitochondrial energy metabolism and acid-base homeostasis underlying insulin resistance in CKD. SUMMARY : Decreased mitochondrial capacity and quality control can impair muscle function contributing to decreased physical endurance. MA augments insulin resistance perpetuating the catabolic state underlying muscle wasting in CKD. Further studies are needed to investigate if targeting of MA improves muscle mitochondrial function and insulin resistance translating into meaningful improvements in physical endurance.
Collapse
|
32
|
Saunders B, Oliveira LFD, Dolan E, Durkalec-Michalski K, McNaughton L, Artioli GG, Swinton PA. Sodium bicarbonate supplementation and the female athlete: A brief commentary with small scale systematic review and meta-analysis. Eur J Sport Sci 2021; 22:745-754. [PMID: 33487131 DOI: 10.1080/17461391.2021.1880649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sodium bicarbonate (SB) is considered an effective ergogenic supplement for improving high-intensity exercise capacity and performance, although recent data suggests that women may be less amenable to its ergogenic effects than men. Currently, an apparent paucity of data on women means no consensus exists on whether women benefit from SB supplementation. The aim of the current study was to quantify the proportion of the published literature on SB supplementation that includes women, and to synthesise the evidence regarding its effects on blood bicarbonate and exercise performance in women by performing a systematic review and meta-analysis. Electronic searches of the literature were undertaken using three databases (MEDLINE, Embase, SPORTDiscus) to identify relevant articles. All meta-analyses were performed within a Bayesian framework. A total of 149 SB articles were identified, 11 of which contained individual group data for women. Results indicated a pooled blood bicarbonate increase of 7.4 [95%CrI: 4.2-10.4 mmol·L-1] following supplementation and a pooled standardised exercise effect size of 0.37 [95%CrI: -0.06-0.92]. The SB literature is skewed, with only 20% (30 studies) of studies employing female participants, of which only 11 studies (7.4%) provided group analyses exclusively in women. Despite the small amount of available data, results are consistent in showing that SB supplementation in women leads to large changes in blood bicarbonate and that there is strong evidence for a positive ergogenic effect on exercise performance that is likely to be small to medium in magnitude.Highlights This study aimed to quantify the proportion of the published literature on sodium bicarbonate supplementation that includes women and to synthesise the evidence regarding its ergogenic effect on women, using a systematic review and meta-analytic approach.The sodium bicarbonate literature is skewed, with only 30 studies (20%) employing female participants, of which only 11 studies (7.4%) provided group analyses exclusively in women.Despite the small amount of available data, results are consistent in showing that sodium bicarbonate supplementation in women leads to large changes in blood bicarbonate and that there is strong evidence for a positive ergogenic effect on exercise performance that is likely small to medium in magnitude.Based on these findings, we do not believe there is any evidence to support sex-specific sodium bicarbonate dosing recommendations and that current recommendations of 0.2-0.3 g·kg-1BM of SB taken 60-180 min prior to high-intensity exercise appear appropriate for the female athlete.
Collapse
Affiliation(s)
- Bryan Saunders
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil.,Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil.,Department of Dietetics, Poznań University of Physical Education, Poznań, Poland
| | - Luana Farias de Oliveira
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | - Eimear Dolan
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | - Krzysztof Durkalec-Michalski
- Department of Dietetics, Poznań University of Physical Education, Poznań, Poland.,Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Lars McNaughton
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | - Guilherme Giannini Artioli
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
33
|
A Survey on Dietary Supplement Consumption in Amateur and Professional Rugby Players. Foods 2020; 10:foods10010007. [PMID: 33375061 PMCID: PMC7822035 DOI: 10.3390/foods10010007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose: the aim of the present study was to analyse the pattern of dietary supplements (DS) consumption on federated rugby players, including the analysis of differences based on the sex and competitive level (professional vs. amateurs). Material and methods: 144 rugby players (83 male and 61 female), of whom 69 were professionals and 75 amateurs, were recruited for the study. All the participants filled out a specific questionnaire about DS consumption including questions related to the consumption of DS and their effects on sport performance and health status. Results: 65.3% of participants declared consuming at least one DS, with a higher prevalence in males than females (77.1% vs. 49.2%) and in professionals thanin amateur players (79.7% vs. 52.0%). The main reason for consumption was to enhance sport performance (62.3%) with differences only based on sex (74.3% males vs. 43.2% females). The most common purchase sites were the Internet (45.6%) and specialised stores (39.8%). As to the moment of ingestion, professionals did this most frequently during competition and training (56.4% vs. 28.2%), whereas amateur players did so only during competition (20.5% vs. 3.6%). Moreover, professional player intake most frequently in post-exercise (65.5% vs. 35.9%), whereas amateur during pre-exercise (30.8% vs. 5.5%). The DS most consumed included whey protein (44%), caffeine (42%), sports drinks (38%), energy bars (34%) and creatine monohydrate (31%), with a higher prevalence in male and professional players of whey protein and creatine monohydrate. Conclusions: The main reason for DS consumption is for enhancing sports performance). Professional players more frequently purchase them on the Internet and consume DS during training and competition period and in the post-exercise, whereas amateur players consume during competition and pre-exercise. Related to the main form of DS consumption, it is observed that a moderate consumption of DS could be considered ergogenic, such as whey protein, sport bar and creatine, while an absence of other DS could be considered ergogenic.
Collapse
|
34
|
Grgic J. Effects of Sodium Bicarbonate Ingestion on Measures of Wingate Test Performance: A Meta-Analysis. J Am Coll Nutr 2020; 41:1-10. [DOI: 10.1080/07315724.2020.1850370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| |
Collapse
|
35
|
Dalle S, Koppo K, Hespel P. Sodium bicarbonate improves sprint performance in endurance cycling. J Sci Med Sport 2020; 24:301-306. [PMID: 34756350 DOI: 10.1016/j.jsams.2020.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/14/2020] [Accepted: 09/12/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Oral sodium bicarbonate intake (NaHCO3) may improve performance in short maximal exercise by inducing metabolic alkalosis. However, it remains unknown whether NaHCO3 also enhances all-out performance at the end of an endurance competition. Therefore, the present study investigated the effect of stacked NaHCO3 loading on sprint performance following a 3-h simulated cycling race. DESIGN Double-blind randomized placebo-controlled cross-over study. METHODS Eleven trained male cyclists (22.3 (18.3-25.3) year; 73.0 (61.5-88) kg; VO2max: 63.7 (57-72) mlkg-1min-1) ingested either 300mgkg-1 body weight NaHCO3 (BIC) or NaCl (PL). NaHCO3 or NaCl was supplemented prior to (150mgkg-1) and during (150mgkg-1) a 3-h simulated cycling race with a 90-s all-out sprint (90S) at the end. Capillary blood samples were collected for determination of blood pH, lactate and HCO3- concentrations. Analysis of variance (lactate, pH, HCO3-) and paired t-test (power) were applied to compare variables across condition (and time). RESULTS NaHCO3 intake improved mean power during 90S by ∼3% (541±59W vs. 524±57W in PL, p=0.047, Cohen's D=0.28, medium). Peak blood lactate concentration and heart rate at the end of 90S were higher (p<0.05) in BIC (16.2±4.1mmoll1, 184±7bpm) than in PL (12.4±4.2mmoll-1, 181±5bpm). NaHCO3 ingestion increased blood [HCO3-] (31.5±1.3 vs. 24.4±1.5mmoll-1 in PL, p<0.001) and blood pH (7.50±0.01 vs. 7.41±0.03 in PL, p<0.05) prior to 90S. CONCLUSIONS NaHCO3 supplementation prior and during endurance exercise improves short all-out exercise performance at the end of the event. Therefore, sodium bicarbonate intake can be applied as a strategy to increase success rate in endurance competitions.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium; Bakala Academy Athletic Performance Center, KU Leuven, Belgium.
| |
Collapse
|
36
|
Grgic J. Effects of Combining Caffeine and Sodium Bicarbonate on Exercise Performance: A Review with Suggestions for Future Research. J Diet Suppl 2020; 18:444-460. [DOI: 10.1080/19390211.2020.1783422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| |
Collapse
|