1
|
Jaén-Carrillo D, Margarit-Boscà A, García-Pinillos F, Holler M. Pacing Strategy and Resulting Performance of Elite Trail Runners: Insights From the 2023 World Mountain and Trail Running Championships. Int J Sports Physiol Perform 2025; 20:449-456. [PMID: 39884270 DOI: 10.1123/ijspp.2024-0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025]
Abstract
PURPOSE Pacing is crucial in endurance sports such as running, and its importance is also prominent in trail running due to the unique challenges, including high elevation gains and varied terrain. This study aimed to explore the pacing strategies of elite athletes during the 2023 World Mountain and Trail Running Championships for the Trail Short distance. METHODS The participants included 12 elite trail runners who provided their race data from sport watches for analysis. RESULTS The findings indicate a significant decrease in grade-adjusted pace (vi) as the race progressed, with an average change of -18.7% from the start to the last downhill segment. A linear correlation of -.55 (P = .031) was observed between the winning time and the evolution of vi, suggesting that more consistent pacing led to better performance. The Student t test (t = 2.628, numerator degrees of freedom = 10, P = .013) confirmed that even pacing is significantly correlated with superior race results at a confidence level above 95%. CONCLUSIONS A more even pacing strategy is associated with success during elite trail-running races.
Collapse
Affiliation(s)
| | - Arcadi Margarit-Boscà
- Department of Physical Activity and Sport, Faculty of Sport Sciences, University of Murcia, Murcia, Spain
| | - Felipe García-Pinillos
- Department of Physical Education and Sport, University of Granada, Granada, Spain
- Sport and Health University Research Center (iMUDS), Granada, Spain
- Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco, Chile
| | - Markus Holler
- Institut für Astro- und Teilchenphysik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Bontemps B, Louis J, Owens DJ, Miríc S, Vercruyssen F, Gruet M, Erskine RM. Muscle soreness but not neuromuscular fatigue responses following downhill running differ according to the number of exercise bouts. Eur J Sport Sci 2025; 25:e12240. [PMID: 39992182 PMCID: PMC11849091 DOI: 10.1002/ejsc.12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/30/2024] [Accepted: 12/02/2024] [Indexed: 02/25/2025]
Abstract
Repeated sessions of eccentric-biased exercise promote strength gains through neuromuscular adaptation. However, it remains unclear whether increasing the number of these sessions can mitigate the extent of neuromuscular fatigue and exercise-induced muscle damage (EIMD) in response to a standardised eccentric-biased bout. Twelve healthy untrained adults (five females and seven males; 25.1 ± 4.9 years; andV ˙ O 2 max $\dot{V}{\mathrm{O}}_{2\,\max }$ : 49.4 ± 6.2 mL kg-1 min-1) completed two blocks of five downhill running (DR) sessions on a motorised treadmill at a speed equivalent to 60%-65%V ˙ O 2 max $\dot{V}{\mathrm{O}}_{2\,\max }$ for 15-30 min. Knee extensor maximal voluntary isometric torque (MVT), electrically evoked measures of neuromuscular fatigue (peripheral and central components), and lower-limb perceived muscle soreness (PMS) and perceived load (RPE × session duration) were assessed before and immediately after a 15 min standardised DR bout at baseline and after 5 and 10 DR sessions. MVT decreased following a standardised DR bout (p < 0.01) similarly at all three time points (-14%, -11% and -9%; p > 0.05). The same observations were found for all peripheral and central neuromuscular fatigue indicators after 0, 5 and 10 DR sessions. Quadriceps (but not plantar flexor or gluteus) PMS was lower after 10 DR sessions (8.7 ± 8.5 mm) compared to baseline (29.6 ± 22.2 mm and p = 0.01), but no difference was observed after 5 DR sessions (15.4 ± 11.9 mm and p = 0.08). Ten repeated sessions of eccentric-biased exercise led to a reduction in quadriceps femoris PMS following a standardised DR bout but neither 5 nor 10 sessions altered the central or peripheral fatigue responses to the same standardised DR bout. These findings suggest distinct physiological adaptations to repeated eccentric-biased exercise regarding EIMD and neuromuscular fatigue.
Collapse
Affiliation(s)
| | - Julien Louis
- School of Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Daniel J. Owens
- School of Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Stella Miríc
- School of Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Fabrice Vercruyssen
- Laboratory Youth‐Physical Activity and Sports‐Health (J‐AP2S)Université de ToulonToulonFrance
| | - Mathieu Gruet
- Laboratory Youth‐Physical Activity and Sports‐Health (J‐AP2S)Université de ToulonToulonFrance
| | - Robert M. Erskine
- School of Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
- Institute of Sport, Exercise and HealthUniversity College LondonLondonUK
| |
Collapse
|
3
|
Tiller NB, Millet GY. Decoding Ultramarathon: Muscle Damage as the Main Impediment to Performance. Sports Med 2025; 55:535-543. [PMID: 39405022 DOI: 10.1007/s40279-024-02127-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 04/12/2025]
Abstract
The biological determinants of performance have been well described for running races up to and including the marathon (42.2 km). Ultramarathon is more complex. Events range from 50 to 5000 km in single or multiple stages, are contested in various environments and terrains, and force athletes to contend with diverse performance-limiting issues such as fueling, hydrating, gastrointestinal distress, muscle damage, and sleep deprivation. Ultramarathons are not simply "long marathons." Nevertheless, scientific developments over the past decade have inched us toward a more complete picture of the psychophysiological factors underpinning performance. In this Current Opinion, we argue that muscle damage and associated fatigue is the main impediment to performance in long ultramarathons; more performance-limiting than aerobic capacity, running economy, or gastrointestinal distress. To assess an athlete's tolerance to ultramarathon-specific muscle damage and fatigue, we propose a lab-based protocol comprising downhill running with pre- to post-exercise measures of muscle contractile function following electrical or magnetic stimulation of the quadriceps muscles or their central nerves, muscle damage biomarkers (e.g., creatine kinase, lactate dehydrogenase, and myoglobin), and muscle morphology via imaging techniques. We close by offering training and racing advice on mitigating the deleterious effects of muscle damage. The twofold aims of this paper are (i) to enable athletes and their teams to better prepare for races and (ii) to help medical personnel identify the physiological milieu most likely to afflict the ultrarunner.
Collapse
Affiliation(s)
- Nicholas B Tiller
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
| | - Guillaume Y Millet
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Inter-University Laboratory of Human Movement Biology, 42023, Saint-Etienne, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
4
|
Tegart AD, Schuurman N, Harden SR. Runnability: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:71. [PMID: 39857524 PMCID: PMC11765266 DOI: 10.3390/ijerph22010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
Running outdoors is an increasingly popular form of physical activity and has been proven to substantially reduce the risk of major chronic illnesses such as cardiovascular disease. The topic of runnability has received considerable attention but with conflicting conclusions and remaining gaps. The physical environment and its features impact running experiences. Detecting features facilitating and deterring runners is crucial to promoting this physical activity and, therefore, overall health. A scoping review of current literature was conducted to identify environmental factors conducive to running. Online databases were used to identify all articles on runnability to date; a total of one hundred and two (n = 102) papers were selected as they identified environmental correlates preferred by runners. Findings include a preference for green spaces and connecting with nature, perceptions of higher safety away from traffic congestion and pollution, and routes with wide, smooth surfaces and high connectivity. Essentially, natural surroundings are substantially more desirable than urban settings. Studies have shown that even when a running route is within an urban environment, it is usually connected to or between green spaces.
Collapse
Affiliation(s)
| | - Nadine Schuurman
- Faculty of Environment, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; (A.D.T.); (S.R.H.)
| | | |
Collapse
|
5
|
Petty L, Lawrence MM. The Relationship Between Lower-Body Flexibility and Running Performance in a Half Marathon Downhill Running Event. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2025; 18:1-12. [PMID: 39917058 PMCID: PMC11798549 DOI: 10.70252/pypq3045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Although previous studies examining treadmill or relatively flat overground running events have found relationships for running performance and flexibility, no study has examined these outcomes during downhill events, including between sexes. Therefore, the purpose of this study was to determine if a relationship exists between lower body flexibility and running performance in recreational adult male and female distance runners competing in a downhill half marathon race. Recreational (n=11 male, n=19 female) adult distance runners completed this study. On the day prior to the race, participants performed a standardized warm-up, followed by determining their sit-and-reach flexibility. The next day, individuals ran their race and their performance scores were recorded using the race organizers website. Pearson correlation coefficients (r) were determined between race time and flexibility. Sex differences were determined using independent t-tests, with significance set at p<0.05. A significant relationship was observed across all participants for race performance and flexibility (r=0.42, p=0.01), but was not when separating out male (r=0.53, p=0.10) and female (r=0.32, p=0.19). Sex differences were observed for performance times (male: 6692.0±920.1 vs female: 7613.3±1073.5 sec., p=0.021, d=0.84), but not flexibility (male: 28.1±8.4 vs female: 32.9±10.8 cm, p=0.19, d=0.47). Flexibility is an important component of running performance, but may have less predictive ability by sex in downhill running performance in recreational runners.
Collapse
Affiliation(s)
- Logan Petty
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, USA
| | - Marcus M Lawrence
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, USA
| |
Collapse
|
6
|
Barclay R, Coad J, Schraders K, Barnes MJ. Comparing the Effects of Collagen Hydrolysate and Dairy Protein on Recovery from Eccentric Exercise: A Double Blind, Placebo-Controlled Study. Nutrients 2024; 16:4389. [PMID: 39771010 PMCID: PMC11678417 DOI: 10.3390/nu16244389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Consuming collagen hydrolysate (CH) may improve symptoms of exercise-induced muscle damage (EIMD); however, its acute effects have not been compared to dairy protein (DP), the most commonly consumed form of protein supplement. Therefore, this study compared the effects of CH and DP on recovery from EIMD. METHODS Thirty-three males consumed either CH (n = 11) or DP (n = 11), containing 25 g of protein, or an isoenergetic placebo (n = 11) immediately post-exercise and once daily for three days. Indices of EIMD were measured before and 30 min and 24, 48, and 72 h after 30 min of downhill running on a -15% slope at 80% of VO2max speed. RESULTS Downhill running induced significant EIMD, with time effects (all p < 0.001) for the delayed onset of muscle soreness (visual analogue scale), countermovement jump height, isometric midthigh pull force, maximal voluntary isometric contraction force, running economy, and biomarkers of muscle damage (creatine kinase) and inflammation (interleukin-6, high-sensitivity C-reactive protein). However, no group or interaction effects (all p > 0.05) were observed for any of the outcome measures. CONCLUSIONS These findings suggest that the post-exercise consumption of CH or DP does not improve indices of EIMD during the acute recovery period in recreationally active males.
Collapse
Affiliation(s)
- Rachel Barclay
- School of Sport, Exercise & Nutrition, College of Health, Massey University, Palmerston North 4410, New Zealand
| | - Jane Coad
- School of Food Technology & Natural Sciences, College of Science, Massey University, Palmerston North 4410, New Zealand
| | - Katie Schraders
- School of Food Technology & Natural Sciences, College of Science, Massey University, Palmerston North 4410, New Zealand
| | - Matthew J. Barnes
- School of Sport, Exercise & Nutrition, College of Health, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
7
|
Sewry N, Boulter J, Seocharan I, Dyer M, Jordaan E, Schwellnus M. Risk factors associated with medical encounters in ultramarathon race starters - Data from 103,131 race starters over 90 km: SAFER XLI. J Sci Med Sport 2024; 27:753-758. [PMID: 39079882 DOI: 10.1016/j.jsams.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 11/01/2024]
Abstract
OBJECTIVES To identify the risk factors associated with all medical encounters (MEs) and serious/life-threatening MEs (SLMEs) during the Comrades Marathon. DESIGN Prospective cohort study, with cross-sectional analyses. METHODS During the 2014-2019 Comrades Marathon, all MEs (including SLMEs) were recorded in 103,131 starters. For both all MEs and SLMEs, the following risk factors were explored: sex, age, route ("up" vs. "down" race), previous Comrades experience (yes/no), wet-blub globe temperature (WBGT) and race pace. Incidence (per 1000 starters; 95%CI), and the incidence ratio (IR; 95%CI) are presented. RESULTS For all MEs, being female was a significant risk factor (females vs. males IR = 1.47, p < 0.0001), and age was only marginally significant (p = 0.0167). Therefore factors for all MEs were adjusted for sex. Other factors significantly associated with all MEs were: higher WBGT (highest WBGT compared to lowest, IR = 1.33, p = 0.0003), race pace (highest risk for those who finish either among the first quarter [IR = 1.49] or last quarter [IR = 1.46] compared to middle pace; p < 0.0001) and the route ("down" vs. "up": IR = 1.11; p = 0.0181). Factors associated with higher risk for SLMEs were: females (IR = 1.9; p = 0.0003), "down" vs. "up" route (IR = 1.37; p = 0.0306) and race pace (slower and faster runners vs. mid (6.4-7.1 min/km) race pace category (IR > 2.1, p < 0.0001)). CONCLUSIONS Intrinsic (female, faster and slower race pace) and extrinsic (higher WBGT and the "down" route) are novel risk factors associated with all MEs at this event. These can be considered by the race organizers and the medical team to develop and implement prevention strategies.
Collapse
Affiliation(s)
- Nicola Sewry
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, South Africa; International Olympic Committee (IOC) Research Centre, South Africa.
| | | | - Ishen Seocharan
- Biostatistics Research Unit, South African Medical Research Council, South Africa
| | - Marlise Dyer
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, South Africa
| | - Esme Jordaan
- Biostatistics Research Unit, South African Medical Research Council, South Africa; Statistics and Population Studies Department, University of the Western Cape, South Africa
| | - Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, South Africa; International Olympic Committee (IOC) Research Centre, South Africa
| |
Collapse
|
8
|
Lemire M, Meyer F, Triguera R, Favret F, Millet GP, Dufour SP. Peak Oxygen Uptake is Slope Dependent: Insights from Ground Reaction Forces and Muscle Oxygenation in Trained Male Runners. SPORTS MEDICINE - OPEN 2024; 10:78. [PMID: 38995445 PMCID: PMC11245462 DOI: 10.1186/s40798-024-00746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND The aim of this study is to explore the effect of treadmill slope on ground reaction forces and local muscle oxygenation as putative limiting factors of peak oxygen uptake in graded maximal incremental running tests. Thirteen trained male runners completed five maximal incremental running tests on treadmill at - 15%, - 7.5%, 0%, 7.5% and 15% slopes while cardiorespiratory and local muscle oxygenation responses as well as ground reaction forces were continuously recorded. Blood lactate concentration and isometric knee extensor torque were measured before and after each test. RESULTS Peak oxygen uptake was lower at - 15% slope compared to all other conditions (from - 10 to - 17% lower, p < 0.001), with no difference between - 7.5 and + 15% slope. Maximal heart rate and ventilation values were reached in all conditions. The negative external mechanical work increased from steep uphill to steep downhill slopes (from 6 to 92% of total external work) but was not correlated with the peak oxygen uptake reduction. Local muscle oxygenation remained higher in - 15% slope compared to level running (p = 0.003). CONCLUSIONS Similar peak oxygen uptake can be reached in downhill running up to - 7.5% slope. At more severe downhill slopes (i.e., - 15%), greater negative muscle work and limited local muscle deoxygenation occurred, even in subjects familiarized to downhill running, presumably preventing the achievement of similar to other condition's peak oxygen uptake. KEY POINTS Trained male runners can reach like level running V̇O2peak at moderate but not at severe negative slope. Negative external mechanical work increases with increasing negative slope. At maximal intensity Vastus Lateralis muscle oxygenation is higher in steep negative slope. Knee extensor isometric muscle torque is preserved after maximal level and uphill running, but reduced after downhill running, despite lower blood lactate. Progressive reduction of V̇O2 at maximal effort with increasing negative slope might be related to the metabolic consequences of increased lower limb negative external work (i.e., eccentric muscle actions).
Collapse
Affiliation(s)
- Marcel Lemire
- Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France
- Faculty of Medicine, Translational Medicine Federation (FMTS), University of Strasbourg, UR 3072, CEERIPE, Strasbourg, France
| | - Frédéric Meyer
- Department of Informatics, Digital Signal Processing Group, University of Oslo, Oslo, Norway
| | - Rosalie Triguera
- Institute of Sport Sciences UNIL, University of Lausanne, 1915, Lausanne, Switzerland
| | - Fabrice Favret
- Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France
- Faculty of Medicine, Translational Medicine Federation (FMTS), University of Strasbourg, UR 3072, CEERIPE, Strasbourg, France
| | - Grégoire P Millet
- Institute of Sport Sciences UNIL, University of Lausanne, 1915, Lausanne, Switzerland.
| | - Stéphane P Dufour
- Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France
- Faculty of Medicine, Translational Medicine Federation (FMTS), University of Strasbourg, UR 3072, CEERIPE, Strasbourg, France
| |
Collapse
|
9
|
Tallis J, McMorrow C, Shelley SP, Eustace SJ. Repeated Bout Effect of Downhill Running on Physiological Markers of Effort and Post Exercise Perception of Soreness in Trained Female Distance Runners. Sports (Basel) 2024; 12:169. [PMID: 38921863 PMCID: PMC11209549 DOI: 10.3390/sports12060169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
This study examined the effect of repeated bouts of level and downhill running on physiological markers of effort and exercise-induced muscle soreness in trained female distance runners. Ten participants (Age: 24.4 ± 2.0 years; V̇O2peak: 52.9 ± 1.1 mL·kg-1·min-1), naïve to downhill running, completed six alternate 5 min trials of level and downhill running (-15%) at a 70% velocity at V̇O2peak on two occasions, three weeks apart. Perceived muscle soreness was measured upon completion and in the 72 h post exercise. V̇O2, Heart Rate (HR), Blood Lactate (BLa), and Respiratory Exchange Ratio (RER) were lower running downhill (p < 0.016, ηp2 > 0.541). For the first downhill run, Rating of Perceived Exertion (RPE) was higher compared to that for level running (p = 0.051; d = 0.447), but for the remaining trials, RPE was lower when running downhill (p < 0.004; d > 0.745). V̇O2, HR, and RER were not different in the second bout (p > 0.070, ηp2 < 0.318); however, V̇O2 was lower in each downhill trial (Δ = 1.6-2.2 mL·kg-1·min-1; d = 0.382-0.426). In the second bout, BLa was lower (p = 0.005, ηp2 = 0.602), RPE in the first trial was lower (p = 0.002; d = 0.923), and post exercise perceived soreness of the gastrocnemius, quadriceps, and hamstrings was attenuated (p < 0.002; ηp2 > 0.693). Perceived soreness of the gluteal muscles was lower in the second bout immediately post exercise, 24 h, and 48 h post exercise (p < 0.025; d > 0.922). A repeated bout of downhill running attenuated perceived muscle soreness and may modulate the physiological and perceived physical demand of a second bout of level and downhill running.
Collapse
Affiliation(s)
- Jason Tallis
- Research Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry CV1 5FB, UK; (S.P.S.); (S.J.E.)
| | - Caitlin McMorrow
- School of Life Sciences, Coventry University, Coventry CV1 5FB, UK;
| | - Sharn P. Shelley
- Research Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry CV1 5FB, UK; (S.P.S.); (S.J.E.)
| | - Steven J. Eustace
- Research Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry CV1 5FB, UK; (S.P.S.); (S.J.E.)
| |
Collapse
|
10
|
Coratella G, Varesco G, Rozand V, Cuinet B, Sansoni V, Lombardi G, Vernillo G, Mourot L. Downhill running increases markers of muscle damage and impairs the maximal voluntary force production as well as the late phase of the rate of voluntary force development. Eur J Appl Physiol 2024; 124:1875-1883. [PMID: 38195943 PMCID: PMC11129977 DOI: 10.1007/s00421-023-05412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE To examined the time-course of the early and late phase of the rate of voluntary force development (RVFD) and muscle damage markers after downhill running. METHODS Ten recreational runners performed a 30-min downhill run at 10 km h-1 and -20% (-11.3°) on a motorized treadmill. At baseline and each day up to 4 days RVFD, knee extensors maximum voluntary isometric force (MVIC), serum creatine kinase (CK) concentration, quadriceps swelling, and soreness were assessed. The early (0-50 ms) and late (100-200 ms) phase of the RVFD, as well as the force developed at 50 and 200 ms, were also determined. RESULTS MVIC showed moderate decrements (p < 0.05) and recovered after 4 days (p > 0.05). Force at 50 ms and the early phase were not impaired (p > 0.05). Conversely, force at 200 ms and the late phase showed moderate decrements (p < 0.05) and recovered after 3 and 4 days, respectively (p > 0.05). CK concentration, quadriceps swelling, and soreness increased (p < 0.05) were overall fully resolved after 4 days (p > 0.05). CONCLUSION Downhill running affected the knee extensors RVFD late but not early phase. The RVFD late phase may be used as an additional marker of muscle damage in trail running.
Collapse
Affiliation(s)
- Giuseppe Coratella
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giorgio Varesco
- Université Jean Monnet Saint-Etienne, Inter-University Laboratory of Human Movement Biology, 42023, Saint-Etienne, France
- Laboratory Movement-Interactions-Performance, MIP Lab, UR 4334, Nantes Université, F-44000, Nantes, France
| | - Vianney Rozand
- Université Jean Monnet Saint-Etienne, Inter-University Laboratory of Human Movement Biology, 42023, Saint-Etienne, France
| | - Benjamin Cuinet
- Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies (EA3920), Exercise Performance Health Innovation (EPHI) Platform, University of Franche-Comté, Besançon, France
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Instituto Ortopedico Galeazzi, 20157, Milan, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Instituto Ortopedico Galeazzi, 20157, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871, Poznań, Poland
| | - Gianluca Vernillo
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy.
| | - Laurent Mourot
- Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies (EA3920), Exercise Performance Health Innovation (EPHI) Platform, University of Franche-Comté, Besançon, France
| |
Collapse
|
11
|
Heileson JL, Harris DR, Tomek S, Ritz PP, Rockwell MS, Barringer ND, Forsse JS, Funderburk LK. Long-Chain Omega-3 Fatty Acid Supplementation and Exercise-Induced Muscle Damage: EPA or DHA? Med Sci Sports Exerc 2024; 56:476-485. [PMID: 38051142 DOI: 10.1249/mss.0000000000003332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE Long-chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) may enhance recovery from exercise-induced muscle damage (EIMD). However, it is unclear if the effects are due to EPA, DHA, or both. The purpose of this investigation was to examine the effect of EPA + DHA, EPA, and DHA compared with placebo (PL) on muscular recovery. METHODS Thirty males were randomized to 4 g·d -1 EPA + DHA ( n = 8), EPA ( n = 8), DHA ( n = 7), or PL ( n = 7). After 7-wk supplementation, a downhill running (20 min, 70% V̇O 2max , -16% gradient) plus jumping lunges (5 × 20 reps, 2-min rest intervals) muscle damage protocol was performed. Indices of muscle damage, soreness, muscle function, and inflammation were measured at baseline and throughout recovery. The omega-3 index (O3i; %EPA + %DHA in erythrocytes) was used to track tissue EPA and DHA status. RESULTS After supplementation, the O3i was significantly higher than PL in all experimental groups ( P < 0.001). Leg press performance was lower in the PL group at 24 h compared with EPA ( P = 0 .019) and at 72 h for EPA ( P = 0.004) and DHA ( P = 0 .046). Compared with PL, muscle soreness was lower in the DHA ( P = 0.015) and EPA ( P = 0.027) groups at 48 h. Albeit nonsignificant, EPA + DHA tended to attenuate muscle soreness ( d = 1.37) and leg strength decrements ( d = 0.75) compared with PL. Jump performance and power metrics improved more rapidly in the EPA and DHA groups (time effects: P < 0.001). Measures of inflammation, range of motion, and muscle swelling were similar between groups ( P > 0.05). CONCLUSIONS Compared with PL, 4 g·d -1 of EPA or DHA for 52 d improves certain aspects of recovery from EIMD. EPA + DHA did not clearly enhance recovery. Equivalent dosing of EPA + DHA may blunt the performance effects observed in EPA or DHA alone.
Collapse
Affiliation(s)
| | - Dillon R Harris
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX
| | - Sara Tomek
- Educational Psychology, Baylor University, Waco, TX
| | - Peter P Ritz
- Student Health Services-Athletics, Northwestern Medicine Group, Evanston, IL
| | | | - Nicholas D Barringer
- Department of Nutrition, U.S. Military-Baylor University Graduate Program in Nutrition, Fort Sam Houston, TX
| | - Jeffrey S Forsse
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX
| | | |
Collapse
|
12
|
Bontemps B, Gruet M, Louis J, Owens DJ, Miríc S, Vercruyssen F, Erskine RM. Patellar Tendon Adaptations to Downhill Running Training and Their Relationships With Changes in Mechanical Stress and Loading History. J Strength Cond Res 2024; 38:21-29. [PMID: 38085619 DOI: 10.1519/jsc.0000000000004617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
ABSTRACT Bontemps, B, Gruet, M, Louis, J, Owens, DJ, Miríc, S, Vercruyssen, F, and Erskine, RM. Patellar tendon adaptations to downhill running training and their relationships with changes in mechanical stress and loading history. J Strength Cond Res 38(1): 21-29, 2024-It is unclear whether human tendon adapts to moderate-intensity, high-volume long-term eccentric exercise, e.g., downhill running (DR) training. This study aimed to investigate the time course of patellar tendon (PT) adaptation to short-term DR training and to determine whether changes in PT properties were related to changes in mechanical stress or loading history. Twelve untrained, young, healthy adults (5 women and 7 men) took part in 4 weeks' DR training, comprising 10 sessions. Running speed was equivalent to 60-65% V̇O2max, and session duration increased gradually (15-30 minutes) throughout training. Isometric knee extensor maximal voluntary torque (MVT), vastus lateralis (VL) muscle physiological cross-sectional area (PCSA) and volume, and PT CSA, stiffness, and Young's modulus were assessed at weeks 0, 2, and 4 using ultrasound and isokinetic dynamometry. Patellar tendon stiffness (+6.4 ± 7.4%), Young's modulus (+6.9 ± 8.8%), isometric MVT (+7.5 ± 12.3%), VL volume (+6.6 ± 3.2%), and PCSA (+3.8 ± 3.3%) increased after 4 weeks' DR (p < 0.05), with no change in PT CSA. Changes in VL PCSA correlated with changes in PT stiffness (r = 0.70; p = 0.02) and Young's modulus (r = 0.63; p = 0.04) from 0 to 4 weeks, whereas changes in MVT did not correlate with changes in PT stiffness and Young's modulus at any time point (p > 0.05). To conclude, 4 weeks' DR training promoted substantial changes in PT stiffness and Young's modulus that are typically observed after high-intensity, low-volume resistance training. These tendon adaptations seemed to be driven primarily by loading history (represented by VL muscle hypertrophy), whereas increased mechanical stress throughout the training period did not seem to contribute to changes in PT stiffness or Young's modulus.
Collapse
Affiliation(s)
- Bastien Bontemps
- Université de Toulon, Laboratoire IAPS (n°201723207F), Toulon, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Mathieu Gruet
- Université de Toulon, Laboratoire IAPS (n°201723207F), Toulon, France
| | - Julien Louis
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; and
| | - Daniel J Owens
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; and
| | - Stella Miríc
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; and
| | | | - Robert M Erskine
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; and
- Institute of Sport, Exercise and Health, University College London, London, United Kingdom
| |
Collapse
|
13
|
Nara M, Samukawa M, Oba K, Ishida T, Takahashi Y, Kasahara S, Tohyama H. Repetitive pitching decreases the elbow valgus stability provided by the flexor-pronator mass: the effects of repetitive pitching on elbow valgus stability. J Shoulder Elbow Surg 2023; 32:1819-1824. [PMID: 37172887 DOI: 10.1016/j.jse.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Baseball pitching induces a large elbow valgus load, stressing the ulnar collateral ligament (UCL). Flexor-pronator mass (FPM) contraction contributes to valgus stability; however, repetitive baseball pitching may weaken the FPM contractile function. The present study investigated the effects of repetitive baseball pitching on the medial valgus stability measured using ultrasonography. We hypothesized that repetitive pitching would decrease elbow valgus stability. METHODS This was a controlled laboratory study. Fifteen young male baseball players at the collegiate level (age: 23.0 ± 1.4 years) were enrolled. The medial elbow joint space was measured using ultrasonography (B-mode, 12-MHz linear array transducer) in the following three conditions: at rest (unloaded), under 3 kg valgus load (loaded), and under valgus load with maximal grip contraction to activate FPM (loaded-contracted). All measurements were performed before and after the pitching tasks, which comprised five sets of 20 pitches. Two-way repeated-measures analysis of variance was applied to determine changes in the medial elbow joint space. The post hoc test with Bonferroni adjustment was applied to assess the changes within the time and condition. RESULTS The medial elbow joint space was significantly greater under the loaded than the unloaded and loaded-contracted conditions both before and after pitching (P < .001). In the loaded-contracted condition, the medial elbow joint space significantly increased after repetitive baseball pitching (P < .001). CONCLUSIONS The results of the present study indicated that repetitive baseball pitching reduced the elbow valgus stability. This reduction could be attributed to the decreased FPM contractile function. Insufficient contraction may increase the tensile load on the UCL with pitching. FPM contraction plays a role in narrowing the medial elbow joint space; however, repetitive baseball pitching reduced the elbow valgus stability. It has been suggested that sufficient rest and recovery of the FPM function are required to reduce the UCL injury risk.
Collapse
Affiliation(s)
| | - Mina Samukawa
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan.
| | - Kensuke Oba
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tomoya Ishida
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Satoshi Kasahara
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Harukazu Tohyama
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Lemire M, Faricier R, Dieterlen A, Meyer F, Millet GP. Relationship between biomechanics and energy cost in graded treadmill running. Sci Rep 2023; 13:12244. [PMID: 37507405 PMCID: PMC10382573 DOI: 10.1038/s41598-023-38328-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The objective of this study was to determine whether the relationships between energy cost of running (Cr) and running mechanics during downhill (DR), level (LR) and uphill (UR) running could be related to fitness level. Nineteen athletes performed four experimental tests on an instrumented treadmill: one maximal incremental test in LR, and three randomized running bouts at constant speed (10 km h-1) in LR, UR and DR (± 10% slope). Gas exchange, heart rate and ground reaction forces were collected during steady-state. Subjects were split into two groups using the median Cr for all participants. Contact time, duty factor, and positive external work correlated with Cr during UR (all, p < 0.05), while none of the mechanical variables correlated with Cr during LR and DR. Mechanical differences between the two groups were observed in UR only: contact time and step length were higher in the economical than in the non-economical group (both p < 0.031). This study shows that longer stance duration during UR contributes to lower energy expenditure and Cr (i.e., running economy improvement), which opens the way to optimize specific running training programs.
Collapse
Affiliation(s)
- Marcel Lemire
- Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France
- Institut de Recherche en Informatique, Mathématiques, Automatique Et Signal, Université de Haute-Alsace, 68070, Mulhouse, France
| | - Robin Faricier
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Alain Dieterlen
- Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France
- Institut de Recherche en Informatique, Mathématiques, Automatique Et Signal, Université de Haute-Alsace, 68070, Mulhouse, France
| | - Frédéric Meyer
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Digital Signal Processing Group, Department of Informatics, University of Oslo, Oslo, Norway.
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
15
|
Teng Y, Xie Z, Chen A, Zhang J, Bao Y. IMPROVING SPEED AND STRENGTH IN LONG-DISTANCE RUNNING TRAINING. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012022_0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Long-distance running is a typical physical endurance sport. The athletes’ fitness level plays a dominant and central role in the components of their competitive ability. Whether long-distance runners can win in fierce competition depends mainly on the endurance of their physical fitness. Objective: To analyze the physical training methods of long-distance runners and discuss the improvement of speed and strength of long-distance runners through physical training. Methods: This paper uses literature materials, expert interviews, and experimental methods to research the training practice of middle and long-distance runners in colleges and universities. The data collected comprised an experimental protocol performed on volunteer long-distance runners. The above research determined the effect of physical training on speed and strength in long-distance runners. Results: After the 12-week experimental intervention, the overall strength, flexibility, and flexibility of the long-distance runners were improved, and the data were statistically significant (P<0.05). The aerobic workability and anaerobic capacity of the athletes were improved through the experiment. Conclusion: Physical training can improve the speed and strength of long-distance runners. Athletes can increase physical training with this protocol in their daily training. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.
Collapse
|
16
|
Nanavati K, Rutherfurd-Markwick K, Lee SJ, Bishop NC, Ali A. Effect of curcumin supplementation on exercise-induced muscle damage: a narrative review. Eur J Nutr 2022; 61:3835-3855. [PMID: 35831667 PMCID: PMC9596560 DOI: 10.1007/s00394-022-02943-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Curcumin, a natural polyphenol extracted from turmeric, is a potent antioxidant and anti-inflammatory agent. In the past few decades, curcumin's ability to impact chronic inflammatory conditions such as metabolic syndrome, arthritis, and cancer has been widely researched, along with growing interest in understanding its role in exercise-induced muscle damage (EIMD). EIMD impacts individuals differently depending on the type (resistance exercise, high-intensity interval training, and running), intensity, and duration of the exercise. Exercise disrupts the muscles' ultrastructure, raises inflammatory cytokine levels, and can cause swelling in the affected limb, a reduction in range of motion (ROM), and a reduction in muscular force-producing capacity. This review focuses on the metabolism, pharmacokinetics of various brands of curcumin supplements, and the effect of curcumin supplementation on EIMD regarding muscle soreness, activity of creatine kinase (CK), and production of inflammatory markers. Curcumin supplementation in the dose range of 90-5000 mg/day can decrease the subjective perception of muscle pain intensity, increase antioxidant capacity, and reduce CK activity, which reduces muscle damage when consumed close to exercise. Consumption of curcumin also improves muscle performance and has an anti-inflammatory effect, downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-6, and IL-8. Curcumin may also improve oxidative capacity without hampering training adaptations in untrained and recreationally active individuals. The optimal curcumin dose to ameliorate EIMD is challenging to assess as its effect depends on the curcumin concentration in the supplement and its bioavailability.
Collapse
Affiliation(s)
- K. Nanavati
- School of Sport, Exercise, and Nutrition, Massey University, Auckland, New Zealand
| | | | - S. J. Lee
- School of Food and Advanced Technology, Massey University, Auckland, New Zealand
| | - N. C. Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - A. Ali
- School of Sport, Exercise, and Nutrition, Massey University, Auckland, New Zealand
| |
Collapse
|
17
|
Genitrini M, Fritz J, Zimmermann G, Schwameder H. Downhill Sections Are Crucial for Performance in Trail Running Ultramarathons-A Pacing Strategy Analysis. J Funct Morphol Kinesiol 2022; 7:jfmk7040103. [PMID: 36412765 PMCID: PMC9680470 DOI: 10.3390/jfmk7040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Trail running is an increasingly popular discipline, especially over long-distance races (>42.195 km). Pacing strategy, i.e., how athletes modulate running speed for managing their energies during a race, appears to have a significant impact on overall performance. The aims of this study were to investigate whether performance level, terrain (i.e., uphill or downhill) and race stage affect pacing strategy and whether any interactions between these factors are evident. Race data from four race courses, with multiple editions (total races = 16), were retrieved from their respective events websites. A linear mixed effect model was applied to the full dataset, as well as to two subgroups of the top 10 male and female finishers, to assess potential differences in pacing strategy (i.e., investigated in terms of relative speed). Better finishers (i.e., athletes ranking in the best positions) tend to run downhill sections at higher relative speeds and uphill sections at lower relative speeds than slower counterparts (p < 0.001). In the later race stages, the relative speed decrease is larger in downhill sections than in uphill ones (p < 0.001) and in downhill sections, slower finishers perform systematically worse than faster ones, but the performance difference (i.e., between slower and faster finishers) becomes significantly larger in the later race stages (p < 0.001). Among elite athletes, no difference in pacing strategy between faster and slower finishers was found (p > 0.05). Both men (p < 0.001) and women (p < 0.001), in the later race stages, slow down more in downhill sections than in uphill ones. Moreover, elite women tend to slow down more than men (p < 0.001) in the later race stages, regardless of the terrain, in contrast to previous studies focusing on road ultramarathons. In conclusion, running downhill sections at higher relative speeds, most likely due to less accentuated fatigue effects, as well as minimizing performance decrease in the later race stages in downhill sections, appears to be a hallmark of the better finishers.
Collapse
Affiliation(s)
- Matteo Genitrini
- Department of Sport and Exercise Science, University of Salzburg, 5400 Hallein-Rif, Austria
| | | | - Georg Zimmermann
- Team Biostatistics and Big Medical Data, IDA Lab, 5020 Salzburg, Austria
- Research Management & Technology Transfer, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Hermann Schwameder
- Department of Sport and Exercise Science, University of Salzburg, 5400 Hallein-Rif, Austria
- Correspondence:
| |
Collapse
|
18
|
Sulistyarto S, Irawan R, Kumaat NA, Rimawati N. Correlation of Delayed Onset Muscle Soreness and Inflammation Post-exercise Induced Muscle Damage. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND: Delayed Onset Muscle Soreness (DOMS) is a common injury resulting from abnormal intensive training in athletes, mainly the result of training involving eccentric contractions.
AIM: The aim of this study was to determine the correlation between the incidence of DOMS and HMGB1 as a marker of the occurrence of inflammation post Exercise Induces Muscle Damaged.
METHOD: 28 male recreational students of Sports Science Department, Universitas Negeri Surabaya who met all inclusion and exclusion criteria participated in this study. Participants completed a muscle damaging exercise which consists of a 10x10 drop jump (DRP) and a bout of 40×15 m sprints with a 5 m deceleration zone (SPR) to obtain a muscle damage effect. In this study, the stretching in the exercise session was not given, this was done to get the DOMS effect after exercise. DOMS and HMGB1 was carry out 1 hour before the exercise, 12 hours after the exercise, 24 hours after the exercise and 48 hours after the exercise.
RESULT: The result showed that there was a significant correlation (r=0.935, p<0.05) between DOMS and HMGB1 as a predictor of inflammation. The participants that were given EIMD eccentric exercise (DRP and SPR) showed the occurrence of DOMS and increasing of HMGB1. The result also showed that there was a correlation between DOMS and HMGB1.
CONCLUSION: This study concluded that there was a correlation between DOMS and HMGB1 as a marker of inflammation as the result of the eccentric exercise of the exercise Induced Muscle Damage (EIMD).
Collapse
|
19
|
Varesco G, Coratella G, Rozand V, Cuinet B, Lombardi G, Mourot L, Vernillo G. Downhill running affects the late but not the early phase of the rate of force development. Eur J Appl Physiol 2022; 122:2049-2059. [PMID: 35790580 PMCID: PMC9381441 DOI: 10.1007/s00421-022-04990-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
Purpose This study aimed to evaluate the acute changes in the knee extensors maximum voluntary isometric contraction force (MVIC), rate of force development (RFD), and rate of EMG rise (RER) following a bout of downhill running. Methods MVIC and RFD at 0–50, 50–100, 100–200, and 0–200 ms were determined in thirteen men (22 ± 2 yr) before and after 30 min of downhill running (speed: 10 km h−1; slope: − 20%). Vastus lateralis maximum EMG (EMGmax) and RER at 0–30, 0–50, and 0–75 ms were also recorded. Results MVIC, RFD0–200, and EMGmax decreased by ~ 25% [Cohen’s d = − 1.09 (95% confidence interval: − 1.88/− 0.24)], ~ 15% [d = − 0.50 (− 1.26/0.30)], and ~ 22% [d = − 0.37 (− 1.13/0.42)] (all P < 0.05), respectively. RFD100–200 was also reduced [− 25%; d = − 0.70 (− 1.47/0.11); P < 0.001]. No change was observed at 0–50 ms and 50–100 ms (P ≥ 0.05). RER values were similar at each time interval (all P > 0.05). Conclusion Downhill running impairs the muscle capacity to produce maximum force and the overall ability to rapidly develop force. No change was observed for the early phase of the RFD and the absolute RER, suggesting no alterations in the neural mechanisms underlying RFD. RFD100–200 reduction suggests that impairments in the rapid force-generating capacity are located within the skeletal muscle, likely due to a reduction in muscle–tendon stiffness and/or impairments in the muscle contractile apparatus. These findings may help explain evidence of neuromuscular alterations in trail runners and following prolonged duration races wherein cumulative eccentric loading is high.
Collapse
Affiliation(s)
- Giorgio Varesco
- Inter-University Laboratory of Human Movement Biology (EA 7424), UJM-Saint-Etienne, Université de Lyon, 42023, Saint-Etienne, France
| | - Giuseppe Coratella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Building 2, via G. Colombo 71, 20133, Milan, Italy
| | - Vianney Rozand
- Inter-University Laboratory of Human Movement Biology (EA 7424), UJM-Saint-Etienne, Université de Lyon, 42023, Saint-Etienne, France
| | - Benjamin Cuinet
- Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies (EA3920), Exercise Performance Health Innovation (EPHI) Platform, University of Bourgogne Franche-Comté, 25000, Besançon, France
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Orthopedic Institute Galeazzi, 20161, Milan, Italy.,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871, Poznań, Poland
| | - Laurent Mourot
- Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies (EA3920), Exercise Performance Health Innovation (EPHI) Platform, University of Bourgogne Franche-Comté, 25000, Besançon, France.,Division for Physical Education, Tomsk Polytechnic University, Tomsk Oblast, 634050, Russia
| | - Gianluca Vernillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Building 2, via G. Colombo 71, 20133, Milan, Italy.
| |
Collapse
|
20
|
Dewolf A, Mesquita R, De Jaeger D. The effects of an increased step frequency on running economy and injury risk factors during downhill running. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
22
|
Khassetarash A, Baggaley M, Vernillo G, Millet GY, Edwards WB. The repeated bout effect influences lower-extremity biomechanics during a 30-min downhill run. Eur J Sport Sci 2022; 23:510-519. [PMID: 35225166 DOI: 10.1080/17461391.2022.2048083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The repeated bout effect in eccentric-biased exercises is a well-known phenomenon, wherein a second bout of exercise results in attenuated strength loss and soreness compared to the first bout. We sought to determine if the repeated bout effect influences changes in lower-extremity biomechanics over the course of a 30-min downhill run. Eleven male participants completed two bouts of 30-min downhill running (DR1 and DR2) at 2.8 m.s-1 and -11.3° on an instrumented treadmill. Three-dimensional kinematics and ground reaction forces were recorded and used to quantify changes in spatiotemporal parameters, external work, leg stiffness, and lower extremity joint-quasi-stiffness throughout the 30-min run. Maximum voluntary isometric contraction (MVIC) and perceived quadriceps pain were assessed before-after, and throughout the run, respectively. DR2 resulted in attenuated loss of MVIC (P = 0.004), and perceived quadriceps pain (P < 0.001) compared to DR1. In general, participants ran with an increased duty factor towards the end of each running bout; however, increases in duty factor during DR2 (+5.4%) were less than during DR1 (+8.8%, P < 0.035). Significant reductions in leg stiffness (-11.7%, P = 0.002) and joint quasi-stiffness (up to -25.4%, all P < 0.001) were observed during DR1 but not during DR2. Furthermore, DR2 was associated with less energy absorption and energy generation than DR1 (P < 0.004). To summarize, the repeated bout effect significantly influenced lower-extremity biomechanics over the course of a downhill run. Although the mechanism(s) underlying these observations remain(s) speculative, strength loss and/or perceived muscle pain are likely to play a key role.HighlightsA 30-min downhill running bout increased contact time and reduced flight time transitioning to an increased duty factor.Lower-extremity stiffness also decreased and mechanical energy absorption increased over the course of the first 30-min downhill running bout.When the same bout of 30-min downhill running was performed three weeks later, the observed changes to lower extremity biomechanics were significantly attenuated.The findings from this study demonstrated, for this first time, a repeated bout effect for lower extremity biomechanics associated with downhill running.
Collapse
Affiliation(s)
- Arash Khassetarash
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Michael Baggaley
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Gianluca Vernillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Guillaume Y Millet
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, France
- Institut Universitaire de France (IUF)
| | - W. Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
23
|
The time course of different neuromuscular adaptations to short-term downhill running training and their specific relationships with strength gains. Eur J Appl Physiol 2022; 122:1071-1084. [PMID: 35182181 PMCID: PMC8927009 DOI: 10.1007/s00421-022-04898-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022]
Abstract
Purpose Due to its eccentric nature, downhill running (DR) training has been suggested to promote strength gains through neuromuscular adaptations. However, it is unknown whether short-term chronic DR can elicit such adaptations. Methods Twelve untrained, young, healthy adults (5 women, 7 men) took part in 4 weeks’ DR, comprising 10 sessions, with running speed equivalent to 60–65% maximal oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2max, assessed at weeks 0 and 4). Isometric and isokinetic knee-extensor maximal voluntary torque (MVT), vastus lateralis (VL) muscle morphology/architecture (anatomical cross-sectional area, ACSA; physiological CSA, PCSA; volume; fascicle length, Lf; pennation angle, PA) and neuromuscular activation (VL EMG) were assessed at weeks 0, 2 and 4. Results MVT increased by 9.7–15.2% after 4 weeks (p < 0.01). VL EMG during isometric MVT increased by 35.6 ± 46.1% after 4 weeks (p < 0.05) and correlated with changes in isometric MVT after 2 weeks (r = 0.86, p = 0.001). VL ACSA (+2.9 ± 2.7% and +7.1 ± 3.5%) and volume (+2.5 ± 2.5% and +6.6 ± 3.2%) increased after 2 and 4 weeks, respectively (p < 0.05). PCSA (+3.8 ± 3.3%), PA (+5.8 ± 3.8%) and Lf (+2.7 ± 2.2%) increased after 4 weeks (p < 0.01). Changes in VL volume (r = 0.67, p = 0.03) and PCSA (r = 0.71, p = 0.01) correlated with changes in concentric MVT from 2 to 4 weeks. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2max (49.4 ± 6.2 vs. 49.7 ± 6.3 mL·kg−1·min−1) did not change after 4 weeks (p = 0.73). Conclusion Just 4 weeks’ moderate-intensity DR promoted neuromuscular adaptations in young, healthy adults, typically observed after high-intensity eccentric resistance training. Neural adaptations appeared to contribute to most of the strength gains at 2 and 4 weeks, while muscle hypertrophy seemed to contribute to MVT changes from 2 to 4 weeks only.
Collapse
|
24
|
Abstract
In recent years, there has been a significant expansion in female participation in endurance (road and trail) running. The often reported sex differences in maximal oxygen uptake (VO2max) are not the only differences between sexes during prolonged running. The aim of this narrative review was thus to discuss sex differences in running biomechanics, economy (both in fatigue and non-fatigue conditions), substrate utilization, muscle tissue characteristics (including ultrastructural muscle damage), neuromuscular fatigue, thermoregulation and pacing strategies. Although males and females do not differ in terms of running economy or endurance (i.e. percentage VO2max sustained), sex-specificities exist in running biomechanics (e.g. females have greater non-sagittal hip and knee joint motion compared to males) that can be partly explained by anatomical (e.g. wider pelvis, larger femur-tibia angle, shorter lower limb length relative to total height in females) differences. Compared to males, females also show greater proportional area of type I fibres, are more able to use fatty acids and preserve carbohydrates during prolonged exercise, demonstrate a more even pacing strategy and less fatigue following endurance running exercise. These differences confer an advantage to females in ultra-endurance performance, but other factors (e.g. lower O2 carrying capacity, greater body fat percentage) counterbalance these potential advantages, making females outperforming males a rare exception. The present literature review also highlights the lack of sex comparison in studies investigating running biomechanics in fatigue conditions and during the recovery process.
Collapse
|
25
|
Lin CH, Lin YA, Chen SL, Hsu MC, Hsu CC. American Ginseng Attenuates Eccentric Exercise-Induced Muscle Damage via the Modulation of Lipid Peroxidation and Inflammatory Adaptation in Males. Nutrients 2021; 14:nu14010078. [PMID: 35010953 PMCID: PMC8746757 DOI: 10.3390/nu14010078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Exercise-induced muscle damage (EIMD) is characterized by a reduction in functional performance, disruption of muscle structure, production of reactive oxygen species, and inflammatory reactions. Ginseng, along with its major bioactive component ginsenosides, has been widely employed in traditional Chinese medicine. The protective potential of American ginseng (AG) for eccentric EIMD remains unclear. Twelve physically active males (age: 22.4 ± 1.7 years; height: 175.1 ± 5.7 cm; weight: 70.8 ± 8.0 kg; peak oxygen consumption [V˙O2peak] 54.1 ± 4.3 mL/kg/min) were administrated by AG extract (1.6 g/day) or placebo (P) for 28 days and subsequently challenged by downhill (DH) running (−10% gradient and 60% V˙O2peak). The levels of circulating 8-iso-prostaglandin F 2α (PGF2α), creatine kinase (CK), interleukin (IL)-1β, IL-4, IL-10, and TNF-α, and the graphic pain rating scale (GPRS) were measured before and after supplementation and DH running. The results showed that the increases in plasma CK activity induced by DH running were eliminated by AG supplementation at 48 and 72 h after DH running. The level of plasma 8-iso-PGF2α was attenuated by AG supplementation immediately (p = 0.01 and r = 0.53), 2 h (p = 0.01 and r = 0.53) and 24 h (p = 0.028 and r = 0.45) after DH running compared with that by P supplementation. Moreover, our results showed an attenuation in the plasma IL-4 levels between AG and P supplementation before (p = 0.011 and r = 0.52) and 72 h (p = 0.028 and r = 0.45) following DH running. Our findings suggest that short-term supplementation with AG alleviates eccentric EIMD by decreasing lipid peroxidation and promoting inflammatory adaptation.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Physical Education Office, Yuan Ze University, Taoyuan 32003, Taiwan;
| | - Yi-An Lin
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Shu-Li Chen
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan;
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-C.H.); (C.-C.H.); Tel.: +886-7-312-1101 (ext. 2285) (M.-C.H.); +886-2-2736-1661 (ext. 3259) (C.-C.H.)
| | - Cheng-Chen Hsu
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Correspondence: (M.-C.H.); (C.-C.H.); Tel.: +886-7-312-1101 (ext. 2285) (M.-C.H.); +886-2-2736-1661 (ext. 3259) (C.-C.H.)
| |
Collapse
|
26
|
Gruet M, Saynor ZL, Urquhart DS, Radtke T. Rethinking physical exercise training in the modern era of cystic fibrosis: A step towards optimising short-term efficacy and long-term engagement. J Cyst Fibros 2021; 21:e83-e98. [PMID: 34493444 DOI: 10.1016/j.jcf.2021.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/18/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
Exercise is considered as an important component of the package of care delivered to people with cystic fibrosis (pwCF). However, despite the well-known short-term physiological and psychological benefits, training effects are heterogenous and the transfer of structured exercise programmes to the daily life of pwCF is challenging. Training concepts and strategies developed over the last decades must be adapted to consider the aging population of pwCF with associated comorbidities, and also a new generation of young pwCF that are healthier than ever. In the present review we propose a new framework for optimising the choice among available exercise training procedures and we provide a theoretical and scientifically justified rationale for considering and testing new exercise training modalities. We propose a multidisciplinary approach, considering various physiological, psychological and logistical factors, with the aim to increase effects of exercise training and build positive long-term exercise behaviour.
Collapse
Affiliation(s)
- Mathieu Gruet
- IAPS Laboratory, University of Toulon, Toulon, France..
| | - Zoe L Saynor
- Physical Activity, Health and Rehabilitation Thematic Research Group, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Don S Urquhart
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh, Scotland, UK.; Department of Child Life and Health, University of Edinburgh, Scotland, UK
| | - Thomas Radtke
- Division of Occupational and Environmental Medicine, Epidemiology, Biostatistics and Prevention Institute, University of Zurich & University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Peripheral Alterations Affect the Loss in Force after a Treadmill Downhill Run. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18158135. [PMID: 34360424 PMCID: PMC8346098 DOI: 10.3390/ijerph18158135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Downhill running has an important effect on performance in trail running competitions, but it is less studied than uphill running. The purpose of this study was to investigate the cardiorespiratory response during 15 min of downhill running (DR) and to evaluate the neuromuscular consequences in a group of trail runners. Before and after a 15-min DR trial (slope: −25%) at ~60% of maximal oxygen consumption (V̇O2max), we evaluated maximal voluntary contraction torque (MVCt) and muscle contractility in a group of seventeen trail running athletes. Additionally, during the DR trial, we measured V̇O2 and heart rate (HR). V̇O2 and HR increased as a function of time, reaching +19.8 ± 15.9% (p < 0.001; ES: 0.49, medium) and +15.3 ± 9.9% (p < 0.001; ES: 0.55, large), respectively, in the last minute of DR. Post-exercise, the MVCt decreased (−22.2 ± 12.0%; p < 0.001; ES = 0.55, large) with respect to the pre-exercise value. All the parameters related to muscle contractility were impaired after DR: the torque evoked by a potentiated high frequency doublet decreased (−28.5 ± 12.7%; p < 0.001; ES: 0.61, large), as did the torque response from the single-pulse stimulation (St, −41.6 ± 13.6%; p < 0.001; ES: 0.70, large) and the M-wave (−11.8 ± 12.1%; p < 0.001; ES: 0.22, small). We found that after 15 min of DR, athletes had a decreased MVCt, which was ascribed mainly to peripheral rather than central alterations. Additionally, during low-intensity DR exercise, muscle fatigue and exercise-induced muscle damage may contribute to the development of O2 and HR drift.
Collapse
|
28
|
Rogers B, Mourot L, Doucende G, Gronwald T. Fractal correlation properties of heart rate variability as a biomarker of endurance exercise fatigue in ultramarathon runners. Physiol Rep 2021; 9:e14956. [PMID: 34291602 PMCID: PMC8295593 DOI: 10.14814/phy2.14956] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Although heart rate variability (HRV) indexes have been helpful for monitoring the fatigued state while resting, little data indicate that there is comparable potential during exercise. Since an index of HRV based on fractal correlation properties, alpha 1 of detrended fluctuation analysis (DFA a1) displays overall organismic demands, alteration during exertion may provide insight into physiologic changes accompanying fatigue. Two weeks after collecting baseline demographic and gas exchange data, 11 experienced ultramarathon runners were divided into two groups. Seven runners performed a simulated ultramarathon for 6 h (Fatigue group, FG) and four runners performed daily activity over a similar period (Control group, CG). Before (Pre) and after (Post) the ultramarathon or daily activity, DFA a1, heart rate (HR), running economy (RE) and countermovement jumps (CMJ) were measured while running on a treadmill at 3 m/s. In Pre versus Post comparisons, data showed a decline with large effect size in DFA a1 post intervention only for FG (Pre: 0.71, Post: 0.32; d = 1.34), with minor differences and small effect sizes in HR (d = 0.02) and RE (d = 0.21). CG showed only minor differences with small effect sizes in DFA a1 (d = 0.19), HR (d = 0.15), and RE (d = 0.31). CMJ vertical peak force showed fatigue-induced decreases with large effect size in FG (d = 0.82) compared to CG (d = 0.02). At the completion of an ultramarathon, DFA a1 decreased with large effect size while running at low intensity compared to pre-race values. DFA a1 may offer an opportunity for real-time tracking of physiologic status in terms of monitoring for fatigue and possibly as an early warning signal of systemic perturbation.
Collapse
Affiliation(s)
- Bruce Rogers
- College of MedicineUniversity of Central FloridaOrlandoFLUSA
| | - Laurent Mourot
- EA3920 Prognostic Factors and Regulatory Factors of Cardiac and Vascular PathologiesExercise Performance Health Innovation (EPHI) platform, University of Bourgogne Franche‐ComtéBesançonFrance
- National Research Tomsk Polytechnic UniversityTomsk OblastRussia
| | - Gregory Doucende
- Université de Perpignan Via DomitiaLaboratoire Européen Performance Santé Altitude (LEPSA)BesançonFrance
| | - Thomas Gronwald
- Faculty of Health SciencesDepartment of Performance, NeuroscienceTherapy and HealthMSH Medical School HamburgUniversity of Applied Sciences and Medical UniversityHamburgGermany
| |
Collapse
|
29
|
Downhill running impairs peripheral but not central neuromuscular indices in elbow flexor muscles. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:101-109. [PMID: 35782164 PMCID: PMC9219267 DOI: 10.1016/j.smhs.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/05/2022] Open
Abstract
The purpose of this study was to examine the effects of a 1-h downhill running exercise on the elbow flexor muscles’ neuromuscular functions. Seventeen adults (Control [CON]: n = 9; Experimental [EXP]: n = 8) completed this study. The CON rested for 30 min while the EXP performed the downhill running. Before, 10 min, 24 h, and 48 h after the interventions, dependent variables (knee extensor muscle soreness, elbow flexion and knee extension isometric strength, elbow flexion resting twitch and voluntary activation [VA], and the biceps surface electromyography [EMG] amplitude) were measured. Knee extensor muscle soreness was significantly greater in the EXP than the CON group following the intervention throughout the entire 48 h. This was accompanied by the greater decline in the knee extension strength in the EXP than the CON (mean ± SD: -6.9 ± 3.4% vs. 1.0 ± 3.2%, p = 0.044). The elbow flexion strength, VA, and EMG amplitude were not affected by the exercise. However, the decline of the elbow flexion resting twitch was greater in the EXP than the CON (−19.6 ± 6.3% vs. 8.7 ± 5.9%, p = 0.003). Therefore, the downhill running impaired the remote elbow flexor muscles at a peripheral level.
Collapse
|
30
|
Touron J, Costes F, Coudeyre E, Perrault H, Richard R. Aerobic Metabolic Adaptations in Endurance Eccentric Exercise and Training: From Whole Body to Mitochondria. Front Physiol 2021; 11:596351. [PMID: 33584331 PMCID: PMC7873519 DOI: 10.3389/fphys.2020.596351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
A characteristic feature of eccentric as compared with concentric exercise is the ability to generate greater mechanical loads for lower cardiopulmonary demands. Current evidence concurs to show that eccentric training translates into considerable gains in muscle mass and strength. Less is known, however, regarding its impact on oxygen transport and on factors to be considered for optimizing its prescription and monitoring. This article reviews the existing evidence for endurance eccentric exercise effects on the components of the oxygen transport system from systemic to mitochondria in both humans and animals. In the studies reviewed, specially designed cycle-ergometers or downhill treadmill running were used to generate eccentric contractions. Observations to date indicate that overall, the aerobic demand associated with the eccentric training load was too low to significantly increase peak maximal oxygen consumption. By extension, it can be inferred that the very high eccentric power output that would have been required to solicit a metabolic demand sufficient to enhance peak aerobic power could not be tolerated or sustained by participants. The impact of endurance eccentric training on peripheral flow distribution remains largely undocumented. Given the high damage susceptibility of eccentric exercise, the extent to which skeletal muscle oxygen utilization adaptations would be seen depends on the balance of adverse and positive signals on mitochondrial integrity. The article examines the protection provided by repeated bouts of acute eccentric exercise and reports on the impact of eccentric cycling and downhill running training programs on markers of mitochondrial function and of mitochondrial biogenesis using mostly from animal studies. The summary of findings does not reveal an impact of training on skeletal muscle mitochondrial respiration nor on selected mitochondrial messenger RNA transcripts. The implications of observations to date are discussed within future perspectives for advancing research on endurance eccentric exercise physiological impacts and using a combined eccentric and concentric exercise approach to optimize functional capacity.
Collapse
Affiliation(s)
- Julianne Touron
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
| | - Frédéric Costes
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
- Service de Médecine du Sport et des Explorations Fonctionnelles, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Emmanuel Coudeyre
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
- Service de Médecine Physique et de Réadaptation, CHU Gabriel Montpied/CHU Louise Michel, Clermont-Ferrand, France
| | - Hélène Perrault
- Respiratory Division, McGill University Health Center, Montreal, QC, Canada
| | - Ruddy Richard
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
- Service de Médecine du Sport et des Explorations Fonctionnelles, CHU Gabriel Montpied, Clermont-Ferrand, France
- Unité d’Exploration en Nutrition (UEN), CRNH Auvergne, Clermont-Ferrand, France
| |
Collapse
|