1
|
Hoegsbjerg C, Møbjerg A, Yeung CYC, Schjerling P, Krogsgaard MR, Koch M, Kjaer M, von Keudell AG, Mackey AL. Fibre type differences in the organisation of mononuclear cells and myonuclei at the tips of human myofibres. J Cell Sci 2025; 138:JCS263660. [PMID: 39704232 DOI: 10.1242/jcs.263660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The myotendinous junction (MTJ) is a weak link in the musculoskeletal system. Here, we isolated the tips of single myofibres from healthy (non-injured) human hamstring muscles for confocal microscopy (n=6) and undertook RNAscope in situ hybridisation (n=6) to gain insight into the profiles of cells and myonuclei in this region, in a fibre type manner. A marked presence of mononuclear cells was observed coating the myofibre tips (confirmed by serial block face scanning electron microscopy and cryosection immunofluorescence), with higher numbers for type I (median 29; range 16-63) than type II (16; 9-23) myofibres (P<0.05). The number of these cells expressing COL22A1 was comparable between fibre types. Myonuclear number and density gradually increased from the myofibre proper towards the tip for both fibre types (P<0.05). COL22A1 was expressed by similar proportions of myonuclei in type I (median 26%; range 13-56) and type II (19%; 3-67) myofibre tips. 70% of the COL22A1-positive nuclei in the MTJ region were myonuclei, and the remaining 30% were MTJ cells. This insight refines our fundamental understanding of the human MTJ at the cell and structural levels.
Collapse
Affiliation(s)
- Christian Hoegsbjerg
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ask Møbjerg
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ching-Yan Chloé Yeung
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael R Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arvind G von Keudell
- Orthopaedic Trauma Section, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Brigham and Women's Hospital, Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Van Hooren B, Aagaard P, Blazevich AJ. Optimizing Resistance Training for Sprint and Endurance Athletes: Balancing Positive and Negative Adaptations. Sports Med 2024; 54:3019-3050. [PMID: 39373864 PMCID: PMC11608172 DOI: 10.1007/s40279-024-02110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Resistance training (RT) triggers diverse morphological and physiological adaptations that are broadly considered beneficial for performance enhancement as well as injury risk reduction. Some athletes and coaches therefore engage in, or prescribe, substantial amounts of RT under the assumption that continued increments in maximal strength capacity and/or muscle mass will lead to improved sports performance. In contrast, others employ minimal or no RT under the assumption that RT may impair endurance or sprint performances. However, the morphological and physiological adaptations by which RT might impair physical performance, the likelihood of these being evoked, and the training program specifications that might promote such impairments, remain largely undefined. Here, we discuss how selected adaptations to RT may enhance or impair speed and endurance performances while also addressing the RT program variables under which these adaptations are likely to occur. Specifically, we argue that while some myofibrillar (muscle) hypertrophy can be beneficial for increasing maximum strength, substantial hypertrophy can lead to macro- and microscopic adaptations such as increases in body (or limb) mass and internal moment arms that might, under some conditions, impair both sprint and endurance performances. Further, we discuss how changes in muscle architecture, fiber typology, microscopic muscle structure, and intra- and intermuscular coordination with RT may maximize speed at the expense of endurance, or maximize strength at the expense of speed. The beneficial effect of RT for sprint and endurance sports can be further improved by considering the adaptive trade-offs and practical implications discussed in this review.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, Maastricht, NL, 6229 ER, The Netherlands.
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
3
|
Lievens E, Van de Casteele F, De Block F, Van Vossel K, Vandenbogaerde T, Sandford GN, Bellinger P, Minahan C, Bourgois JG, Stellingwerff T, Mujika I, Derave W. Estimating Muscle Fiber-Type Composition in Elite Athletes: A Survey on Current Practices and Perceived Merit. Int J Sports Physiol Perform 2024; 19:1197-1208. [PMID: 39209287 DOI: 10.1123/ijspp.2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To gather information on practices and perceptions of high-performance experts regarding their athletes' muscle fiber-type composition (MFTC) and its estimation. METHODS A questionnaire on the noninvasive versus invasive estimation of MFTC was completed by 446 experts including coaches and sport-science/sports-medicine staff. Moreover, the perceived importance of MFTC for training and performance optimization was assessed. Differences between sport types (individual and team sports) were analyzed using chi-square tests. RESULTS Forty percent of the experts implemented MFTC assessment in pursuit of performance optimization, while 50% did not know their athletes' MFTC but expressed a desire to implement it if they would be able to assess MFTC. Ten percent did not perceive value in MFTC assessment. Only 18% of experts believed that their athletes would undergo a muscle biopsy, leading to the adoption of alternative noninvasive techniques. Experts primarily relied on their experience to estimate MFTC (65%), with experts working in individual sports using their experience more frequently than those working in team sports (68% vs 51%; P = .009). Jump tests emerged as the second-most commonly employed method for estimating MFTC (56%). When only considering experts who are currently using MFTC, 87% use MFTC to individualize training volume and 84% to individualize training intensity. CONCLUSIONS Experts value MFTC assessment primarily to individualize training but mainly rely on noninvasive methods to estimate MFTC. Some of these methods lack scientific validity, suggesting a continuing need for education and further research in this area.
Collapse
Affiliation(s)
- Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | | | - Fien De Block
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Kim Van Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | | | | | - Phillip Bellinger
- Griffith Sports Science, Griffith University, Gold Coast, QLD, Australia
| | - Clare Minahan
- Griffith Sports Science, Griffith University, Gold Coast, QLD, Australia
- Australian Institute of Sport, Australian Sports Commission, Canberra, ACT, Australia
| | - Jan G Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Trent Stellingwerff
- Canadian Sport Institute Pacific, Victoria, BC, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, BC, Canada
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Aspin GL, Graham MK, Franklin JD, Hicks KM, Taylor JM. The Relationship Between the Anaerobic Speed Reserve and Acute Responses to High-Intensity Interval Training in Female Soccer Players. J Strength Cond Res 2024; 38:1911-1916. [PMID: 39016291 DOI: 10.1519/jsc.0000000000004900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ABSTRACT Aspin, GL, Graham, M, Franklin, J, Hicks, KM, and Taylor, JM. The relationship between the anaerobic speed reserve and acute responses to high-intensity interval training in female soccer players. J Strength Cond Res 38(11): 1911-1916, 2024-The anaerobic speed reserve (ASR) is a popular method of profiling soccer players, often used to individualize training prescription. This study explored the reliability of ASR profiling, and the relationship between the ASR and acute physiological responses to high-intensity interval training (HIIT). Acute physiological responses to different HIIT types were also compared. Thirteen subelite female soccer players aged 20.2 ± 4.6 years completed 6 exercise sessions. In sessions 1-2, players completed a 40-m sprint to assess maximal sprint speed (MSS) and 1600-m time-trial to estimate maximal aerobic speed (MAS), which were used to calculate ASR and assess test-retest reliability. In sessions 3-6, players completed 4 HIIT sessions (repeated-sprint training, sprint interval training, long intervals, and short intervals HIIT). Intensities for long and short intervals HIIT were individualized according to MAS. Ratings of perceived exertion (RPE), heart rate (HR), and postsession blood lactates were recorded throughout. Relationships between the ASR and acute responses to HIIT, and between HIIT session comparisons in outcome measures were assessed. Anaerobic speed reserve (coefficient of variation ± 95% confidence limits; 3.1 ± 1.5%), MAS (1.8 ± 1.3%), and MSS (0.8 ± 0.6%) indicated acceptable reliability. Moderate correlations between ASR and RPE ( r = 0.33), postsession blood lactate ( r = 0.34), and HR ( r = 0.37) were observed during long intervals HIIT. A strong correlation was observed between ASR and RPE during SIT ( r = 0.50). Sprint interval training elicited higher RPE's and postsession blood lactate's than other HIIT sessions. Anaerobic speed reserve has good reliability and may influence acute physiological responses to HIIT in female soccer players.
Collapse
Affiliation(s)
- Greg L Aspin
- Northumbria Sport, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Michael K Graham
- School of Health and Life Sciences Teesside University, Middlesbrough, United Kingdom; and
| | - John D Franklin
- School of Health and Life Sciences Teesside University, Middlesbrough, United Kingdom; and
| | - Kirsty M Hicks
- Department of Sport, Exercise, and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Jonathan M Taylor
- School of Health and Life Sciences Teesside University, Middlesbrough, United Kingdom; and
| |
Collapse
|
5
|
Lievens E, Van Vossel K, Van de Casteele F, Derave W, Murdoch JB. The effects of residual dipolar coupling on carnosine in proton muscle spectra. NMR IN BIOMEDICINE 2024; 37:e5083. [PMID: 38217329 DOI: 10.1002/nbm.5083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
Carnosine, an MR-visible dipeptide in human muscle, is well characterized by two peaks at ~8 and ~7 ppm from C2 and C4 imidazole protons. Like creatine and other metabolites, carnosine is subject to residual dipolar coupling in the anisotropic environment of muscle fibers, but the effects have not been studied extensively. Single-voxel TE 30-32 PRESS spectra from three different 3T studies were acquired from gastrocnemius medialis and soleus muscles in the human lower leg. In these studies, carnosine T2 values were measured, and spectra were obtained at three different foot angles. LCModel was used to fit the carnosine peaks with a basis set that was generated using shaped RF pulses and included a range of dipolar couplings affecting the C4 peak. A seven-parameter analytic expression was used to fit the CH2 doublets of creatine. It incorporated an optimized "effective TE" value to model the effect of shaped RF pulses. The fits confirm that the triplet C4 peak of carnosine is dipolar coupled to a pair of CH2 protons, with no need to include a contribution from a separate pool of freely rotating uncoupled carnosine. Moreover, the couplings experienced by carnosine C4 protons and creatine CH2 protons are strongly correlated (R2 = 0.88, P<0.001), exhibiting a similar 3cos2 θ - 1 dependence on the angle θ between fiber orientation and B0. T2 values for the singlet C2 peak of gastrocnemius carnosine are inversely proportional to the C4 dipolar coupling strength (R2 = 0.97, P < 0.001), which in turn is a function of foot orientation. This dependence indicates that careful positioning of the foot while acquiring lower leg muscle spectra is important to obtain reproducible carnosine concentrations. As proton magnetic resonance spectroscopy of carnosine is currently used to non-invasively estimate the muscle fiber typology, these results have important implications in sport science.
Collapse
Affiliation(s)
- Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Kim Van Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | | | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - James B Murdoch
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Martinho DV, Rebelo A, Field A, Ribeiro AS, Pereira F, Bizarro B, Ribeiro J, Len SM, Gouveia ÉR, Sarmento H. The Quantification of Physical Performance and Internal Training Load in Youth Male Soccer Players During Preseason. Int J Sports Physiol Perform 2024:1-7. [PMID: 38437841 DOI: 10.1123/ijspp.2023-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE The monitoring of training loads and quantification of physical performance are common practices in youth soccer academies to support coaches in prescribing and programming training for individuals. The interaction between training load and physical performance is unknown during a preseason period in youth soccer players. The current study assessed changes in training load and physical assessments across a 4-week preseason period. The relationship between physical performance and match playing time in youth male soccer players was also investigated. METHODS The training loads of 25 professional youth academy male soccer players were monitored throughout a 4-week preseason period. Assessments of power, agility, speed, and aerobic capacity were undertaken in the first training session. Session ratings of perceived exertion (sRPE) and well-being questionnaires were collected during all training sessions and preseason matches. Playing time during subsequent competitive matches was recorded. RESULTS T test and 30-m-sprint assessments, conducted on the first day of preseason, were predictors of sRPE throughout preseason (t test χ2/df = 2.895, poor adjustment; 30-m sprint χ2/df = 1.608, good adjustment). YoYo Test performance was related with changes in perceived fatigue (χ2/df = 0.534, very good adjustment). Faster players reported higher values of sRPE, and players with higher aerobic capacity reported higher levels of fatigue across preseason. Well-being, perceived fatigue and soreness, and sRPE decreased across preseason. Greater match durations were related to higher levels of fatigue during preseason (P < .05). CONCLUSION The current study highlights the relationship between training load, physical assessments, and playing time. Coaches and practitioners can use physical test data at the start of preseason as an indication of players that report higher sRPE, perceived fatigue, and reduced well-being across preseason, supporting decisions around individualized training prescriptions.
Collapse
Affiliation(s)
- Diogo V Martinho
- University of Coimbra, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
- Laboratory of Robotics and Engineering Systems, Interactive Technologies Institute, Funchal, Portugal
| | - André Rebelo
- CIDEFES, Centro de Investigação em Desporto, Educação Física e Exercício e Saude, Universidade Lusófona, Lisbon, Portugal
- COD, Center of Sports Optimization, Sporting Clube de Portugal, Lisbon, Portugal
| | - Adam Field
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alex S Ribeiro
- University of Coimbra, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Filipa Pereira
- University of Coimbra, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Bruno Bizarro
- University of Coimbra, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - João Ribeiro
- Research Center in Sports Sciences, Health Sciences and Human Development, University Institute of Maia, Porto, Portugal
- Department of Performance Optimization, GOD, Sporting Clube de Braga SAD, Braga, Portugal
| | - Silvano M Len
- Universidad de Ciencias de la Cultura Física y el Deporte "Manuel Fajardo,"Havana, Cuba
| | - Élvio R Gouveia
- Laboratory of Robotics and Engineering Systems, Interactive Technologies Institute, Funchal, Portugal
- Department of Physical Education and Sport, University of Madeira, Funchal, Portugal
| | - Hugo Sarmento
- University of Coimbra, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| |
Collapse
|
7
|
Vidal Moreno de Vega C, de Meeûs d’Argenteuil C, Boshuizen B, De Mare L, Gansemans Y, Van Nieuwerburgh F, Deforce D, Goethals K, De Spiegelaere W, Leybaert L, Verdegaal ELJ, Delesalle C. Baselining physiological parameters in three muscles across three equine breeds. What can we learn from the horse? Front Physiol 2024; 15:1291151. [PMID: 38384798 PMCID: PMC10879303 DOI: 10.3389/fphys.2024.1291151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Mapping-out baseline physiological muscle parameters with their metabolic blueprint across multiple archetype equine breeds, will contribute to better understanding their functionality, even across species. Aims: 1) to map out and compare the baseline fiber type composition, fiber type and mean fiber cross-sectional area (fCSA, mfCSA) and metabolic blueprint of three muscles in 3 different breeds 2) to study possible associations between differences in histomorphological parameters and baseline metabolism. Methods: Muscle biopsies [m. pectoralis (PM), m. vastus lateralis (VL) and m. semitendinosus (ST)] were harvested of 7 untrained Friesians, 12 Standardbred and 4 Warmblood mares. Untargeted metabolomics was performed on the VL and PM of Friesian and Warmblood horses and the VL of Standardbreds using UHPLC/MS/MS and GC/MS. Breed effect on fiber type percentage and fCSA and mfCSA was tested with Kruskal-Wallis. Breeds were compared with Wilcoxon rank-sum test, with Bonferroni correction. Spearman correlation explored the association between the metabolic blueprint and morphometric parameters. Results: The ST was least and the VL most discriminative across breeds. In Standardbreds, a significantly higher proportion of type IIA fibers was represented in PM and VL. Friesians showed a significantly higher representation of type IIX fibers in the PM. No significant differences in fCSA were present across breeds. A significantly larger mfCSA was seen in the VL of Standardbreds. Lipid and nucleotide super pathways were significantly more upregulated in Friesians, with increased activity of short and medium-chain acylcarnitines together with increased abundance of long chain and polyunsaturated fatty acids. Standardbreds showed highly active xenobiotic pathways and high activity of long and very long chain acylcarnitines. Amino acid metabolism was similar across breeds, with branched and aromatic amino acid sub-pathways being highly active in Friesians. Carbohydrate, amino acid and nucleotide super pathways and carnitine metabolism showed higher activity in Warmbloods compared to Standardbreds. Conclusion: Results show important metabolic differences between equine breeds for lipid, amino acid, nucleotide and carbohydrate metabolism and in that order. Mapping the metabolic profile together with morphometric parameters provides trainers, owners and researchers with crucial information to develop future strategies with respect to customized training and dietary regimens to reach full potential in optimal welfare.
Collapse
Affiliation(s)
- Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Constance de Meeûs d’Argenteuil
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Lorie De Mare
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Klara Goethals
- Biometrics Research Center, Ghent University, Ghent, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elisabeth-Lidwien J.M.M. Verdegaal
- Thermoregulation Research Group, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
8
|
Van de Casteele F, Deprez D, Van Haaren J, Derave W, Lievens E. In professional football the decline in high-intensity running activities from first to second half is more pronounced in players with a fast muscle typology. Scand J Med Sci Sports 2024; 34:e14508. [PMID: 37792860 DOI: 10.1111/sms.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Muscle typology is heterogeneous among national level football (soccer) players, but positional differences remain unclear. Furthermore, fast typology (FT) individuals fatigue more than slow typology (ST) individuals in lab conditions. Therefore, we investigated if muscle typology is different between playing positions and if the decay in high-intensity activities from the first to the second half is larger in FT football players than in ST players. We estimated muscle typology in 147 male professional football players by measuring soleus and gastrocnemius muscle carnosine via proton magnetic resonance spectroscopy. Players were classified as ST, intermediate typology (IT) or FT and categorized as goalkeeper, center back, full back, midfielder, winger or forward. Across four seasons in-game distances covered in multiple running speed, acceleration and deceleration zones were collected during the first and second half. We found no differences in muscle typology between positions (p = 0.412). FT players covered 10.9% more high acceleration distance (>3 m.s-2 ) in the first half than ST players (p = 0.021) and high acceleration distance decay was larger for FT players (-12.4%) than ST (-7.7%; p = 0.006) and IT players (-7.3%; p = 0.010). Moreover, the decline in distance covered in several high-intensity zones tended to be larger in FT players (-11.2% high-intensity >15 km.h-1 ; -12.7% high deceleration <-3 m.s-2 ; -11.5% medium acceleration 2-3 m.s-2 ) than in ST players (-7.1% high-intensity; -8.1% high deceleration; -8.1% medium acceleration; 0.05 < p < 0.1). In conclusion, possessing a particular muscle typology is not required to play any football position at the national level. However, there are indications that FT players might fatigue more toward the end of the game compared to ST players.
Collapse
Affiliation(s)
| | | | - Jan Van Haaren
- Club Brugge NV, Knokke-Heist, Belgium
- Department of Computer Science, KU Leuven, Leuven, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Hopwood HJ, Bellinger PM, Compton HR, Bourne MN, Derave W, Lievens E, Kennedy B, Minahan CL. Match Running Performance in Australian Football Is Related to Muscle Fiber Typology. Int J Sports Physiol Perform 2023; 18:1442-1448. [PMID: 37857382 DOI: 10.1123/ijspp.2023-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/10/2023] [Accepted: 09/03/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE To examine the association between muscle fiber typology and match running performance in professional Australian football (AF) athletes. METHODS An observational time-motion analysis was performed on 23 professional AF athletes during 224 games throughout the 2020 competitive season. Athletes were categorized by position as hybrid, small, or tall. Athlete running performance was measured using Global Navigation Satellite System devices. Mean total match running performance and maximal mean intensity values were calculated for moving mean durations between 1 and 10 minutes for speed (in meters per minute), high-speed-running distance (HSR, >4.17 m·s-1), and acceleration (in meters per second squared), while intercept and slopes were calculated using power law. Carnosine content was quantified by proton magnetic resonance spectroscopy in the gastrocnemius and soleus and expressed as a carnosine aggregate z score (CAZ score) to estimate muscle fiber typology. Mixed linear models were used to determine the association between CAZ score and running performance. RESULTS The mean (range) CAZ score was -0.60 (-1.89 to 1.25), indicating that most athletes possessed a greater estimated proportion of type I muscle fibers. A greater estimated proportion of type I fibers (ie, lower CAZ score) was associated with a larger accumulation of HSR (>4.17 m·s-1) and an increased ability to maintain HSR as the peak period duration increased. CONCLUSION AF athletes with a greater estimated proportion of type I muscle fibers were associated with a greater capacity to accumulate distance running at high speeds, as well as a greater capacity to maintain higher output of HSR running during peak periods as duration increases.
Collapse
Affiliation(s)
- Henry J Hopwood
- Griffith Sport Science, Griffith University, Gold Coast, QLD, Australia
- Football Department, Gold Coast Football Club, Gold Coast, QLD, Australia
| | | | - Heidi R Compton
- Football Department, Gold Coast Football Club, Gold Coast, QLD, Australia
- Applied Sports Science and Exercise Testing Laboratory, University of Newcastle, Ourimbah, NSW, Australia
| | - Matthew N Bourne
- Griffith Sport Science, Griffith University, Gold Coast, QLD, Australia
| | - Wim Derave
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Eline Lievens
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Ben Kennedy
- Mermaid Beach Radiology, Gold Coast, QLD, Australia
| | - Clare L Minahan
- Griffith Sport Science, Griffith University, Gold Coast, QLD, Australia
- Australian Institute of Sport, Australian Sports Commission, Canberra, QLD, Australia
| |
Collapse
|
10
|
Yagiz G, Shida N, Kuruma H, Furuta M, Morimoto K, Yamada M, Uchiyama T, Kubis HP, Owen JA. Rugby Players Exhibit Stiffer Biceps Femoris, Lower Biceps Femoris Fascicle Length to Knee Extensors, and Knee Flexors to Extensors Muscle Volume Ratios Than Active Controls. Int J Sports Physiol Perform 2023; 18:1030-1037. [PMID: 37495222 DOI: 10.1123/ijspp.2023-0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE This study aimed to determine if hamstring-strain-injury risk factors related to muscle structure and morphology differed between rugby union players and controls. METHODS The biceps femoris long head (BFlh) fascicle length and passive muscle stiffness and relative and absolute muscle volume of knee flexors (KF) and extensors (KE) were measured in 21 male subelite rugby players and 21 male physically active nonathletes. RESULTS BFlh fascicle length was significantly longer (mean difference [MD] = 1.6 [1.7] cm) and BFlh passive muscle stiffness was significantly higher in rugby players (MD = 7.8 [14.8] kPa). The absolute BFlh (MD = 71.9 [73.3] cm3), KF (MD = 332.3 [337.2] cm3), and KE (MD = 956.3 [557.4] cm3) muscle volumes were also significantly higher in rugby players. There were no significant differences in the relative BFlh and KF muscle volumes. The relative KE muscle volumes were significantly higher in rugby players (MD = 2.3 [3.7] cm3/kg). However, the percentage BFlh fascicle length:KE (MD = -0.1% [0.1%]), BFlh/KE (MD = -0.9% [1.9%]), and KF:KE (MD = -4.9% [5.9%]) muscle volume ratios were significantly lower in the rugby players. BFlh muscle volume significantly correlated with BFlh fascicle length (r = .59, r2 = .35) and passive muscle stiffness (r = .46, r2 = .21). CONCLUSION Future prospective studies should examine whether there are threshold values in BFlh passive muscle stiffness and BFlh fascicle length:KE, BFlh:KE, and KF:KE muscle volume ratios for predicting hamstring strain injuries.
Collapse
Affiliation(s)
- Gokhan Yagiz
- Institute for Applied Human Physiology, School of Human and Behavioural Sciences, College of Human Sciences, Bangor University, Bangor,United Kingdom
| | - Nami Shida
- Department of Physical Therapy, Faculty of Health Sciences, Tokyo Metropolitan University, Tokyo,Japan
| | - Hironobu Kuruma
- Department of Physical Therapy, Faculty of Health Sciences, Tokyo Metropolitan University, Tokyo,Japan
| | - Masahiro Furuta
- Department of Physical Therapy, Faculty of Health Sciences, Tokyo Metropolitan University, Tokyo,Japan
| | - Koji Morimoto
- Department of Physical Therapy, Faculty of Rehabilitation, Tokyo Professional University of Health Sciences, Tokyo,Japan
| | - Mutsuo Yamada
- Faculty of Health and Sport Sciences, Ryutsu Keizai University, Ryugasaki,Japan
| | | | - Hans-Peter Kubis
- Institute for Applied Human Physiology, School of Human and Behavioural Sciences, College of Human Sciences, Bangor University, Bangor,United Kingdom
| | - Julian A Owen
- Institute for Applied Human Physiology, School of Human and Behavioural Sciences, College of Human Sciences, Bangor University, Bangor,United Kingdom
| |
Collapse
|
11
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
12
|
The Relevance of Muscle Fiber Type to Physical Characteristics and Performance in Team-Sport Athletes. Int J Sports Physiol Perform 2023; 18:223-230. [PMID: 36750118 DOI: 10.1123/ijspp.2022-0235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/09/2023]
Abstract
PURPOSE The aim of this systematic review was to (1) determine the muscle fiber-type composition (or muscle fiber typology [MFT]) of team-sport athletes and (2) examine associations between MFT and the physical characteristics and performance tasks in team-sport athletes. METHODS Searches were conducted across numerous databases-PubMed, SPORTDiscus, MEDLINE, and Google Scholar-using consistent search terms. Studies were included if they examined the MFT of team-sport athletes. Included studies underwent critical appraisal using the McMasters University critical appraisal tool for quantitative research. RESULTS A total of 10 studies were included in the present review, wherein the MFT of athletes was measured from 5 different team sports (soccer, rugby union, rugby league, handball, and volleyball). There was large variability in the MFT of team-sport athletes both within (up to 27.5%) and between sports (24.0% relative difference). Male football players with a higher proportion of type II fibers had faster 10- and 30-m sprint times, achieved a greater total distance sprinting (distance at >6.67 m·s-1), and a greater peak 1-minute sprint distance. CONCLUSIONS MFT varies considerably between athletes both within and between different team sports. The results from some studies suggest that variation in MFT is associated with high-intensity running performance in a football match, as well as 10- and 30-m sprint times. Further experimental studies should focus on how determination of the MFT of team-sport athletes could be utilized to influence talent identification, team selection, and the individualization of training.
Collapse
|
13
|
Jakobsen JR, Mackey AL, Koch M, Imhof T, Hannibal J, Kjaer M, Krogsgaard MR. Larger interface area at the human myotendinous junction in type 1 compared with type 2 muscle fibers. Scand J Med Sci Sports 2023; 33:136-145. [PMID: 36226768 PMCID: PMC10091713 DOI: 10.1111/sms.14246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 08/13/2022] [Accepted: 10/01/2022] [Indexed: 01/11/2023]
Abstract
The myotendinous junction (MTJ) is structurally specialized to transmit force. The highly folded muscle membrane at the MTJ increases the contact area between muscle and tendon and potentially the load tolerance of the MTJ. Muscles with a high content of type II fibers are more often subject to strain injury compared with muscles with type I fibers. It is hypothesized that this is explained by a smaller interface area of MTJ in type II compared with type I muscle fibers. The aim was to investigate by confocal microscopy whether there is difference in the surface area at the MTJ between type I and II muscle fibers. Individual muscle fibers with an intact MTJ were isolated by microscopic dissection in samples from human semitendinosus, and they were labeled with antibodies against collagen XXII (indicating MTJ) and type I myosin (MHCI). Using a spinning disc confocal microscope, the MTJ from each fiber was scanned and subsequently reconstructed to a 3D-model. The interface area between muscle and tendon was calculated in type I and II fibers from these reconstructions. The MTJ was analyzed in 314 muscle fibers. Type I muscle fibers had a 22% larger MTJ interface area compared with type II fibers (p < 0.05), also when the area was normalized to fiber diameter. By the new method, it was possible to analyze the structure of the MTJ from a large number of human muscle fibers. The finding that the interface area between muscle and tendon is higher in type I compared with type II fibers suggests that type II fibers are less resistant to strain and therefore more susceptible to injury.
Collapse
Affiliation(s)
- Jens Rithamer Jakobsen
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Abigail Louise Mackey
- Department of Orthopaedic Surgery M, Institute of Sports Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, and Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Imhof
- Institute for Dental Research and Oral Musculoskeletal Biology, and Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jens Hannibal
- Department of Clinical Biochemistry, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopaedic Surgery M, Institute of Sports Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Michael Rindom Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| |
Collapse
|
14
|
Lievens E. Relevance of muscle fibre typology in sports (PhD Academy Award). Br J Sports Med 2023; 57:553-554. [PMID: 36669869 DOI: 10.1136/bjsports-2022-106251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Affiliation(s)
- Eline Lievens
- Department of Movement & Sports Sciences, Ghent University, Gent, Belgium
| |
Collapse
|