1
|
Nishimura S, Ma C, Sidransky E, Ryan E. Obstacles to Early Diagnosis of Gaucher Disease. Ther Clin Risk Manag 2025; 21:93-101. [PMID: 39882275 PMCID: PMC11776414 DOI: 10.2147/tcrm.s388266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/11/2025] [Indexed: 01/31/2025] Open
Abstract
Gaucher disease (GD) is a rare lysosomal storage disorder resulting from a deficiency of the lysosomal enzyme glucocerebrosidase caused by biallelic variants in the GBA1 gene. Patients may present with a wide spectrum of disease manifestations, including hepatosplenomegaly, thrombocytopenia, bone manifestations, and in the case of GD types 2 and 3, neurodegeneration, cognitive delay, and/or oculomotor abnormalities. While there is no treatment for neuronopathic GD, non-neuronopathic manifestations can be efficiently managed with enzyme replacement therapy or substrate reduction therapy. However, many patients with GD experience a lengthy diagnostic odyssey, which can negatively affect their access to care and clinical outcomes. The cause of this diagnostic delay is multifaceted. Since genotype/phenotype correlations in GD are not always clear, it is difficult to predict the presence, severity, and onset of clinical manifestations. This heterogeneity, combined with the molecular complexity of the GBA1 locus, low disease prevalence, and limited knowledge of GD among providers serves as a barrier to early diagnosis of GD. In this review, we discuss such obstacles and challenges, considerations, and future steps toward improving the diagnostic journey for patients with GD.
Collapse
Affiliation(s)
- Samantha Nishimura
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charis Ma
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emory Ryan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Pal G, Cook L, Schulze J, Verbrugge J, Alcalay RN, Merello M, Sue CM, Bardien S, Bonifati V, Chung SJ, Foroud T, Gatto E, Hall A, Hattori N, Lynch T, Marder K, Mascalzoni D, Novaković I, Thaler A, Raymond D, Salari M, Shalash A, Suchowersky O, Mencacci NE, Simuni T, Saunders‐Pullman R, Klein C. Genetic Testing in Parkinson's Disease. Mov Disord 2023; 38:1384-1396. [PMID: 37365908 PMCID: PMC10946878 DOI: 10.1002/mds.29500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/28/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Genetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gian Pal
- Department of NeurologyRutgers‐Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Lola Cook
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jeanine Schulze
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jennifer Verbrugge
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Roy N. Alcalay
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Movement Disorders Division, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Marcelo Merello
- Neuroscience Department FleniCONICET, Catholic University of Buenos AiresBuenos AiresArgentina
| | - Carolyn M. Sue
- Department of NeurologyRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research UnitStellenbosch UniversityCape TownSouth Africa
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Sun Ju Chung
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Tatiana Foroud
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Emilia Gatto
- Instituto de Neurociencias Buenos AiresAffiliated Buenos Aires UniversityBuenos AiresArgentina
| | - Anne Hall
- Parkinson's FoundationNew YorkNew YorkUSA
| | - Nobutaka Hattori
- Research Institute of Disease of Old Age, Graduate School of MedicineJuntendo UniversityTokyoJapan
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
- Neurodegenerative Disorders Collaborative LaboratoryRIKEN Center for Brain ScienceSaitamaJapan
| | - Tim Lynch
- Dublin Neurological Institute at the Mater Misericordiae University HospitalDublinIreland
| | - Karen Marder
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Deborah Mascalzoni
- Institute for Biomedicine, Eurac ResearchAffiliated Institute of the University of LübeckBolzanoItaly
- Center for Research Ethics and Bioethics, Department of Public Health and Caring SciencesUppsala UniversityUppsalaSweden
| | - Ivana Novaković
- Institute of Human Genetics, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
| | - Avner Thaler
- Movement Disorders Unit, Neurological InstituteTel‐Aviv Medical CenterTel AvivIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel‐Aviv UniversityTel AvivIsrael
- Laboratory of Early Markers of Neurodegeneration, Neurological InstituteTel‐Aviv Medical CenterTel AvivIsrael
| | - Deborah Raymond
- Department of NeurologyMount Sinai Beth Israel and Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada‐e Tajrish Comprehensive Neurosurgical Center of ExcellenceShahid Beheshti University of Medical SciencesTehranIran
| | - Ali Shalash
- Department of Neurology, Faculty of MedicineAin Shams UniversityCairoEgypt
| | - Oksana Suchowersky
- Department of Medicine (Neurology), Medical Genetics and PediatricsUniversity of AlbertaEdmontonAlbertaCanada
| | - Niccolò E. Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for NeurogeneticsNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
- Parkinson's Disease and Movement Disorders CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Tanya Simuni
- Parkinson's Disease and Movement Disorders CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Rachel Saunders‐Pullman
- Department of NeurologyMount Sinai Beth Israel and Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Christine Klein
- Institute of NeurogeneticsUniversity of Lübeck and University Hospital Schleswig‐HolsteinLübeckGermany
| |
Collapse
|
3
|
Kablan A, Silan F, Ozdemir O. Re-evaluation of Genetic Variants in Parkinson's Disease Using Targeted Panel and Next-Generation Sequencing. Twin Res Hum Genet 2023; 26:164-170. [PMID: 37139776 DOI: 10.1017/thg.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Parkinson's disease (PD) is a complex disorder with a significant genetic component. Genetic variations associated with PD play a crucial role in the disease's inheritance and prognosis. Currently, 31 genes have been linked to PD in the OMIM database, and the number of genes and genetic variations identified is steadily increasing. To establish a robust correlation between phenotype and genotype, it is essential to compare research findings with existing literature. In this study, we aimed to identify genetic variants associated with PD using a targeted gene panel with next-generation sequencing (NGS) technology. Our objective was also to explore the idea of re-analyzing genetic variants of unknown significance (VUS). We screened 18 genes known to be related to PD using NGS in 43 patients who visited our outpatient clinic between 2018-2019. After 12-24 months, we re-evaluated the detected variants. We found 14 different heterozygous variants classified as pathogenic, likely pathogenic, or VUS in 14 individuals from nonconsanguineous families. We re-evaluated 15 variants and found changes in their interpretation. Targeted gene panel analysis with NGS can help identify genetic variants associated with PD with confidence. Re-analyzing certain variants at specific time intervals can be especially beneficial in selected situations. Our study aims to expand the clinical and genetic understanding of PD and emphasizes the importance of re-analysis.
Collapse
Affiliation(s)
- Ahmet Kablan
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
- Department of Medical Genetics, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Fatma Silan
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ozturk Ozdemir
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
4
|
Woo EG, Tayebi N, Sidransky E. Next-Generation Sequencing Analysis of GBA1: The Challenge of Detecting Complex Recombinant Alleles. Front Genet 2021; 12:684067. [PMID: 34234814 PMCID: PMC8255797 DOI: 10.3389/fgene.2021.684067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/27/2021] [Indexed: 01/23/2023] Open
Affiliation(s)
- Elizabeth G Woo
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Sassone J, Reale C, Dati G, Regoni M, Pellecchia MT, Garavaglia B. The Role of VPS35 in the Pathobiology of Parkinson's Disease. Cell Mol Neurobiol 2021; 41:199-227. [PMID: 32323152 PMCID: PMC11448700 DOI: 10.1007/s10571-020-00849-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
The vacuolar protein sorting 35 (VPS35) gene located on chromosome 16 has recently emerged as a cause of late-onset familial Parkinson's disease (PD) (PARK17). The gene encodes a 796-residue protein nearly ubiquitously expressed in human tissues. The protein localizes on endosomes where it assembles with other peripheral membrane proteins to form the retromer complex. How VPS35 mutations induce dopaminergic neuron degeneration in humans is still unclear. Because the retromer complex recycles the receptors that mediate the transport of hydrolase to lysosome, it has been suggested that VPS35 mutations lead to impaired lysosomal and autophagy function. Recent studies also demonstrated that VPS35 and the retromer complex influence mitochondrial homeostasis, suggesting that VPS35 mutations elicit mitochondrial dysfunction. More recent studies have identified a key role of VPS35 in neurotransmission, whilst others reported a functional interaction between VPS35 and other genes associated with familial PD, including α-SYNUCLEIN-PARKIN-LRRK2. Here, we review the biological role of VPS35 protein, the VPS35 mutations identified in human PD patients, and the potential molecular mechanism by which VPS35 mutations can induce progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanna Dati
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
6
|
A Specific Diplotype H1j/H2 of the MAPT Gene Could Be Responsible for Parkinson's Disease with Dementia. Case Rep Genet 2020; 2020:8813344. [PMID: 33343949 PMCID: PMC7732378 DOI: 10.1155/2020/8813344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer disease. Five to ten percent of patients have monogenic form of the disease, while most of sporadic PD cases are caused by the combination of genetic and environmental factors. Microtubule-associated protein tau (MAPT) has been appointed as one of the most important risk factors for several neurodegenerative diseases including PD. MAPT is characterized by an inversion in chromosome 17 resulting in two distinct haplotypes H1 and H2. Studies described a significant association of MAPT H1j subhaplotype with PD risk, while H2 haplotype was associated with Parkinsonism, particularly to its bradykinetic component. We report here an isolated case displaying an akinetic-rigid form of PD, with age of onset of 41 years and a good response to levodopa, who developed dementia gradually during the seven years of disease progression. The patient does not carry the LRRK2 G2019S mutation, copy number variations, nor pathogenic and rare variants in known genes associated with PD. MAPT subhaplotype genotyping revealed that the patient has the H1j/H2 diplotype, his mother H1j/H1j, his two healthy brothers H1j/H1v and his deceased father was by deduction H1v/H2. The H1j/H2 diplotype was shown in a total of 3 PD patients among 80, who also did not have known PD-causing mutation and in 1 out of 92 healthy individual controls. The three patients with this diplotype all have a similar clinical phenotype. Our results suggest that haplotypes H1j and H2 are strong risk factor alleles, and their combination could be responsible for early onset of PD with dementia.
Collapse
|
7
|
Cristina TP, Pablo M, Teresa PM, Lydia VD, Irene AR, Araceli AC, Inmaculada BB, Marta BT, Dolores BR, José CAM, Rocío GR, José GRP, Ismael HF, Silvia J, Labrador MAE, Lydia LM, Carlos MCJ, Posada IJ, Ana RS, Cristina RH, Javier DV, Gómez-Garre P. A genetic analysis of a Spanish population with early onset Parkinson's disease. PLoS One 2020; 15:e0238098. [PMID: 32870915 PMCID: PMC7462269 DOI: 10.1371/journal.pone.0238098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Both recessive and dominant genetic forms of Parkinson’s disease have been described. The aim of this study was to assess the contribution of several genes to the pathophysiology of early onset Parkinson’s disease in a cohort from central Spain. Methods/patients We analyzed a cohort of 117 unrelated patients with early onset Parkinson’s disease using a pipeline, based on a combination of a next-generation sequencing panel of 17 genes previously related with Parkinson’s disease and other Parkinsonisms and CNV screening. Results Twenty-six patients (22.22%) carried likely pathogenic variants in PARK2, LRRK2, PINK1, or GBA. The gene most frequently mutated was PARK2, and p.Asn52Metfs*29 was the most common variation in this gene. Pathogenic variants were not observed in genes SNCA, FBXO7, PARK7, HTRA2, DNAJC6, PLA2G6, and UCHL1. Co-occurrence of pathogenic variants involving two genes was observed in ATP13A2 and PARK2 genes, as well as LRRK2 and GIGYF2 genes. Conclusions Our results contribute to the understanding of the genetic architecture associated with early onset Parkinson’s disease, showing both PARK2 and LRRK2 play an important role in Spanish Parkinson’s disease patients. Rare variants in ATP13A2 and GIGYF2 may contribute to PD risk. However, a large proportion of genetic components remains unknown. This study might contribute to genetic diagnosis and counseling for families with early onset Parkinson’s disease.
Collapse
Affiliation(s)
- Tejera-Parrado Cristina
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Mir Pablo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail: (PG-G); (MP)
| | - Periñán María Teresa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Abreu-Rodríguez Irene
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Bernal-Bernal Inmaculada
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Bonilla-Toribio Marta
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Buiza-Rueda Dolores
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | | | - Huertas-Fernández Ismael
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jesús Silvia
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miguel A-Espinosa Labrador
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | - Ignacio J. Posada
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Del Val Javier
- Servicio de Neurología, Fundación Jiménez Díaz, Madrid, Spain
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail: (PG-G); (MP)
| |
Collapse
|
8
|
Gorcenco S, Ilinca A, Almasoudi W, Kafantari E, Lindgren AG, Puschmann A. New generation genetic testing entering the clinic. Parkinsonism Relat Disord 2020; 73:72-84. [DOI: 10.1016/j.parkreldis.2020.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022]
|
9
|
Oluwole OG, Kuivaniemi H, Abrahams S, Haylett WL, Vorster AA, van Heerden CJ, Kenyon CP, Tabb DL, Fawale MB, Sunmonu TA, Ajose A, Olaogun MO, Rossouw AC, van Hillegondsberg LS, Carr J, Ross OA, Komolafe MA, Tromp G, Bardien S. Targeted next-generation sequencing identifies novel variants in candidate genes for Parkinson's disease in Black South African and Nigerian patients. BMC MEDICAL GENETICS 2020; 21:23. [PMID: 32019516 PMCID: PMC7001245 DOI: 10.1186/s12881-020-0953-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The prevalence of Parkinson's disease (PD) is increasing in sub-Saharan Africa, but little is known about the genetics of PD in these populations. Due to their unique ancestry and diversity, sub-Saharan African populations have the potential to reveal novel insights into the pathobiology of PD. In this study, we aimed to characterise the genetic variation in known and novel PD genes in a group of Black South African and Nigerian patients. METHODS We recruited 33 Black South African and 14 Nigerian PD patients, and screened them for sequence variants in 751 genes using an Ion AmpliSeq™ Neurological Research panel. We used bcftools to filter variants and annovar software for the annotation. Rare variants were prioritised using MetaLR and MetaSVM prediction scores. The effect of a variant on ATP13A2's protein structure was investigated by molecular modelling. RESULTS We identified 14,655 rare variants with a minor allele frequency ≤ 0.01, which included 2448 missense variants. Notably, no common pathogenic mutations were identified in these patients. Also, none of the known PD-associated mutations were found highlighting the need for more studies in African populations. Altogether, 54 rare variants in 42 genes were considered deleterious and were prioritized, based on MetaLR and MetaSVM scores, for follow-up studies. Protein modelling showed that the S1004R variant in ATP13A2 possibly alters the conformation of the protein. CONCLUSIONS We identified several rare variants predicted to be deleterious in sub-Saharan Africa PD patients; however, further studies are required to determine the biological effects of these variants and their possible role in PD. Studies such as these are important to elucidate the genetic aetiology of this disorder in patients of African ancestry.
Collapse
Affiliation(s)
- Oluwafemi G Oluwole
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shameemah Abrahams
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - William L Haylett
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Alvera A Vorster
- DNA Sequencing Unit, Central Analytical Facility, Stellenbosch University, Stellenbosch, South Africa
| | - Carel J van Heerden
- DNA Sequencing Unit, Central Analytical Facility, Stellenbosch University, Stellenbosch, South Africa
| | - Colin P Kenyon
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - David L Tabb
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Michael B Fawale
- Neurology Unit, Department of Medicine, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Taofiki A Sunmonu
- Neurology Unit, Department of Medicine, Federal Medical Centre, Owo, Nigeria
| | - Abiodun Ajose
- Department of Chemical Pathology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Matthew O Olaogun
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Anastasia C Rossouw
- Division of Neurology, Department of Medicine, Faculty of Health Sciences, Walter Sisulu University, East London, South Africa
| | - Ludo S van Hillegondsberg
- Division of Neurology, Department of Medicine, Faculty of Health Sciences, Walter Sisulu University, East London, South Africa
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Clinical Genomics, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | - Morenikeji A Komolafe
- Neurology Unit, Department of Medicine, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
- Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa.
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa.
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
10
|
Boot E, Bassett AS, Marras C. 22q11.2 Deletion Syndrome-Associated Parkinson's Disease. Mov Disord Clin Pract 2019; 6:11-16. [PMID: 30746410 PMCID: PMC6335527 DOI: 10.1002/mdc3.12687] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/21/2018] [Accepted: 09/09/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11.2DS) is a multisystem condition associated with an increased risk of early-onset Parkinson's disease (PD). METHODS We review the clinical, neuroimaging, and neuropathological observations, as well as diagnostic challenges, of PD in 22q11.2DS. We conducted a search of PubMed up until June 1, 2018 and personal files to identify relevant publications. RESULTS 22q11.2DS-associated PD is responsible for approximately 0.5% of early-onset PD. The hallmark motor symptoms and neuropathology of PD, and typical findings of reduced striatal dopamine transporter binding with molecular imaging, are present in 22q11.2DS-associated PD. Mean age at PD onset in 22q11.2DS is relatively young (∼40 years). Patients with 22q11.2DS-associated PD show a good response to levodopa. CONCLUSIONS Further recognition of 22q11.2DS and study of PD in people with 22q11.2DS could provide insights into the mechanisms that cause PD in the general population. 22q11.2DS may serve as an identifiable PD model to study prodromal PD and disease-modifying treatments.
Collapse
Affiliation(s)
- Erik Boot
- The Dalglish Family 22q Clinic for Adults, and Department of PsychiatryUniversity Health NetworkTorontoOntarioCanada
- ‘s Heeren Loo ZorggroepAmersfoortThe Netherlands
- Department of Nuclear Medicine, Academic Medical CenterAmsterdamThe Netherlands
| | - Anne S. Bassett
- The Dalglish Family 22q Clinic for Adults, and Department of PsychiatryUniversity Health NetworkTorontoOntarioCanada
- Toronto General Hospital Research Institute and Division of Cardiology, Department of MedicineUniversity Health NetworkTorontoOntarioCanada
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Connie Marras
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease ResearchToronto Western Hospital and University of TorontoTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
11
|
Shulskaya MV, Alieva AK, Vlasov IN, Zyrin VV, Fedotova EY, Abramycheva NY, Usenko TS, Yakimovsky AF, Emelyanov AK, Pchelina SN, Illarioshkin SN, Slominsky PA, Shadrina MI. Whole-Exome Sequencing in Searching for New Variants Associated With the Development of Parkinson's Disease. Front Aging Neurosci 2018; 10:136. [PMID: 29867446 PMCID: PMC5963122 DOI: 10.3389/fnagi.2018.00136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/24/2018] [Indexed: 01/08/2023] Open
Abstract
Background: Parkinson’s disease (PD) is a complex disease with its monogenic forms accounting for less than 10% of all cases. Whole-exome sequencing (WES) technology has been used successfully to find mutations in large families. However, because of the late onset of the disease, only small families and unrelated patients are usually available. WES conducted in such cases yields in a large number of candidate variants. There are currently a number of imperfect software tools that allow the pathogenicity of variants to be evaluated. Objectives: We analyzed 48 unrelated patients with an alleged autosomal dominant familial form of PD using WES and developed a strategy for selecting potential pathogenetically significant variants using almost all available bioinformatics resources for the analysis of exonic areas. Methods: DNA sequencing of 48 patients with excluded frequent mutations was performed using an Illumina HiSeq 2500 platform. The possible pathogenetic significance of identified variants and their involvement in the pathogenesis of PD was assessed using SNP and Variation Suite (SVS), Combined Annotation Dependent Depletion (CADD) and Rare Exome Variant Ensemble Learner (REVEL) software. Functional evaluation was performed using the Pathway Studio database. Results: A significant reduction in the search range from 7082 to 25 variants in 23 genes associated with PD or neuronal function was achieved. Eight (FXN, MFN2, MYOC, NPC1, PSEN1, RET, SCN3A and SPG7) were the most significant. Conclusions: The multistep approach developed made it possible to conduct an effective search for potential pathogenetically significant variants, presumably involved in the pathogenesis of PD. The data obtained need to be further verified experimentally.
Collapse
Affiliation(s)
- Marina V Shulskaya
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Anelya Kh Alieva
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ivan N Vlasov
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Vladimir V Zyrin
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ekaterina Yu Fedotova
- Federal State Scientific Institution, Scientific Center of Neurology, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Natalia Yu Abramycheva
- Federal State Scientific Institution, Scientific Center of Neurology, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Tatiana S Usenko
- The Petersburg Nuclear Physics Institute of the National Research Center, Kurchatov Institute, Russian Academy of Sciences (RAS), Gatchina, Russia.,Federal State Budgetary Educational Institution of Higher Education, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Andrei F Yakimovsky
- Federal State Budgetary Educational Institution of Higher Education, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Anton K Emelyanov
- The Petersburg Nuclear Physics Institute of the National Research Center, Kurchatov Institute, Russian Academy of Sciences (RAS), Gatchina, Russia.,Federal State Budgetary Educational Institution of Higher Education, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Sofya N Pchelina
- The Petersburg Nuclear Physics Institute of the National Research Center, Kurchatov Institute, Russian Academy of Sciences (RAS), Gatchina, Russia.,Federal State Budgetary Educational Institution of Higher Education, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Sergei N Illarioshkin
- Federal State Scientific Institution, Scientific Center of Neurology, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Petr A Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Maria I Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
12
|
Hui KY, Fernandez-Hernandez H, Hu J, Schaffner A, Pankratz N, Hsu NY, Chuang LS, Carmi S, Villaverde N, Li X, Rivas M, Levine AP, Bao X, Labrias PR, Haritunians T, Ruane D, Gettler K, Chen E, Li D, Schiff ER, Pontikos N, Barzilai N, Brant SR, Bressman S, Cheifetz AS, Clark LN, Daly MJ, Desnick RJ, Duerr RH, Katz S, Lencz T, Myers RH, Ostrer H, Ozelius L, Payami H, Peter Y, Rioux JD, Segal AW, Scott WK, Silverberg MS, Vance JM, Ubarretxena-Belandia I, Foroud T, Atzmon G, Pe'er I, Ioannou Y, McGovern DPB, Yue Z, Schadt EE, Cho JH, Peter I. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Sci Transl Med 2018; 10:eaai7795. [PMID: 29321258 PMCID: PMC6028002 DOI: 10.1126/scitranslmed.aai7795] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 03/31/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022]
Abstract
Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10-10) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10-8). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases.
Collapse
Affiliation(s)
- Ken Y Hui
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | | | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Schaffner
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nai-Yun Hsu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling-Shiang Chuang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Nicole Villaverde
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianting Li
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manual Rivas
- Department of Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adam P Levine
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - Xiuliang Bao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe R Labrias
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Talin Haritunians
- Translational Genomics Group, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Darren Ruane
- Department of Immunology and Inflammation, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Kyle Gettler
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Ernie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dalin Li
- Translational Genomics Group, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Elena R Schiff
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - Nikolas Pontikos
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - Nir Barzilai
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven R Brant
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Susan Bressman
- Alan and Barbara Mirken Department of Neurology, Beth Israel Medical Center, New York, NY 10003, USA
| | - Adam S Cheifetz
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark J Daly
- Department of Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard H Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Seymour Katz
- New York University School of Medicine, New York City, NY 10016, USA
- North Shore University-Long Island Jewish Medical Center, Manhasset, NY, USA
- St. Francis Hospital, Roslyn, NY 11576, USA
| | - Todd Lencz
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Richard H Myers
- Department of Neurology, Boston University School of Medicine, Boston, MA 02114, USA
| | - Harry Ostrer
- Departments of Pathology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laurie Ozelius
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Deparment of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Haydeh Payami
- Departments of Neurology and Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35805, USA
| | - Yakov Peter
- Department of Biology, Touro College, Queens, NY 10033, USA
- Department of Pulmonary Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10033, USA
| | - John D Rioux
- Research Center, Montreal Heart Institute, Montreal, Quebec H1T1C8, Canada
- Faculté de Médecine, Université de Montréal, Montreal, Quebec H1T1C8, Canada
| | - Anthony W Segal
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - William K Scott
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario M5T3L9, USA
- Department of Medicine, University of Toronto, Toronto, Ontario M5G1X5, Canada
| | - Jeffery M Vance
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Iban Ubarretxena-Belandia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gil Atzmon
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Itsik Pe'er
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | - Yiannis Ioannou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dermot P B McGovern
- Translational Genomics Group, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhenyu Yue
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Genetics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Judy H Cho
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics, Yale University, New Haven, CT 06520, USA
- Section of Gastroenterology and Hepatology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Institute for Genetics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Ruiz-Martínez J, Azcona LJ, Bergareche A, Martí-Massó JF, Paisán-Ruiz C. Whole-exome sequencing associates novel CSMD1 gene mutations with familial Parkinson disease. NEUROLOGY-GENETICS 2017; 3:e177. [PMID: 28808687 PMCID: PMC5540655 DOI: 10.1212/nxg.0000000000000177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Despite the enormous advancements made in deciphering the genetic architecture of Parkinson disease (PD), the majority of PD is idiopathic, with single gene mutations explaining only a small proportion of the cases. METHODS In this study, we clinically evaluated 2 unrelated Spanish families diagnosed with PD, in which known PD genes were previously excluded, and performed whole-exome sequencing analyses in affected individuals for disease gene identification. RESULTS Patients were diagnosed with typical PD without relevant distinctive symptoms. Two different novel mutations were identified in the CSMD1 gene. The CSMD1 gene, which encodes a complement control protein that is known to participate in the complement activation and inflammation in the developing CNS, was previously shown to be associated with the risk of PD in a genome-wide association study. CONCLUSIONS We conclude that the CSMD1 mutations identified in this study might be responsible for the PD phenotype observed in our examined patients. This, along with previous reported studies, may suggest the complement pathway as an important therapeutic target for PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Javier Ruiz-Martínez
- Department of Neurology (J.R.-M., A.B., J.F.M.-M.), University Hospital Donostia, San Sebastián, Spain; Neurosciences Area, Biodonostia Research Institute (J.R.-M., A.B., J.F.M.-M.), San Sebastián, Spain; Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) (J.R.-M., A.B., J.F.M.-M.), Madrid, Spain; Department of Neuroscience (L.J.A.), Departments of Neurology, Psychiatry, and Genetics and Genomic Sciences (C.P.-R.), Friedman Brain and Mindich Child Health and Development Institutes (C.P.-R.), Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Neuroscience (J.F.M.-M.), University of the Basque Country-UPV-EHU, San Sebastián, Spain
| | - Luis J Azcona
- Department of Neurology (J.R.-M., A.B., J.F.M.-M.), University Hospital Donostia, San Sebastián, Spain; Neurosciences Area, Biodonostia Research Institute (J.R.-M., A.B., J.F.M.-M.), San Sebastián, Spain; Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) (J.R.-M., A.B., J.F.M.-M.), Madrid, Spain; Department of Neuroscience (L.J.A.), Departments of Neurology, Psychiatry, and Genetics and Genomic Sciences (C.P.-R.), Friedman Brain and Mindich Child Health and Development Institutes (C.P.-R.), Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Neuroscience (J.F.M.-M.), University of the Basque Country-UPV-EHU, San Sebastián, Spain
| | - Alberto Bergareche
- Department of Neurology (J.R.-M., A.B., J.F.M.-M.), University Hospital Donostia, San Sebastián, Spain; Neurosciences Area, Biodonostia Research Institute (J.R.-M., A.B., J.F.M.-M.), San Sebastián, Spain; Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) (J.R.-M., A.B., J.F.M.-M.), Madrid, Spain; Department of Neuroscience (L.J.A.), Departments of Neurology, Psychiatry, and Genetics and Genomic Sciences (C.P.-R.), Friedman Brain and Mindich Child Health and Development Institutes (C.P.-R.), Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Neuroscience (J.F.M.-M.), University of the Basque Country-UPV-EHU, San Sebastián, Spain
| | - Jose F Martí-Massó
- Department of Neurology (J.R.-M., A.B., J.F.M.-M.), University Hospital Donostia, San Sebastián, Spain; Neurosciences Area, Biodonostia Research Institute (J.R.-M., A.B., J.F.M.-M.), San Sebastián, Spain; Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) (J.R.-M., A.B., J.F.M.-M.), Madrid, Spain; Department of Neuroscience (L.J.A.), Departments of Neurology, Psychiatry, and Genetics and Genomic Sciences (C.P.-R.), Friedman Brain and Mindich Child Health and Development Institutes (C.P.-R.), Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Neuroscience (J.F.M.-M.), University of the Basque Country-UPV-EHU, San Sebastián, Spain
| | - Coro Paisán-Ruiz
- Department of Neurology (J.R.-M., A.B., J.F.M.-M.), University Hospital Donostia, San Sebastián, Spain; Neurosciences Area, Biodonostia Research Institute (J.R.-M., A.B., J.F.M.-M.), San Sebastián, Spain; Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) (J.R.-M., A.B., J.F.M.-M.), Madrid, Spain; Department of Neuroscience (L.J.A.), Departments of Neurology, Psychiatry, and Genetics and Genomic Sciences (C.P.-R.), Friedman Brain and Mindich Child Health and Development Institutes (C.P.-R.), Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Neuroscience (J.F.M.-M.), University of the Basque Country-UPV-EHU, San Sebastián, Spain
| |
Collapse
|
14
|
Zampieri S, Cattarossi S, Bembi B, Dardis A. GBA Analysis in Next-Generation Era: Pitfalls, Challenges, and Possible Solutions. J Mol Diagn 2017; 19:733-741. [PMID: 28727984 DOI: 10.1016/j.jmoldx.2017.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 01/11/2023] Open
Abstract
Mutations in the gene encoding the lysosomal enzyme acid β-glucosidase (GBA) are responsible for Gaucher disease and represent the main genetic risk factor for developing Parkinson disease. In past years, next-generation sequencing (NGS) technology has been applied for the molecular analysis of the GBA gene, both as a single gene or as part of gene panels. However, the presence of complex gene-pseudogene rearrangements, resulting from the presence of a highly homologous pseudogene (GBAP1) located downstream of the GBA gene, makes NGS analysis of GBA challenging. Therefore, adequate strategies should be adopted to avoid misdetection of GBA recombinant mutations. Here, we validated a strategy for the identification of GBA mutations using parallel massive sequencing and provide an overview of the major drawbacks encountered during GBA analysis by NGS. We implemented a NGS workflow, using a set of 38 patients with Gaucher disease carrying different GBA alleles identified previously by Sanger sequencing. As expected, the presence of the pseudogene significantly affected data output. However, the combination of specific procedures for the library preparation and data analysis resulted in maximal repeatability and reproducibility, and a robust performance with 97% sensitivity and 100% specificity. In conclusion, the pipeline described here represents a useful approach to deal with GBA sequencing using NGS technology.
Collapse
Affiliation(s)
- Stefania Zampieri
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Silvia Cattarossi
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Bruno Bembi
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy.
| |
Collapse
|