1
|
Yu X, Zhang H, Zhang H, Hou C, Wang X, Gu P, Han Y, Yang Z, Zou W. The role of epigenetic methylations in thyroid Cancer. World J Surg Oncol 2024; 22:281. [PMID: 39456011 PMCID: PMC11515417 DOI: 10.1186/s12957-024-03568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) represents one of the most prevalent endocrine malignancies, with a rising incidence worldwide. Epigenetic alterations, which modify gene expression without altering the underlying DNA sequence, have garnered significant attention in recent years. Increasing evidence underscores the pivotal role of epigenetic modifications, including DNA methylation, RNA methylation, and histone methylation, in the pathogenesis of TC. This review provides a comprehensive overview of these reversible and environmentally influenced epigenetic modifications, highlighting their molecular mechanisms and functional roles in TC. Additionally, the clinical implications, challenges associated with studying these epigenetic modifications, and potential future research directions are explored.
Collapse
Affiliation(s)
- Xiaojie Yu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Hao Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Haojie Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Changran Hou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Xiaohong Wang
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Pengfei Gu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Zhenlin Yang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| |
Collapse
|
2
|
Bhattacharya S, Mahato RK, Singh S, Bhatti GK, Mastana SS, Bhatti JS. Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sci 2023; 332:122110. [PMID: 37734434 DOI: 10.1016/j.lfs.2023.122110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Thyroid cancer continues to exhibit a rising incidence globally, predominantly affecting women. Despite stable mortality rates, the unique characteristics of thyroid carcinoma warrant a distinct approach. Differentiated thyroid cancer, comprising most cases, is effectively managed through standard treatments such as thyroidectomy and radioiodine therapy. However, rarer variants, including anaplastic thyroid carcinoma, necessitate specialized interventions, often employing targeted therapies. Although these drugs focus on symptom management, they are not curative. This review delves into the fundamental modulators of thyroid cancers, encompassing genetic, epigenetic, and non-coding RNA factors while exploring their intricate interplay and influence. Epigenetic modifications directly affect the expression of causal genes, while long non-coding RNAs impact the function and expression of micro-RNAs, culminating in tumorigenesis. Additionally, this article provides a concise overview of the advantages and disadvantages associated with pharmacological and non-pharmacological therapeutic interventions in thyroid cancer. Furthermore, with technological advancements, integrating modern software and computing into healthcare and medical practices has become increasingly prevalent. Artificial intelligence and machine learning techniques hold the potential to predict treatment outcomes, analyze data, and develop personalized therapeutic approaches catering to patient specificity. In thyroid cancer, cutting-edge machine learning and deep learning technologies analyze factors such as ultrasonography results for tumor textures and biopsy samples from fine needle aspirations, paving the way for a more accurate and effective therapeutic landscape in the near future.
Collapse
Affiliation(s)
- Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda 151401, Punjab, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
3
|
Heydarzadeh S, Moshtaghie AA, Daneshpour M, Hedayati M. The effect of Apigenin on glycometabolism and cell death in an anaplastic thyroid cancer cell line. Toxicol Appl Pharmacol 2023; 475:116626. [PMID: 37437745 DOI: 10.1016/j.taap.2023.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
AIMS AND BACKGROUND A more pronounced characteristic of cancer cells is the energy dependence on glucose, which mitigated by glucose transporters. The comprehension of the regulatory mechanisms behind the Warburg effect holds promise for developing therapeutic interventions for cancers. Studies are lacking which targeted the GLUTs for treatment of malignancy of thyroid tumors. In our current investigation, we have undertaken this study to determine the potential of Apigenin, plant derived flavonoid in modulating tumor apoptosis by targeting GLUTs expression in SW1736 cell line of anaplastic thyroid carcinoma. MATERIAL METHODS Flow cytometry with propidium iodide staining was used to determine cell apoptosis. For glucose uptake detection, the "GOD-PAP" enzymatic colorimetric test was used to measure the direct glucose levels inside the cells. To determine the expression of GLUT1 and GLUT3 mRNA in the SW1736 cell line qRT-PCR was employed. Protein levels of GLUT1 and GLUT3 in the SW1736 cell line were detected with western blotting. Also, the scratch wound healing assay was conducted for cell migration. RESULTS According to qRT-PCR analysis, the levels of GLUT1 and GLUT3 mRNA were lower in the group that received Apigenin relative to the control group. The Apigenin treatment of SW1736 cells decreased protein expression of the GLUT1 and GLUT3 levels in conformity to qRT-PCR. The scratch assays revealed that Apigenin treatment of cancer cell lines inhibited cell migration as compared to control. CONCLUSION These findings demonstrate the possibility of targeting the glucose facilitators' pathway for making thyroid cancer cells more susceptible to programmed cell death.
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ali Asghar Moshtaghie
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Salimi F, Asadikaram G, Ashrafi MR, Zeynali Nejad H, Abolhassani M, Abbasi-Jorjandi M, Sanjari M. Organochlorine pesticides and epigenetic alterations in thyroid tumors. Front Endocrinol (Lausanne) 2023; 14:1130794. [PMID: 37560303 PMCID: PMC10409498 DOI: 10.3389/fendo.2023.1130794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Purpose Cancer incidence depends on various factors e.g., pesticide exposures which cause epigenetic alterations. The present research aimed to investigate the organochlorine pesticides (OCPs) impacts on promoter methylation of three tumor-suppressor genes and four histone modifications in thyroid nodules in 61 Papillary thyroid carcinoma (PTC) and 70 benign thyroid nodules (BTN) patients. Methods OCPs were measured by Gas chromatography. To identify promoter methylation of TSHR, ATM, and P16 genes, the nested-methylation-specific PCR (MSP) was utilized, and histone lysine acetylation (H3K9, H4K16, and H3K18) and lysine methylation (H4K20) were detected by performing western blot analysis. Results Further TSHR methylation and less P16 methylation were observed in PTC than in BTN. No substantial difference was detected for ATM methylation between PTC and BTN groups. Also, OCP dramatically increased the odds ratio of TSHR (OR=3.98, P=0.001) and P16 (OR=5.65, P<0.001) methylation while confounding variables reduced the chances of ATM methylation arising from 2,4-DDE and 4,4-DDT influence. Hypomethylation of H4K20 and hypo-acetylation of H3K9, H4K16, and H3K18 (P<0.001) were observed in PTC samples than BTN. Furthermore, OCPs substantially decreased the odds ratio of H3K9 (OR=3.68, P<0.001) and H4K16 (OR=6.03, P<0.001) acetylation. Conclusion The current research indicated that OCPs could contribute to PTC progression by TSHR promoter hypermethylation and decreased acetylation of H3K9 and H4K16. In addition, in PTC patients, assessing TSHR promoter methylation and acetylation of H3K9 and H4K16 could have predictive values.
Collapse
Affiliation(s)
- Fouzieh Salimi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences Kerman University of Medical Sciences, Kerman, Iran
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical sciences, Kerman, Iran
| | - Mohammad Reza Ashrafi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical sciences, Kerman, Iran
| | - Hamid Zeynali Nejad
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Abbasi-Jorjandi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical sciences, Kerman, Iran
| | - Mojgan Sanjari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Xu H, Zhang Y, Wu H, Zhou N, Li X, Pineda JP, Zhu Y, Fu H, Ying M, Yang S, Bao J, Yang L, Zhang B, Guo L, Sun L, Lu F, Wang H, Huang Y, Zhu T, Wang X, Wei Q, Sheng C, Qu S, Lv Z, Xu D, Li Q, Dong Y, Qin J, Cheng T, Xing M. High Diagnostic Accuracy of Epigenetic Imprinting Biomarkers in Thyroid Nodules. J Clin Oncol 2023; 41:1296-1306. [PMID: 36378996 PMCID: PMC9937101 DOI: 10.1200/jco.22.00232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To explore the novel diagnostic value of epigenetic imprinting biomarkers in thyroid nodules. PATIENTS AND METHODS A total of 550 patients with fine-needle aspiration (FNA)-evaluated and histopathologically confirmed thyroid nodules were consecutively recruited from eight medical centers. Quantitative chromogenic imprinted gene in situ hybridization (QCIGISH) was used to assess the allelic expression of imprinted genes SNRPN and HM13, on the basis of which a diagnostic grading model for thyroid nodules was developed. The model was retrospectively trained on 124 postsurgical thyroid samples, optimized on 32 presurgical FNA samples, and prospectively validated on 394 presurgical FNA samples. Blinded central review-based cytopathologic and histopathologic diagnoses were used as the reference standard. RESULTS For thyroid malignancy, the QCIGISH test achieved an overall diagnostic sensitivity of 100% (277/277), a specificity of 91.5% (107/117; 95% CI, 86.4 to 96.5), a positive predictive value (PPV) of 96.5% (95% CI, 94.4 to 98.6), and a negative predictive value (NPV) of 100% in the prospective validation, with a diagnostic accuracy of 97.5% (384/394; 95% CI, 95.9 to 99.0). QCIGISH demonstrated a PPV of 97.8% (95% CI, 94.7 to 100) and NPV of 100%, with a diagnostic accuracy of 98.2% (111/113; 95% CI, 95.8 to 100), for indeterminate Bethesda III-V thyroid nodules. QCIGISH demonstrated a PPV of 96.6% (95% CI, 91.9 to 100) and a NPV of 100%, with a diagnostic accuracy of 97.5% (79/81; 95% CI, 94.2 to 100), for Bethesda III-IV. For Bethesda VI, QCIGISH showed a 100% (184/184) accuracy. CONCLUSION This imprinting biomarker-based test can effectively distinguish malignant from benign thyroid nodules. The high PPV and NPV make the test both an excellent rule-in and rule-out diagnostic tool. With such a diagnostic performance and its technical simplicity, this novel thyroid molecular test is clinically widely applicable.
Collapse
Affiliation(s)
- Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, School of Medicine, Tongji University, Shanghai, China
- The Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifeng Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, School of Medicine, Tongji University, Shanghai, China
- The Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxun Wu
- Departments of Endocrinology, Ultrasound and Pathology, JiangYuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ning Zhou
- Lisen Imprinting Diagnostics Inc, Wuxi, Jiangsu, China
| | - Xing Li
- Lisen Imprinting Diagnostics Inc, Wuxi, Jiangsu, China
| | | | - Yun Zhu
- Departments of Endocrinology, Ultrasound and Pathology, JiangYuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Huijun Fu
- The Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Ying
- Departments of Ultrasound and Endocrinology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Shufang Yang
- Departments of Ultrasound and Endocrinology, Taizhou People's Hospital, Taizhou, Jiangsu, China
- Department of Endocrinology, Taizhou Third People's Hospital, Taizhou, Jiangsu, China
| | - Jiandong Bao
- Departments of Endocrinology, Ultrasound and Pathology, JiangYuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Lulu Yang
- Department of Pathology, Nanjing First Hospital, Nanjing, Jiangsu, China
| | - Bingjie Zhang
- Departments of Endocrinology, Ultrasound and Pathology, JiangYuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Lehang Guo
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, School of Medicine, Tongji University, Shanghai, China
- The Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Sun
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, School of Medicine, Tongji University, Shanghai, China
- The Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feng Lu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, School of Medicine, Tongji University, Shanghai, China
- The Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hanxiang Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, School of Medicine, Tongji University, Shanghai, China
- The Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiantong Zhu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaonan Wang
- Lisen Imprinting Diagnostics Inc, Wuxi, Jiangsu, China
| | - Qing Wei
- The Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunjun Sheng
- The Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shen Qu
- The Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongwei Lv
- The Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong Xu
- Department of Ultrasound, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qian Li
- Department of Ultrasound, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yongling Dong
- Department of Ultrasound, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jianwu Qin
- Department of Thyroid and Breast Surgery, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Tong Cheng
- Lisen Imprinting Diagnostics Inc, Wuxi, Jiangsu, China
| | - Mingzhao Xing
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Kruger E, Toraih EA, Hussein MH, Shehata SA, Waheed A, Fawzy MS, Kandil E. Thyroid Carcinoma: A Review for 25 Years of Environmental Risk Factors Studies. Cancers (Basel) 2022; 14:6172. [PMID: 36551665 PMCID: PMC9777404 DOI: 10.3390/cancers14246172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Environmental factors are established contributors to thyroid carcinomas. Due to their known ability to cause cancer, exposure to several organic and inorganic chemical toxicants and radiation from nuclear weapons, fallout, or medical radiation poses a threat to global public health. Halogenated substances like organochlorines and pesticides can interfere with thyroid function. Like phthalates and bisphenolates, polychlorinated biphenyls and their metabolites, along with polybrominated diethyl ethers, impact thyroid hormones biosynthesis, transport, binding to target organs, and impair thyroid function. A deeper understanding of environmental exposure is crucial for managing and preventing thyroid cancer. This review aims to investigate the relationship between environmental factors and the development of thyroid cancer.
Collapse
Affiliation(s)
- Eva Kruger
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amani Waheed
- Department of Community Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Zarkesh M, Arab N, Abooshahab R, Heydarzadeh S, Sheikholeslami S, Nozhat Z, Salehi Jahromi M, Fanaei SA, Hedayati M. CpG island status as an epigenetic alteration for NIS promoter in thyroid neoplasms; a cross-sectional study with a systematic review. Cancer Cell Int 2022; 22:310. [PMID: 36221112 PMCID: PMC9555109 DOI: 10.1186/s12935-022-02720-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene silence via methylation of the CpG islands is cancer's most common epigenetic modification. Given the highly significant role of NIS in thyroid cancer (TC) differentiation, this cross-sectional study aimed to investigate the DNA methylation pattern in seven CpG islands (CpG1-7 including +846, +918, +929, +947, +953, +955, and +963, respectively) of the NIS promoter in patients diagnosed with papillary (PTC), follicular (FTC), and multinodular goiter (MNG). Additionally, a systematic review of the literature was conducted to compare our results with studies concerning methylation of the NIS gene promoter. METHODS Thyroid specimens from 64 patients met the eligibility criteria, consisting of 28 PTC, 9 FTC, and 27 benign MNG cases. The mRNA of NIS was tested by qRT-PCR. The bisulfite sequencing PCR (BSP) technique was performed to evaluate the promoter methylation pattern of the NIS gene. Sequencing results were received in chromatograph, FASTA, SEQ, and pdf formats and were analyzed using Chromas. The methylation percentage at each position and for each sample was calculated by mC/(mC+C) formula for all examined CpGs; following that, the methylation percentage was also calculated at each CpG site. Besides, a literature search was conducted without restricting publication dates. Nine studies met the eligibility criteria after removing duplicates, unrelated articles, and reviews. RESULTS NIS mRNA levels decreased in tumoral tissues of PTC (P = 0.04) and FTC (P = 0.03) patients compared to their matched non-tumoral ones. The methylation of NIS promoter was not common in PTC samples, but it was frequent in FTC (P < 0.05). Significant differences were observed in the methylation levels in the 4th(+ 947), 6th(+ 955), and 7th(+ 963) CpGs sites in the forward strand of NIS promoter between FTC and MNG tissues (76.34 ± 3.12 vs 40.43 ± 8.42, P = 0.004, 69.63 ± 3.03 vs 23.29 ± 6.84, P = 0.001 and 50.33 ± 5.65 vs 24 ± 6.89, P = 0.030, respectively). There was no significant correlation between the expression and methylation status of NIS in PTC and FTC tissues. CONCLUSION Perturbation in NIS promoter's methylation individually may have a potential utility in differentiating MNG and FTC tissues. The absence of a distinct methylation pattern implies the importance of other epigenetic processes, which may alter the production of NIS mRNA. In addition, according to the reversibility of DNA methylation, it is anticipated that the design of particular targeted demethylation medicines will lead to a novel cancer therapeutic strategy.
Collapse
Affiliation(s)
- Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noman Arab
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shabnam Heydarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sheikholeslami
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Nozhat
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Marziyeh Salehi Jahromi
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH, USA
| | | | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran.
| |
Collapse
|
8
|
Ren C, Liu K, Zhao X, Guo H, Luo Y, Chang J, Gao X, Lv X, Zhi X, Wu X, Jiang H, Chen Q, Li Y. Research Progress of Traditional Chinese Medicine in Treatment of Myocardial fibrosis. Front Pharmacol 2022; 13:853289. [PMID: 35754495 PMCID: PMC9213783 DOI: 10.3389/fphar.2022.853289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Effective drugs for the treatment of myocardial fibrosis (MF) are lacking. Traditional Chinese medicine (TCM) has garnered increasing attention in recent years for the prevention and treatment of myocardial fibrosis. This Article describes the pathogenesis of myocardial fibrosis from the modern medicine, along with the research progress. Reports suggest that Chinese medicine may play a role in ameliorating myocardial fibrosis through different regulatory mechanisms such as reduction of inflammatory reaction and oxidative stress, inhibition of cardiac fibroblast activation, reduction in extracellular matrix, renin-angiotensin-aldosterone system regulation, transforming growth Factor-β1 (TGF-β1) expression downregulation, TGF-β1/Smad signalling pathway regulation, and microRNA expression regulation. Therefore, traditional Chinese medicine serves as a valuable source of candidate drugs for exploration of the mechanism of occurrence and development, along with clinical prevention and treatment of MF.
Collapse
Affiliation(s)
- Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Huan Guo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yali Luo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Juan Chang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial People’s Hospital, Lanzhou, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinfang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaodong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hugang Jiang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qilin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
9
|
The Cross-Talk between Polyphenols and the Target Enzymes Related to Oxidative Stress-Induced Thyroid Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2724324. [PMID: 35571253 PMCID: PMC9098327 DOI: 10.1155/2022/2724324] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
Abstract
The most serious hallmark step of carcinogenesis is oxidative stress, which induces cell DNA damage. Although in normal conditions ROS are important second messengers, in pathological conditions such as cancer, due to imbalanced redox enzyme expression, oxidative stress can occur. Recent studies with firmly established evidence suggest an interdependence between oxidative stress and thyroid cancer based on thyroid hormone synthesis. Indeed, a reduced antioxidant defense system might play a part in several steps of progression in thyroid cancer. Based on studies that have been conducted previously, future drug designs for targeting enzymatic ROS sources, as a single agent or in combination, have to be tested. Polyphenols represent the potential for modulating biological events in thyroid cancer, including antioxidative activity. Targeting enzymatic ROS sources, without affecting the physiological redox state, might be an important purpose. As regards the underlying chemopreventive mechanisms of natural compounds that have been discussed in other cancer models, the confirmation of the influence of polyphenols on thyroid cancer is inconclusive and rarely available. Therefore, there is a need for further scientific investigations into the features of the antioxidative effects of polyphenols on thyroid cancer. The current review illustrates the association between some polyphenols and the key enzymes that take place in oxidation reactions in developing thyroid cancer cells. This review gives the main points of the enzymatic ROS sources act and redox signaling in normal physiological or pathological contexts and supplies a survey of the currently available modulators of TPO, LOX, NOX, DUOX, Nrf2, and LPO derived from polyphenols.
Collapse
|
10
|
Utilizing the circulating tumor markers in diagnosis and management of medullary thyroid cancer. Pathol Res Pract 2022; 229:153694. [DOI: 10.1016/j.prp.2021.153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
|
11
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
12
|
Dong L, Geng Z, Liu Z, Tao M, Pan M, Lu X. IGF2BP2 knockdown suppresses thyroid cancer progression by reducing the expression of long non-coding RNA HAGLR. Pathol Res Pract 2021; 225:153550. [PMID: 34340128 DOI: 10.1016/j.prp.2021.153550] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND N6-methyladenosine (m6A), a common internal modification on RNAs, has been found to be closely linked with RNA biosynthesis/metabolism and cancer development. In this text, the roles and molecular mechanisms of m6A-bind protein IGF2BP2 in the development of thyroid cancer (TC) were investigated in vitro. METHODS IGF2BP2 and lncRNA HAGLR were screened out through multiple public databases such as TCGA, Ualcan, POSTAR2, Starbase, and GEPIA. Cell proliferative, migratory and invasive abilities were assessed by CCK-8, Transwell migration and invasion assays, respectively. Cell cycle distribution and cell apoptotic patterns were measured by flow cytometry. The interaction between HAGLR and IGF2BP2 was examined by RIP, RNA pull-down and luciferase assays and bioinformatics analysis. The effect of IGF2BP2 knockdown on the m6A level of HAGLR was explored by meRIP assay. RESULTS IGF2BP2 was highly expressed in TC tumor tissues. IGF2BP2 knockdown weakened cell proliferative, migratory, and invasive abilities, and induced cell cycle arrest and cell apoptosis in TC cells. LncRNA HAGLR expression was markedly upregulated and positively associated with IGF2BP2 expression in TC tissues. IGF2BP2 knockdown reduced HAGLR expression and transcript stability in TC cells. IGF2BP2 regulated HAGLR expression in an m6A-dependent manner. HAGLR overexpression weakened the effects of IGF2BP2 loss on cell proliferation, migration, invasion, apoptosis, and cell cycle progression in TC cells. CONCLUSION IGF2BP2 loss inhibited cell proliferation, migration and invasion, and induced cell apoptosis and cell cycle arrest by down-regulating HAGLR expression in an m6A-dependent manner in TC cells, providing some potential diagnostic and therapeutic targets for TC.
Collapse
Affiliation(s)
- Liangpeng Dong
- Department of Thyroid Surgery, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; The first Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan, China
| | - Zushi Geng
- Department of Thyroid Surgery, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zheng Liu
- Department of Thyroid Surgery, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Mei Tao
- Department of Thyroid Surgery, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Mengjiao Pan
- Department of Thyroid Surgery, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiubo Lu
- Department of Thyroid Surgery, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
13
|
Lorusso L, Cappagli V, Valerio L, Giani C, Viola D, Puleo L, Gambale C, Minaldi E, Campopiano MC, Matrone A, Bottici V, Agate L, Molinaro E, Elisei R. Thyroid Cancers: From Surgery to Current and Future Systemic Therapies through Their Molecular Identities. Int J Mol Sci 2021; 22:3117. [PMID: 33803747 PMCID: PMC8003273 DOI: 10.3390/ijms22063117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Differentiated thyroid cancers (DTC) are commonly and successfully treated with total thyroidectomy plus/minus radioiodine therapy (RAI). Medullary thyroid cancer (MTC) is only treated with surgery but only intrathyroidal tumors are cured. The worst prognosis is for anaplastic (ATC) and poorly differentiated thyroid cancer (PDTC). Whenever a local or metastatic advanced disease is present, other treatments are required, varying from local to systemic therapies. In the last decade, the efficacy of the targeted therapies and, in particular, tyrosine kinase inhibitors (TKIs) has been demonstrated. They can prolong the disease progression-free survival and represent the most important therapeutic option for the treatment of advanced and progressive thyroid cancer. Currently, lenvatinib and sorafenib are the approved drugs for the treatment of RAI-refractory DTC and PDTC while advanced MTC can be treated with either cabozantinib or vandetanib. Dabrafenib plus trametinib is the only approved treatment by FDA for BRAFV600E mutated ATC. A new generation of TKIs, specifically for single altered oncogenes, is under evaluation in phase 2 and 3 clinical trials. The aim of this review was to provide an overview of the current and future treatments of thyroid cancer with regards to the advanced and progressive cases that require systemic therapies that are becoming more and more targeted on the molecular identity of the tumor.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Rossella Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.L.); (V.C.); (L.V.); (C.G.); (D.V.); (L.P.); (C.G.); (E.M.); (M.C.C.); (A.M.); (V.B.); (L.A.); (E.M.)
| |
Collapse
|
14
|
Liu K, Gao M, Qin D, Wang H, Lu Q. Serous BMP8A has Clinical Significance in the Ultrasonic Diagnosis of Thyroid Cancer and Promotes Thyroid Cancer Cell Progression. Endocr Metab Immune Disord Drug Targets 2021; 20:591-598. [PMID: 31656161 DOI: 10.2174/1871530319666191018170022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study aims to discover a potential cytokine biomarker for early diagnosis of thyroid cancer. METHODS We employed data mining of The Cancer Genome Atlas (TCGA) and experimentally elucidated its mechanistic contributions. The differential expression genes (DEGs) between thyroid cancer and health population were analyzed with TCGA online bioinformatic tools. The relative expression of Bone Morphogenetic Protein 8A (BMP8A) was determined by real-time PCR in ultrasonic diagnosed thyroid cancer both in vivo and in vitro. The serous BMP8A content was quantified with an ELISA kit. Protein levels of BMP8A, OCLN, ZEB1, EZH2 and β-Actin were analyzed by Western blot. Cell viability was measured by the MTT assay, and anchorage-independent growth was measured by the soft agar colony formation assay. Cell migrative and invasive capacities were interrogated with transwell chamber assays. RESULTS We identified aberrantly high expression of BMP8A in thyroid cancer, which was associated with unfavorable prognosis and tumor progression. The serous BMP8A was also significantly up-regulated in thyroid cancer patients. Ectopic over-expression of BMP8A remarkably stimulated cell viability and anchorage-independent growth. Meanwhile, the migrative and invasive capacities were greatly increased in response to BMP8A over-expression. Mechanistically, we characterized the positive correlation between BMP8A and TCF7L1, and forced expression of TCF7L1 induced BMP8A expression in TPC-1 cells. CONCLUSION In summary, we have identified a novel biomarker for early diagnosis in addition to Ultrasound for thyroid cancer, which is subjected to TCF7L1 regulation.
Collapse
Affiliation(s)
- Kun Liu
- Clinical Medical Skills Center, Jining Medical University, No. 16 Hehua Road, Jining 272067, Shandong, China.,Department of Ultrasound, Affiliated Hospital of Jining Medical University, No. 79 Guhuai Road, Jining 272029, Shandong, China
| | - Min Gao
- Department of Clinical Laboratory, Jining NO.1 People's Hospital, No. 6 Jiankang Road, Jining 272011, Shandong, China
| | - Dongdong Qin
- Department of Clinical Laboratory, Jining NO.1 People's Hospital, No. 6 Jiankang Road, Jining 272011, Shandong, China
| | - Hongjun Wang
- Department of Ultrasound, Affiliated Hospital of Jining Medical University, No. 79 Guhuai Road, Jining 272029, Shandong, China
| | - Qixiu Lu
- Department of Clinical Laboratory, Jining NO.1 People's Hospital, No. 6 Jiankang Road, Jining 272011, Shandong, China
| |
Collapse
|
15
|
Luzón-Toro B, Villalba-Benito L, Fernández RM, Torroglosa A, Antiñolo G, Borrego S. RMRP, RMST, FTX and IPW: novel potential long non-coding RNAs in medullary thyroid cancer. Orphanet J Rare Dis 2021; 16:4. [PMID: 33407723 PMCID: PMC7789680 DOI: 10.1186/s13023-020-01665-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
The relevant role of long non-coding RNAs (lncRNAs) in cancer is currently a matter of increasing interest. Medullary thyroid cancer (MTC) is a rare neuroendocrine tumor (2-5% of all thyroid cancer) derived from the parafollicular C-cells which secrete calcitonin. About 75% of all medullary thyroid cancers are believed to be sporadic medullary thyroid cancer (sMTC), whereas the remaining 25% correspond to inherited cancer syndromes known as Multiple Endocrine Neoplasia type 2 (MEN2). MEN2 syndrome, with autosomal dominant inheritance is caused by germline gain of function mutations in RET proto-oncogene. To date no lncRNA has been associated to MEN2 syndrome and only two articles have been published relating long non-coding RNA (lncRNA) to MTC: the first one linked MALAT1 with sMTC and, in the other, our group determined some new lncRNAs in a small group of sMTC cases in fresh tissue (RMST, FTX, IPW, PRNCR1, ADAMTS9-AS2 and RMRP). The aim of the current study is to validate such novel lncRNAs previously described by our group by using a larger cohort of patients, in order to discern their potential role in the disease. Here we have tested three up-regulated (RMST, FTX, IPW) and one down-regulated (RMRP) lncRNAs in our samples (formalin fixed paraffin embedded tissues from twenty-one MEN2 and ten sMTC patients) by RT-qPCR analysis. The preliminary results reinforce the potential role of RMST, FTX, IPW and RMRP in the pathogenesis of MTC.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain.
| |
Collapse
|
16
|
MicroRNA in Papillary Thyroid Carcinoma: A Systematic Review from 2018 to June 2020. Cancers (Basel) 2020; 12:cancers12113118. [PMID: 33113852 PMCID: PMC7694051 DOI: 10.3390/cancers12113118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The most common form of endocrine cancer - papillary thyroid carcinoma, has an increasing incidence. Although this disease usually has an indolent behavior, there are cases when it can evolve more aggressively. It has been known for some time that it is possible to use microRNAs for the diagnosis, prognosis and even treatment monitoring of papillary thyroid cancer. The purpose of this study is to summarize the latest information provided by publications regarding the involvement of microRNAs in papillary thyroid cancer, underling the new clinical perspectives offered by these publications. Abstract The involvement of micro-ribonucleic acid (microRNAs) in metabolic pathways such as regulation, signal transduction, cell maintenance, and differentiation make them possible biomarkers and therapeutic targets. The purpose of this review is to summarize the information published in the last two and a half years about the involvement of microRNAs in papillary thyroid carcinoma (PTC). Another goal is to understand the perspective offered by the new findings. Main microRNA features such as origin, regulation, targeted genes, and metabolic pathways will be presented in this paper. We interrogated the PubMed database using several keywords: “microRNA” + “thyroid” + “papillary” + “carcinoma”. After applying search filters and inclusion criteria, a selection of 137 articles published between January 2018–June 2020 was made. Data regarding microRNA, metabolic pathways, gene/protein, and study utility were selected and included in the table and later discussed regarding the matter at hand. We found that most microRNAs regularly expressed in the normal thyroid gland are downregulated in PTC, indicating an important tumor-suppressor action by those microRNAs. Moreover, we showed that one gene can be targeted by several microRNAs and have nominally described these interactions. We have revealed which microRNAs can target several genes at once.
Collapse
|
17
|
Sheikholeslami S, Azizi F, Ghasemi A, Alibakhshi A, Parsa H, Tavangar SM, Shivaee S, Zarif Yeganeh M, Hedayati M, Teimoori-Toolabi L. NOL4 is Downregulated and Hyper-Methylated in Papillary Thyroid Carcinoma Suggesting Its Role as a Tumor Suppressor Gene. Int J Endocrinol Metab 2020; 18:e108510. [PMID: 33613681 PMCID: PMC7887463 DOI: 10.5812/ijem.108510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Thyroid cancer is the fourth most common cancer in the world. Papillary thyroid carcinoma (PTC) accounts for 80% of all types of thyroid neoplasm. Epigenetic alterations such as DNA methylation are known as the main cause of different types of cancers through inactivation of tumor suppressor genes. OBJECTIVES In the present study, the expression and methylation of suggested gene namely nucleolar protein 4 (NOL4) in PTC in comparison to multi nodular goiter (MNG) have been studied. METHODS Forty-one patients with PTC and 38 patients affected by MNG were recruited. Thyroid tissues were obtained during thyroidectomy. RNA and DNA were extracted from thyroid tissues. Quantitative RT-PCR assay was performed for determining the mRNA level of NOL4 while methylation-sensitive high resolution methylation was applied for assessing the methylation status with designing six pairs primers for six regions on gene promoter which were named from NOL4 (a) to NOL4 (f). RESULTS Methylation assessment of 81 CpG islands in the promoter region of NOL4 gene revealed that NOL4 (f), the nearest region to the start codon, was significantly hypermethylated in PTC cases compared to MNG cases. NOL4 level in PTC cases in comparison with MNG cases were downregulated. The methylation status and mRNA level of NOL4 (f) were associated with age of diagnosis (Age of the patient at the time of diagnosis), lymph node metastasis, and advanced stages of disease. CONCLUSIONS These data suggested an aberrant promoter hyper-methylation of NOL4 in PTC cases may be linked with its downregulation. Therefore, NOL4 gene can be proposed as a potential tumor suppressor gene in PTC tissues.
Collapse
Affiliation(s)
- Sara Sheikholeslami
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Alibakhshi
- Department of General Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Parsa
- Department of Surgery, Velayat Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Shivaee
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Zarif Yeganeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Kachko VA, Platonova NM, Vanushko VE, Shifman BM. [The role of molecular testing in thyroid tumors]. ACTA ACUST UNITED AC 2020; 66:33-46. [PMID: 33351337 DOI: 10.14341/probl12491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/14/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
¹I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; ²Endocrinology Research Centre, Moscow, Russia Thyroid cancer is the most common endocrine gland cancer. In the last few decades, the molecular diagnostics for thyroid tumors have been widely researched. It is one of the few cancers whose incidence has increased in recent years from microcarcinomas to common, large forms, in all age groups, from children to the elder people. Most researches focus on the genetic basis, since our current knowledge of the genetic background of various forms of thyroid cancer is far from being complete. Molecular and genetic research has several main directions: firstly, differential diagnosis of thyroid tumors, secondly, the prognostic value of detected mutations in thyroid cancer, and thirdly, targeted therapy for aggressive or radioactive iodine-resistant forms of thyroid cancer. In this review, we wanted to update our understanding and describe the prevailing advances in molecular genetics of thyroid cancer, focusing on the main genes associated with the pathology and their potential application in clinical practice.
Collapse
Affiliation(s)
- Vera A Kachko
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
19
|
Heydarzadeh S, Moshtaghie AA, Daneshpoor M, Hedayati M. Regulators of glucose uptake in thyroid cancer cell lines. Cell Commun Signal 2020; 18:83. [PMID: 32493394 PMCID: PMC7268348 DOI: 10.1186/s12964-020-00586-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Abstract Thyroid cancer is the most common sort of endocrine-related cancer with more prevalent in women and elderly individuals which has quickly widespread expansion in worldwide over the recent decades. Common features of malignant thyroid cells are to have accelerated metabolism and increased glucose uptake to optimize their energy supply which provides a fundamental advantage for growth. In tumor cells the retaining of required energy charge for cell survival is imperative, indeed glucose transporters are enable of promoting of this task. According to this relation it has been reported the upregulation of glucose transporters in various types of cancers. Human studies indicated that poor survival can be occurred following the high levels of GLUT1 expression in tumors. GLUT-1 and GLUT3 are the glucose transporters which seems to be mainly engaged with the oncogenesis of thyroid cancer and their expression in malignant tissues is much more than in the normal one. They are promising targets for the advancement of anticancer strategies. The lack of oncosuppressors have dominant effect on the membrane expression of GLUT1 and glucose uptake. Overexpression of hypoxia inducible factors have been additionally connected with distant metastasis in thyroid cancers which mediates transcriptional regulation of glycolytic genes including GLUT1 and GLUT3. Though the physiological role of the thyroid gland is well illustrated, but the metabolic regulations in thyroid cancer remain evasive. In this study we discuss proliferation pathways of the key regulators and signaling molecules such as PI3K-Akt, HIF-1, MicroRNA, PTEN, AMPK, BRAF, c-Myc, TSH, Iodide and p53 which includes in the regulation of GLUTs in thyroid cancer cells. Incidence of deregulations in cellular energetics and metabolism are the most serious signs of cancers. In conclusion, understanding the mechanisms of glucose transportation in normal and pathologic thyroid tissues is critically important and could provide significant insights in science of diagnosis and treatment of thyroid disease. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Ali Asghar Moshtaghie
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Maryam Daneshpoor
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Veschi V, Verona F, Lo Iacono M, D'Accardo C, Porcelli G, Turdo A, Gaggianesi M, Forte S, Giuffrida D, Memeo L, Todaro M. Cancer Stem Cells in Thyroid Tumors: From the Origin to Metastasis. Front Endocrinol (Lausanne) 2020; 11:566. [PMID: 32982967 PMCID: PMC7477072 DOI: 10.3389/fendo.2020.00566] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and microRNAs (miRNAs) involved in TCSC survival, focusing on the potential of targeting aberrant epigenetic modifications for developing novel therapeutic approaches. Moreover, we discuss the bidirectional relationship between TCSCs and immune cells. The cells of innate and adaptive response can promote the TCSC-driven tumorigenesis, and conversely, TCSCs may favor the expansion of immune cells with protumorigenic functions. Finally, we evaluate the role of the tumor microenvironment and the complex cross-talk of chemokines, hormones, and cytokines in regulating thyroid tumor initiation, progression, and therapy refractoriness. The re-education of the stromal cells can be an effective strategy to fight thyroid cancer. Dissecting the genetic and epigenetic landscape of TCSCs and their interactions with tumor microenvironment cells is urgently needed to select more appropriate treatment and improve the outcome of patients affected by advanced differentiated and undifferentiated thyroid cancers.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- *Correspondence: Matilde Todaro
| |
Collapse
|
21
|
Molecular Alterations in Thyroid Cancer: From Bench to Clinical Practice. Genes (Basel) 2019; 10:genes10090709. [PMID: 31540307 PMCID: PMC6771012 DOI: 10.3390/genes10090709] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Thyroid cancer comprises different clinical and histological entities. Whereas differentiated (DTCs) malignancies are sensitive to radioiodine therapy, anaplastic (ATCs) and medullary (MTCs) tumors do not uptake radioactive iodine and display aggressive features associated with a poor prognosis. Moreover, in a majority of DTCs, disease evolution leads to the progressive loss of iodine sensitivity. Hence, iodine-refractory DTCs, along with ATCs and MTCs, require alternative treatments reflective of their different tumor biology. In the last decade, the molecular mechanisms promoting thyroid cancer development and progression have been extensively studied. This has led to a better understanding of the genomic landscape, displayed by thyroid malignancies, and to the identification of novel therapeutic targets. Indeed, several pharmacological compounds have been developed for iodine-refractory tumors, with four multi-target tyrosine kinase inhibitors already available for DTCs (sorafenib and lenvatinib) and MTCs (cabozantib and vandetanib), and a plethora of drugs currently being evaluated in clinical trials. In this review, we will describe the genomic alterations and biological processes intertwined with thyroid cancer development, also providing a thorough overview of targeted drugs already tested or under investigation for these tumors. Furthermore, given the existing preclinical evidence, we will briefly discuss the potential role of immunotherapy as an additional therapeutic strategy for the treatment of thyroid cancer.
Collapse
|
22
|
Khatami F, Larijani B, Nasiri S, Tavangar SM. Liquid Biopsy as a Minimally Invasive Source of Thyroid Cancer Genetic and Epigenetic Alterations. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:19-29. [PMID: 32351906 PMCID: PMC7175608 DOI: 10.22088/ijmcm.bums.8.2.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
In the blood of cancer patients, some nucleic acid fragments and tumor cells can be found that make it possible to trace tumor changes through a simple blood test called “liquid biopsy”. The main components of liquid biopsy are fragments of DNA and RNA shed by tumors into the bloodstream and circulate freely (ctDNAs and ctRNAs). Tumor cells which are shed into the blood (circulating tumor cells or CTCs), and exosomes that have been investigated for non-invasive detection and monitoring several tumors including thyroid cancer. Genetic and epigenetic alterations of a thyroid tumor can be a driver for tumor genesis or essential for tumor progression and invasion. Liquid biopsy can be real-time representative of such genetic and epigenetic alterations to trace tumors. In thyroid tumors, the circulating BRAF mutation is now taken into account for both thyroid cancer diagnosis and determination of the most effective treatment strategy. Several recent studies have indicated the ctDNA methylation pattern of some iodine transporters and DNA methyltransferase as a diagnostic and prognostic biomarker in thyroid cancer as well. There has been a big hope that the recent advances of genome sequencing together with liquid biopsy can be a game changer in oncology.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Fiore M, Oliveri Conti G, Caltabiano R, Buffone A, Zuccarello P, Cormaci L, Cannizzaro MA, Ferrante M. Role of Emerging Environmental Risk Factors in Thyroid Cancer: A Brief Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071185. [PMID: 30986998 PMCID: PMC6480006 DOI: 10.3390/ijerph16071185] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/22/2019] [Accepted: 03/30/2019] [Indexed: 12/24/2022]
Abstract
Environmental factors are recognized as risk factors of thyroid cancer in humans. Exposure to radiation, both from nuclear weapon or fallout or medical radiation, and to some organic and inorganic chemical toxicants represent a worldwide public health issue for their proven carcinogenicity. Halogenated compounds, such as organochlorines and pesticides, are able to disrupt thyroid function. Polychlorinated biphenyls and their metabolites and polybrominated diethyl ethers bind to thyroid, transport proteins, replace thyroxin, and disrupt thyroid function as phthalates and bisphenolates do, highly mimicking thyroid hormones. A better knowledge of environmental risks represents a very important tool for cancer prevention through true risks prevention and management. This approach is very important because of the epigenetic origin’s theory of cancer. Therefore, the aim of this review was study the association between environmental agents and thyroid cancer promotion.
Collapse
Affiliation(s)
- Maria Fiore
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy.
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy.
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", Section of Anatomic Pathology, 95123 Catania, Italy.
| | - Antonino Buffone
- Department of General Surgery and Specialty Medical Surgery, Endocrine surgery, A.O.U. Policlinico-Vittorio Emanuele P.O. G. Rodolico, University of Catania, 95123 Catania, Italy.
| | - Pietro Zuccarello
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy.
| | - Livia Cormaci
- Hygiene and Preventive Medicine Specializaton School, Department of Medical and Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", 95123 Catania, Italy.
| | - Matteo Angelo Cannizzaro
- Chirugia Generale, Department of Medical and Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", 95123 Catania, Italy.
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy.
| |
Collapse
|
24
|
Lin CL, Tsai ML, Lin CY, Hsu KW, Hsieh WS, Chi WM, Huang LC, Lee CH. HDAC1 and HDAC2 Double Knockout Triggers Cell Apoptosis in Advanced Thyroid Cancer. Int J Mol Sci 2019; 20:ijms20020454. [PMID: 30669676 PMCID: PMC6359659 DOI: 10.3390/ijms20020454] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) and squamous thyroid carcinoma (STC) are both rare and advanced thyroid malignancies with a very poor prognosis and an average median survival time of 5 months and less than 20% of affected patients are alive 1 year after diagnosis. The clinical management of both ATC and STC is very similar because they are not particularly responsive to radiotherapy and chemotherapy. This inspired us to explore a novel and effective clinically approved therapy for ATC treatment. Histone deacetylase inhibitor (HDACi) drugs are recently FDA-approved drug for malignancies, especially for blood cell cancers. Therefore, we investigated whether an HDACi drug acts as an effective anticancer drug for advanced thyroid cancers. Cell viability analysis of panobinostat treatment demonstrated a significant IC50 of 0.075 µM on SW579 STC cells. In addition, panobinostat exposure activated histone acetylation and triggered cell death mainly through cell cycle arrest and apoptosis-related protein activation. Using CRISPR/Cas9 to knock out HDAC1 and HDAC2 genes in SW579 cells, we observed that the histone acetylation level and cell cycle arrest were enhanced without any impact on cell growth. Furthermore, HDAC1 and HDAC2 double knockout (KO) cells showed dramatic cell apoptosis activation compared to HDAC1 and HDAC2 individual KO cells. This suggests expressional and biofunctional compensation between HDAC1 and HDAC2 on SW579 cells. This study provides strong evidence that panobinostat can potentially be used in the clinic of advanced thyroid cancer patients.
Collapse
Affiliation(s)
- Ching-Ling Lin
- Department of Endocrinology and Metabolism, Cathay General Hospital, Taipei 10630, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Lin Tsai
- Department of General Surgery, Cathay General Hospital, Taipei 10630, Taiwan.
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan.
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan.
| | - Kai-Wen Hsu
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan.
- Research Center for Tumor Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Wen-Shyang Hsieh
- Department of Medical Laboratory, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Wei-Ming Chi
- Department of Clinical Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Li-Chi Huang
- Department of Endocrinology and Metabolism, Cathay General Hospital, Taipei 10630, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chia-Hwa Lee
- Department of Medical Laboratory, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program in Medicine Biotechnology, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei 11031, Taiwan.
| |
Collapse
|
25
|
Tao H, Song ZY, Ding XS, Yang JJ, Shi KH, Li J. LncRNAs and miRs as epigenetic signatures in diabetic cardiac fibrosis: new advances and perspectives. Endocrine 2018; 62:281-291. [PMID: 30054866 DOI: 10.1007/s12020-018-1688-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Diabetic cardiomyopathy (DCM) is a serious cardiac complication of diabetes, which further lead to heartfailure. It is known that diabetes-induced cardiac fibrosis is a key pathogenic factor contributing topathological changes in DCM. However, pathogenetic mechanisms underlying diabetes cardiac fibrosis arestill elusive. Recent studies have indicated that noncoding RNAs (ncRNAs) play a key role in diabetescardiac fibrosis. The increasing complexity of epigenetic regulator poses great challenges to ourconventional conceptions regarding how ncRNAs regulate diabetes cardiac fibrosis. METHODS We searched PubMed, Web of Science, and Scopus for manuscripts published prior to April 2018 using keywords "Diabetic cardiomyopathy" AND " diabetes cardiac fibrosis " OR " noncoding RNAs " OR " longnoncoding RNAs " OR " microRNAs " OR "epigenetic". Manuscripts were collated, studied and carriedforward for discussion where appropriate. RESULTS Based on the view that during diabetic cardiac fibrosis, ncRNAs are able to regulate diabetic cardiac fibrosisby targeting genes involved in epigenetic pathways. Many studies have focused on ncRNAs, an epigeneticregulator deregulating protein-coding genes in diabetic cardiac fibrosis, to identify potential therapeutictargets. Recent advances and new perspectives have found that long noncoding RNAs and microRNAs,exert their own effects on the progression of diabetic cardiac fibrosis. CONCLUSION We firstly examine the growing role of ncRNAs characteristics and ncRNAs-regulated genes involved indiabetic cardiac fibrosis. Then, we provide several possible therapeutic strategies and highlight the potentialof molecular mechanisms in which targeting epigenetic regulators are considered as an effective means of treating diabetic cardiac fibrosis.
Collapse
Affiliation(s)
- Hui Tao
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, 230601, Hefei, China
| | - Zheng-Yu Song
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, 230601, Hefei, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, 230601, Hefei, China.
- Department of Cardiothoracic Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, 210028, Nanjing, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| |
Collapse
|
26
|
Robertson JC, Jorcyk CL, Oxford JT. DICER1 Syndrome: DICER1 Mutations in Rare Cancers. Cancers (Basel) 2018; 10:cancers10050143. [PMID: 29762508 PMCID: PMC5977116 DOI: 10.3390/cancers10050143] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
DICER1 syndrome is a rare genetic disorder that predisposes individuals to multiple cancer types. Through mutations of the gene encoding the endoribonuclease, Dicer, DICER1 syndrome disrupts the biogenesis and processing of miRNAs with subsequent disruption in control of gene expression. Since the first description of DICER1 syndrome, case reports have documented novel germline mutations of the DICER1 gene in patients with cancers as well as second site mutations that alter the function of the Dicer protein expressed. Here, we present a review of mutations in the DICER1 gene, the respective protein sequence changes, and clinical manifestations of DICER1 syndrome. Directions for future research are discussed.
Collapse
Affiliation(s)
- Jake C Robertson
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA.
| | - Cheryl L Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725-1511, USA.
| | - Julia Thom Oxford
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725-1511, USA.
| |
Collapse
|
27
|
Tang J, Kong D, Cui Q, Wang K, Zhang D, Yuan Q, Liao X, Gong Y, Wu G. Bioinformatic analysis and identification of potential prognostic microRNAs and mRNAs in thyroid cancer. PeerJ 2018; 6:e4674. [PMID: 29740512 PMCID: PMC5937477 DOI: 10.7717/peerj.4674] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer is one of the most common endocrine malignancies. Multiple evidences revealed that a large number of microRNAs and mRNAs were abnormally expressed in thyroid cancer tissues. These microRNAs and mRNAs play important roles in tumorigenesis. In the present study, we identified 72 microRNAs and 1,766 mRNAs differentially expressed between thyroid cancer tissues and normal thyroid tissues and evaluated their prognostic values using Kaplan-Meier survival curves by log-rank test. Seven microRNAs (miR-146b, miR-184, miR-767, miR-6730, miR-6860, miR-196a-2 and miR-509-3) were associated with the overall survival. Among them, three microRNAs were linked with six differentially expressed mRNAs (miR-767 was predicted to target COL10A1, PLAG1 and PPP1R1C; miR-146b was predicted to target MMP16; miR-196a-2 was predicted to target SYT9). To identify the key genes in the protein-protein interaction network , we screened out the top 10 hub genes (NPY, NMU, KNG1, LPAR5, CCR3, SST, PPY, GABBR2, ADCY8 and SAA1) with higher degrees. Only LPAR5 was associated with the overall survival. Multivariate analysis demonstrated that miR-184, miR-146b, miR-509-3 and LPAR5 were an independent risk factors for prognosis. Our results of the present study identified a series of prognostic microRNAs and mRNAs that have the potential to be the targets for treatment of thyroid cancer.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Deguang Kong
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|