1
|
Rai M, Okah P, Shefali SA, Fitt AJ, Shen MZ, Molomjamts M, Pepin R, Nemkov T, D'Alessandro A, Tennessen JM. New alleles of D-2-hydroxyglutarate dehydrogenase enable studies of oncometabolite function in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645621. [PMID: 40236175 PMCID: PMC11996423 DOI: 10.1101/2025.03.27.645621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
D-2-hydroxyglutarate (D-2HG) is a potent oncometabolite capable of disrupting chromatin architecture, altering metabolism, and promoting cellular dedifferentiation. As a result, ectopic D-2HG accumulation induces neurometabolic disorders and promotes progression of multiple cancers. However, the disease-associated effects of ectopic D-2HG accumulation are dependent on genetic context. Specifically, neomorphic mutations in the mammalian genes Isocitrate dehydrogenase 1 ( IDH1 ) and IDH2 result in the production of enzymes that inappropriately generate D-2HG from α-ketoglutarate (αKG). Within this genetic background, D-2HG acts as an oncometabolite and is associated with multiple cancers, including several diffuse gliomas. In contrast, loss-of-function mutations in the gene D-2-hydroxyglutarate dehydrogenase (D2hgdh) render cells unable to degrade D-2HG, resulting in excessive buildup of this molecule. D2hgdh mutations, however, are not generally associated with elevated cancer risk. This discrepancy raises the question as to why ectopic D-2HG accumulation in humans induces context-dependent disease outcomes. To enable such genetic studies in vivo , we generated two novel loss-of-function mutations in the Drosophila melanogaster gene D2hgdh and validated that these alleles result in ectopic D-2HG. Moreover, we observed that D2hgdh mutations induce developmental and metabolomic phenotypes indicative of elevated D-2HG accumulation. Overall, our efforts provide the Drosophila community with new mutant strains that can be used to study D-2HG function in human disease models as well as in the context of normal growth, metabolism, and physiology.
Collapse
|
2
|
Walbert T, Avila EK, Boele FW, Hertler C, Lu-Emerson C, van der Meer PB, Peters KB, Rooney AG, Templer JW, Koekkoek JAF. Symptom management in isocitrate dehydrogenase mutant glioma. Neurooncol Pract 2025; 12:i38-i48. [PMID: 39776527 PMCID: PMC11703367 DOI: 10.1093/nop/npae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
According to the 2021 World Health Organization classification of CNS tumors, gliomas harboring a mutation in isocitrate dehydrogenase (mIDH) are considered a distinct disease entity, typically presenting in adult patients before the age of 50 years. Given their multiyear survival, patients with mIDH glioma are affected by tumor and treatment-related symptoms that can have a large impact on the daily life of both patients and their caregivers for an extended period of time. Selective oral inhibitors of mIDH enzymes have recently joined existing anticancer treatments, including resection, radiotherapy, and chemotherapy, as an additional targeted treatment modality. With new treatments that improve progression-free and possibly overall survival, preventing and addressing daily symptoms becomes even more clinically relevant. In this review we discuss the management of the most prevalent symptoms, including tumor-related epilepsy, cognitive dysfunction, mood disorders, and fatigue, in patients with mIDH glioma, and issues regarding patient's health-related quality of life and caregiver needs in the era of mIDH inhibitors. We provide recommendations for practicing healthcare professionals caring for patients who are eligible for treatment with mIDH inhibitors.
Collapse
Affiliation(s)
- Tobias Walbert
- Department of Neurology and Neurosurgery, Henry Ford Health, Wayne State and Michigan State University, Detroit, Michigan, USA
| | - Edward K Avila
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Florien W Boele
- Academic Unit of Health Economics, Leeds Institute of Health Sciences, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Patient Centred Outcomes Research, Leeds Institute of Medical Research at St. James’s, St. James’s University Hospital, University of Leeds, Leeds, UK
| | - Caroline Hertler
- Competence Center for Palliative Care, Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christine Lu-Emerson
- Department of Neurology, Maine Health/Maine Medical Center, Scarborough, Maine, USA
| | - Pim B van der Meer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Katherine B Peters
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Alasdair G Rooney
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jessica W Templer
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Chiaramonte R, Sauro G, Giannandrea D, Limonta P, Casati L. Molecular Insights in the Anticancer Activity of Natural Tocotrienols: Targeting Mitochondrial Metabolism and Cellular Redox Homeostasis. Antioxidants (Basel) 2025; 14:115. [PMID: 39857449 PMCID: PMC11760857 DOI: 10.3390/antiox14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The role of mitochondria as the electric engine of cells is well established. Over the past two decades, accumulating evidence has pointed out that, despite the presence of a highly active glycolytic pathway (Warburg effect), a functional and even upregulated mitochondrial respiration occurs in cancer cells to meet the need of high energy and the biosynthetic demand to sustain their anabolic growth. Mitochondria are also the primary source of intracellular ROS. Cancer cells maintain moderate levels of ROS to promote tumorigenesis, metastasis, and drug resistance; indeed, once the cytotoxicity threshold is exceeded, ROS trigger oxidative damage, ultimately leading to cell death. Based on this, mitochondrial metabolic functions and ROS generation are considered attractive targets of synthetic and natural anticancer compounds. Tocotrienols (TTs), specifically the δ- and γ-TT isoforms, are vitamin E-derived biomolecules widely shown to possess striking anticancer properties since they regulate several intracellular molecular pathways. Herein, we provide for the first time an overview of the mitochondrial metabolic reprogramming and redox homeostasis perturbation occurring in cancer cells, highlighting their involvement in the anticancer properties of TTs. This evidence sheds light on the use of these natural compounds as a promising preventive or therapeutic approach for novel anticancer strategies.
Collapse
Affiliation(s)
- Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Giulia Sauro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| |
Collapse
|
4
|
Evans L, Trinder S, Dodgshun A, Eisenstat DD, Whittle JR, Hansford JR, Valvi S. IDH-mutant gliomas in children and adolescents - from biology to clinical trials. Front Oncol 2025; 14:1515538. [PMID: 39876890 PMCID: PMC11773619 DOI: 10.3389/fonc.2024.1515538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
Gliomas account for nearly 30% of all primary central nervous system (CNS) tumors in children and adolescents and young adults (AYA), contributing to significant morbidity and mortality. The updated molecular classification of gliomas defines molecularly diverse subtypes with a spectrum of tumors associated with age-distinct incidence. In adults, gliomas are characterized by the presence or absence of mutations in isocitrate dehydrogenase (IDH), with mutated IDH (mIDH) gliomas providing favorable outcomes and avenues for targeted therapy with the emergence of mIDH inhibitors. Despite their rarity, IDH mutations have been reported in 5-15% of pediatric glioma cases. Those with primary mismatch-repair deficient mIDH astrocytomas (PMMRDIA) have a particularly poor prognosis. Here, we describe the biology of mIDH gliomas and review the literature regarding the emergence of mIDH inhibitors, including clinical trials in adults. Given the paucity of clinical trial data from pediatric patients with mIDH glioma, we propose guidelines for the inclusion of pediatric and AYA patients with gliomas onto prospective trials and expanded access programs as well as the potential of combined mIDH inhibition and immunotherapy in the treatment of patients with PMMRDIA at high risk of progression.
Collapse
Affiliation(s)
- Louise Evans
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Sarah Trinder
- Kids Cancer Centre, Sydney Children’s Hospital, Sydney, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Andrew Dodgshun
- Department of Pediatrics, University of Otago, Christchurch, New Zealand
- Children’s Hematology/Oncology Centre, Christchurch Hospital, Christchurch, New Zealand
| | - David D. Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
- Department of Stem Cell Medicine, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - James R. Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Personalized Oncology Division, Walter and Eliza Hall Institute (WEHI), Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jordan R. Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Pediatric Neuro-Oncology, Precision Cancer Medicine, South Australia Health and Medical Reseach Institute, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
| | - Santosh Valvi
- Department of Pediatric and Adolescent Oncology/Hematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Brain Tumor Research Program, Telethon Kids Institute, Nedlands, WA, Australia
- School of Medicine, Division of Pediatrics, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
5
|
Yang MQ, Zhang SL, Sun L, Huang LT, Yu J, Zhang JH, Tian Y, Han CB, Ma JT. Targeting mitochondria: restoring the antitumor efficacy of exhausted T cells. Mol Cancer 2024; 23:260. [PMID: 39563438 PMCID: PMC11575104 DOI: 10.1186/s12943-024-02175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024] Open
Abstract
Immune checkpoint blockade therapy has revolutionized cancer treatment, but resistance remains prevalent, often due to dysfunctional tumor-infiltrating lymphocytes. A key contributor to this dysfunction is mitochondrial dysfunction, characterized by defective oxidative phosphorylation, impaired adaptation, and depolarization, which promotes T cell exhaustion and severely compromises antitumor efficacy. This review summarizes recent advances in restoring the function of exhausted T cells through mitochondria-targeted strategies, such as metabolic remodeling, enhanced biogenesis, and regulation of antioxidant and reactive oxygen species, with the aim of reversing the state of T cell exhaustion and improving the response to immunotherapy. A deeper understanding of the role of mitochondria in T cell exhaustion lays the foundation for the development of novel mitochondria-targeted therapies and opens a new chapter in cancer immunotherapy.
Collapse
Affiliation(s)
- Mei-Qi Yang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shu-Ling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jing Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jie-Hui Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Cheng-Bo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
6
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
7
|
Xu H, Cao Y, Ruan J, Wang F, He Y, Yang L, Yu T, Du F, Zhang N, Cao X. The effects of BMP2 and the mechanisms involved in the invasion and angiogenesis of IDH1 mutant glioma cells. J Neurooncol 2024; 170:161-171. [PMID: 39117967 PMCID: PMC11447149 DOI: 10.1007/s11060-024-04789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE This study investigated the effect of an isocitrate dehydrogenase 1 (IDH1) mutation (mutIDH1) on the invasion and angiogenesis of human glioma cells. METHODS Doxycycline was used to induce the expression of mutIDH1 in glioma cells. Transwell and wound healing assays were conducted to assess glioma cell migration and invasion. Western blotting and cell immunofluorescence were used to measure the expression levels of various proteins. The influence of bone morphogenetic protein 2 (BMP2) on invasion, angiogenesis-related factors, BMP2-related receptor expression, and changes in Smad signaling pathway-related proteins were evaluated after treatment with BMP2. Differential gene expression and reference transcription analysis were performed. RESULTS Successful infection with recombinant lentivirus expressing mutIDH1 was demonstrated. The IDH1 mutation promoted glioma cell migration and invasion while positively regulating the expression of vascularization-related factors and BMP2-related receptors. BMP2 exhibited a positive regulatory effect on the migration, invasion, and angiogenesis of mutIDH1-glioma cells, possibly mediated by BMP2-induced alterations in Smad signaling pathway-related factors.After BMP2 treatment, the differential genes of MutIDH1-glioma cells are closely related to the regulation of cell migration and cell adhesion, especially the regulation of Smad-related proteins. KEGG analysis confirmed that it was related to BMP signaling pathway and TGF-β signaling pathway and cell adhesion. Enrichment analysis of gene ontology and genome encyclopedia further confirmed the correlation of these pathways. CONCLUSION Mutation of isocitrate dehydrogenase 1 promotes the migration, invasion, and angiogenesis of glioma cells, through its effects on the BMP2-driven Smad signaling pathway. In addition, BMP2 altered the transcriptional patterns of mutIDH1 glioma cells, enriching different gene loci in pathways associated with invasion, migration, and angiogenesis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, 750001, Ningxia, China
| | - Yu Cao
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Jianqiao Ruan
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Fei Wang
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, 750001, Ningxia, China
| | - Yuhong He
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Lina Yang
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Tian Yu
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Fang Du
- School of Information Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Ningmei Zhang
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China.
| | - Xiangmei Cao
- Department of Pathology, Basic Medical School of Ningxia Medical University, 1160 Shengli South Street, Yinchuan, 750004, Ningxia, Hui Autonomous Region, P.R. China.
| |
Collapse
|
8
|
Álvarez-González E, Sierra LM. Tricarboxylic Acid Cycle Relationships with Non-Metabolic Processes: A Short Story with DNA Repair and Its Consequences on Cancer Therapy Resistance. Int J Mol Sci 2024; 25:9054. [PMID: 39201738 PMCID: PMC11355010 DOI: 10.3390/ijms25169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic changes involving the tricarboxylic acid (TCA) cycle have been linked to different non-metabolic cell processes. Among them, apart from cancer and immunity, emerges the DNA damage response (DDR) and specifically DNA damage repair. The oncometabolites succinate, fumarate and 2-hydroxyglutarate (2HG) increase reactive oxygen species levels and create pseudohypoxia conditions that induce DNA damage and/or inhibit DNA repair. Additionally, by influencing DDR modulation, they establish direct relationships with DNA repair on at least four different pathways. The AlkB pathway deals with the removal of N-alkylation DNA and RNA damage that is inhibited by fumarate and 2HG. The MGMT pathway acts in the removal of O-alkylation DNA damage, and it is inhibited by the silencing of the MGMT gene promoter by 2HG and succinate. The other two pathways deal with the repair of double-strand breaks (DSBs) but with opposite effects: the FH pathway, which uses fumarate to help with the repair of this damage, and the chromatin remodeling pathway, in which oncometabolites inhibit its repair by impairing the homologous recombination repair (HRR) system. Since oncometabolites inhibit DNA repair, their removal from tumor cells will not always generate a positive response in cancer therapy. In fact, their presence contributes to longer survival and/or sensitization against tumor therapy in some cancer patients.
Collapse
Affiliation(s)
- Enol Álvarez-González
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| | - Luisa María Sierra
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| |
Collapse
|
9
|
Carosi F, Broseghini E, Fabbri L, Corradi G, Gili R, Forte V, Roncarati R, Filippini DM, Ferracin M. Targeting Isocitrate Dehydrogenase (IDH) in Solid Tumors: Current Evidence and Future Perspectives. Cancers (Basel) 2024; 16:2752. [PMID: 39123479 PMCID: PMC11311780 DOI: 10.3390/cancers16152752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) enzymes are involved in key metabolic processes in human cells, regulating differentiation, proliferation, and oxidative damage response. IDH mutations have been associated with tumor development and progression in various solid tumors such as glioma, cholangiocarcinoma, chondrosarcoma, and other tumor types and have become crucial markers in molecular classification and prognostic assessment. The intratumoral and serum levels of D-2-hydroxyglutarate (D-2-HG) could serve as diagnostic biomarkers for identifying IDH mutant (IDHmut) tumors. As a result, an increasing number of clinical trials are evaluating targeted treatments for IDH1/IDH2 mutations. Recent studies have shown that the focus of these new therapeutic strategies is not only the neomorphic activity of the IDHmut enzymes but also the epigenetic shift induced by IDH mutations and the potential role of combination treatments. Here, we provide an overview of the current knowledge about IDH mutations in solid tumors, with a particular focus on available IDH-targeted treatments and emerging results from clinical trials aiming to explore IDHmut tumor-specific features and to identify the clinical benefit of IDH-targeted therapies and their combination strategies. An insight into future perspectives and the emerging roles of circulating biomarkers and radiomic features is also included.
Collapse
Affiliation(s)
- Francesca Carosi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | | | - Laura Fabbri
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | - Giacomo Corradi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | - Riccardo Gili
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Valentina Forte
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Roberta Roncarati
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 40136 Bologna, Italy;
| | - Daria Maria Filippini
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
10
|
Yuan J, Siakallis L, Li HB, Brandner S, Zhang J, Li C, Mancini L, Bisdas S. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach. BMC Med Imaging 2024; 24:104. [PMID: 38702613 PMCID: PMC11067215 DOI: 10.1186/s12880-024-01274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The role of isocitrate dehydrogenase (IDH) mutation status for glioma stratification and prognosis is established. While structural magnetic resonance image (MRI) is a promising biomarker, it may not be sufficient for non-invasive characterisation of IDH mutation status. We investigated the diagnostic value of combined diffusion tensor imaging (DTI) and structural MRI enhanced by a deep radiomics approach based on convolutional neural networks (CNNs) and support vector machine (SVM), to determine the IDH mutation status in Central Nervous System World Health Organization (CNS WHO) grade 2-4 gliomas. METHODS This retrospective study analyzed the DTI-derived fractional anisotropy (FA) and mean diffusivity (MD) images and structural images including fluid attenuated inversion recovery (FLAIR), non-enhanced T1-, and T2-weighted images of 206 treatment-naïve gliomas, including 146 IDH mutant and 60 IDH-wildtype ones. The lesions were manually segmented by experienced neuroradiologists and the masks were applied to the FA and MD maps. Deep radiomics features were extracted from each subject by applying a pre-trained CNN and statistical description. An SVM classifier was applied to predict IDH status using imaging features in combination with demographic data. RESULTS We comparatively assessed the CNN-SVM classifier performance in predicting IDH mutation status using standalone and combined structural and DTI-based imaging features. Combined imaging features surpassed stand-alone modalities for the prediction of IDH mutation status [area under the curve (AUC) = 0.846; sensitivity = 0.925; and specificity = 0.567]. Importantly, optimal model performance was noted following the addition of demographic data (patients' age) to structural and DTI imaging features [area under the curve (AUC) = 0.847; sensitivity = 0.911; and specificity = 0.617]. CONCLUSIONS Imaging features derived from DTI-based FA and MD maps combined with structural MRI, have superior diagnostic value to that provided by standalone structural or DTI sequences. In combination with demographic information, this CNN-SVM model offers a further enhanced non-invasive prediction of IDH mutation status in gliomas.
Collapse
Affiliation(s)
- Jialin Yuan
- Department of Radiology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Queen Square Institute of Neurology, University College London, London, UK
| | - Loizos Siakallis
- Queen Square Institute of Neurology, University College London, London, UK
| | - Hongwei Bran Li
- Department of Informatics, Technical University of Munich, Munich, Germany
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Sebastian Brandner
- Division of Neuropathology, Queen Square Institute of Neurology, University College London, London, UK
| | - Jianguo Zhang
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chenming Li
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Laura Mancini
- Queen Square Institute of Neurology, University College London, London, UK
- Lysholm Department of Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sotirios Bisdas
- Queen Square Institute of Neurology, University College London, London, UK.
- Lysholm Department of Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
11
|
Fiorini G, Schofield CJ. Biochemistry of the hypoxia-inducible factor hydroxylases. Curr Opin Chem Biol 2024; 79:102428. [PMID: 38330792 DOI: 10.1016/j.cbpa.2024.102428] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
The hypoxia-inducible factors are α,β-heterodimeric transcription factors that mediate the chronic response to hypoxia in humans and other animals. Protein hydroxylases belonging to two different structural subfamilies of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase superfamily modify HIFα. HIFα prolyl-hydroxylation, as catalysed by the PHDs, regulates HIFα levels and, consequently, α,β-HIF levels. HIFα asparaginyl-hydroxylation, as catalysed by factor inhibiting HIF (FIH), regulates the transcriptional activity of α,β-HIF. The activities of the PHDs and FIH are regulated by O2 availability, enabling them to act as hypoxia sensors. We provide an overview of the biochemistry of the HIF hydroxylases, discussing evidence that their kinetic and structural properties may be tuned to their roles in the HIF system. Avenues for future research and therapeutic modulation are discussed.
Collapse
Affiliation(s)
- Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
12
|
Gershon R, Polevikov A, Karepov Y, Shenkar A, Ben-Horin I, Alter Regev T, Dror-Levinsky M, Lipczyc K, Gasri-Plotnitsky L, Diamant G, Shapira N, Bensimhon B, Hagai A, Shahar T, Grossman R, Ram Z, Volovitz I. Frequencies of 4 tumor-infiltrating lymphocytes potently predict survival in glioblastoma, an immune desert. Neuro Oncol 2024; 26:473-487. [PMID: 37870293 PMCID: PMC10912003 DOI: 10.1093/neuonc/noad204] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND GBM is an aggressive grade 4 primary brain tumor (BT), with a 5%-13% 5-year survival. Most human GBMs manifest as immunologically "cold" tumors or "immune deserts," yet the promoting or suppressive roles of specific lymphocytes within the GBM tumor microenvironment (TME) is of considerable debate. METHODS We used meticulous multiparametric flow cytometry (FC) to determine the lymphocytic frequencies in 102 GBMs, lower-grade gliomas, brain metastases, and nontumorous brain specimen. FC-attained frequencies were compared with frequencies estimated by "digital cytometry." The FC-derived data were combined with the patients' demographic, clinical, molecular, histopathological, radiological, and survival data. RESULTS Comparison of FC-derived data to CIBERSORT-estimated data revealed the poor capacity of digital cytometry to estimate cell frequencies below 0.2%, the frequency range of most immune cells in BTs. Isocitrate dehydrogenase (IDH) mutation status was found to affect TME composition more than the gliomas' pathological grade. Combining FC and survival data disclosed that unlike other cancer types, the frequency of helper T cells (Th) and cytotoxic T lymphocytes (CTL) correlated negatively with glioma survival. In contrast, the frequencies of γδ-T cells and CD56bright natural killer cells correlated positively with survival. A composite parameter combining the frequencies of these 4 tumoral lymphocytes separated the survival curves of GBM patients with a median difference of 10 months (FC-derived data; P < .0001, discovery cohort), or 4.1 months (CIBERSORT-estimated data; P = .01, validation cohort). CONCLUSIONS The frequencies of 4 TME lymphocytes strongly correlate with the survival of patients with GBM, a tumor considered an immune desert.
Collapse
Affiliation(s)
- Rotem Gershon
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Antonina Polevikov
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Yevgeny Karepov
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Anatoly Shenkar
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Idan Ben-Horin
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Oncology Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Tal Alter Regev
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Meytal Dror-Levinsky
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Kelly Lipczyc
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Lital Gasri-Plotnitsky
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Gil Diamant
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Nati Shapira
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Barak Bensimhon
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Aharon Hagai
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Tal Shahar
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Rachel Grossman
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Zvi Ram
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ilan Volovitz
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| |
Collapse
|
13
|
Wang Z, Li L, Wang Z, Chen X, Zhang Z. The clinical, radiological, and surgical characteristics of anterior perforated substance glioma: a retrospective study. Chin Neurosurg J 2023; 9:36. [PMID: 38111070 PMCID: PMC10729556 DOI: 10.1186/s41016-023-00349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND To explore the clinical, radiological, and surgical characteristics of anterior perforated substance (APS) gliomas. METHODS Twenty patients with APS glioma who were treated with surgery between March 2019 and January 2022 from Tiantan hospital were retrospectively reviewed. The clinical, histological and radiological data were collected. RESULTS Twenty patients, including 7 males (55%) and 13 females (45%), with a mean age at diagnosis of 37.9 years (range, 28-53 years) underwent operative intervention for APS. Headaches and dizziness were the most common preoperative symptoms in the majority patients (14, 70%). Based on radiological features of MRI, the APS was classified into two subtypes, type A and type B. Seven patients (40%) in type A indicated a clear tumor margin, while 13 patients (60%) in type B showed an ill-defined margin. The surgical approach including frontal, temporal, and coronal frontal incisions for type A and type B tumors, respectively. Three patients in type A received total resection, while one patient in type B were total resected. Pathologically, 12 cases (60%, 12/20) were diagnosed as astrocytoma and 8 cases (20%, 8/20) were oligodendroglioma. Meanwhile, 17 cases (85%, 17/20) had MGMT promotor methylation. CONCLUSION In this study, we performed the first systematic research of patients with APS glioma. Most of patients with APS presented headaches and dizziness symptoms. The APS glioma was further divided into two major radiological subtypes with relevant different surgical approaches. The APS glioma in type A were more likely to receive total resection.
Collapse
Affiliation(s)
- Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070, People's Republic of China
| | - Lianwang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070, People's Republic of China
| | - Xuzhu Chen
- Department of Radiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070, People's Republic of China.
| | - Zhong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070, People's Republic of China.
| |
Collapse
|
14
|
Tangella AV, Gajre A, Kantheti VV. Isocitrate Dehydrogenase 1 Mutation and Ivosidenib in Patients With Acute Myeloid Leukemia: A Comprehensive Review. Cureus 2023; 15:e44802. [PMID: 37692182 PMCID: PMC10483130 DOI: 10.7759/cureus.44802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from immature myeloid progenitors, resulting in a stem-cell-like proliferative state. This leads to excessive pools of immature cells that cannot function, which usually happens at the cost of the production of mature functional cells, leading to deleterious consequences. The management of AML has intensified as newer targeted therapies have come into existence owing to deeper genetic analysis of the disease and patients. Isocitrate dehydrogenase (IDH) is a cytosolic enzyme that is a part of the Krebs cycle and is extremely important in maintaining the homeostasis of the cell. It is produced by two different genes: IDH1 and IDH2. Ivosidenib has been associated with IDH1 inhibition and has been studied in numerous cancers. This review highlights the studies that have dealt with ivosidenib, an IDH1 inhibitor, in AML, the side effect profile, and the possible future course of the drug. After a scoping review of the available literature, we have identified that studies have consistently shown positive outcomes and that ivosidenib is a promising avenue for the management of AML. But it also has to be kept in mind that resistance to IDH inhibitors is on the rise, and the need to identify ways to circumvent this is to be addressed.
Collapse
Affiliation(s)
| | - Ashwin Gajre
- Internal Medicine, Lokmanya Tilak Municipal Medical College, Mumbai, IND
| | | |
Collapse
|
15
|
Solomou G, Finch A, Asghar A, Bardella C. Mutant IDH in Gliomas: Role in Cancer and Treatment Options. Cancers (Basel) 2023; 15:cancers15112883. [PMID: 37296846 DOI: 10.3390/cancers15112883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Altered metabolism is a common feature of many cancers and, in some cases, is a consequence of mutation in metabolic genes, such as the ones involved in the TCA cycle. Isocitrate dehydrogenase (IDH) is mutated in many gliomas and other cancers. Physiologically, IDH converts isocitrate to α-ketoglutarate (α-KG), but when mutated, IDH reduces α-KG to D2-hydroxyglutarate (D2-HG). D2-HG accumulates at elevated levels in IDH mutant tumours, and in the last decade, a massive effort has been made to develop small inhibitors targeting mutant IDH. In this review, we summarise the current knowledge about the cellular and molecular consequences of IDH mutations and the therapeutic approaches developed to target IDH mutant tumours, focusing on gliomas.
Collapse
Affiliation(s)
- Georgios Solomou
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Alina Finch
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Asim Asghar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chiara Bardella
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
16
|
Sharma N, Mallela AN, Shi DD, Tang LW, Abou-Al-Shaar H, Gersey ZC, Zhang X, McBrayer SK, Abdullah KG. Isocitrate dehydrogenase mutations in gliomas: A review of current understanding and trials. Neurooncol Adv 2023; 5:vdad053. [PMID: 37287696 PMCID: PMC10243983 DOI: 10.1093/noajnl/vdad053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) is a key enzyme in normal metabolism and homeostasis. However, mutant forms of IDH are also defining features of a subset of diffuse gliomas. In this review, we highlight current techniques targeting IDH-mutated gliomas and summarize current and completed clinical trials exploring these strategies. We discuss clinical data from peptide vaccines, mutant IDH (mIDH) inhibitors, and PARP inhibitors. Peptide vaccines have the unique advantage of targeting the specific epitope of a patient's tumor, inducing a highly tumor-specific CD4+ T-cell response. mIDH-inhibitors, on the other hand, specifically target mutant IDH proteins in cancer cell metabolism and thus help halt gliomagenesis. We also explore PARP inhibitors and their role in treating diffuse gliomas, which exploit IDH-mutant diffuse gliomas by allowing the persistence of unrepaired DNA complexes. We summarize various completed and current trials targeting IDH1 and IDH2 mutations in diffuse gliomas. Therapies targeting mutant IDH have significant promise in treating progressive or recurrent IDH-mutant gliomas and may significantly change treatment paradigms in the next decade.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Arka N Mallela
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Diana D Shi
- Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Lilly W Tang
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hussam Abou-Al-Shaar
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zachary C Gersey
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Xiaoran Zhang
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Samuel K McBrayer
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Current Considerations in the Treatment of Grade 3 Gliomas. Curr Treat Options Oncol 2022; 23:1219-1232. [PMID: 35913658 DOI: 10.1007/s11864-022-01000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Treatment recommendations for grade 3 gliomas are guided by their histopathologic and molecular phenotype. In the 2021 WHO classification, these tumors are categorized into two types, grade 3 IDH mutant (IDHmt), 1p/19q codeleted oligodendroglioma and IDH mutant astrocytoma. Treatment consists of maximal safe surgery, followed by radiation therapy (RT) and alkylating agent-based chemotherapy. Based on the updated CATNON result, RT followed by temozolomide improves outcome in patients with non-codeleted grade 3 IDHmt astrocytoma. In patients with IDHmt, codeleted oligodendroglioma, the addition of procarbazine, CCNU, and vincristine regimen is the recommended treatment, based on large randomized controlled trials. These current treatments prolong the overall survival to up to 10 years in patients with grade 3 IDHmt astrocytoma and 14 years in grade 3 IDHmt codeleted oligodendroglioma. Treatment options at recurrence include re-resection, re-irradiation, and other cytotoxic chemotherapy; however, these are of limited benefit. Novel agents targeting IDH mutation and its metabolic effects are currently under investigation to improve the outcome of these patients.
Collapse
|
18
|
Hersh AM, Gaitsch H, Alomari S, Lubelski D, Tyler BM. Molecular Pathways and Genomic Landscape of Glioblastoma Stem Cells: Opportunities for Targeted Therapy. Cancers (Basel) 2022; 14:3743. [PMID: 35954407 PMCID: PMC9367289 DOI: 10.3390/cancers14153743] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor of the central nervous system categorized by the World Health Organization as a Grade 4 astrocytoma. Despite treatment with surgical resection, adjuvant chemotherapy, and radiation therapy, outcomes remain poor, with a median survival of only 14-16 months. Although tumor regression is often observed initially after treatment, long-term recurrence or progression invariably occurs. Tumor growth, invasion, and recurrence is mediated by a unique population of glioblastoma stem cells (GSCs). Their high mutation rate and dysregulated transcriptional landscape augment their resistance to conventional chemotherapy and radiation therapy, explaining the poor outcomes observed in patients. Consequently, GSCs have emerged as targets of interest in new treatment paradigms. Here, we review the unique properties of GSCs, including their interactions with the hypoxic microenvironment that drives their proliferation. We discuss vital signaling pathways in GSCs that mediate stemness, self-renewal, proliferation, and invasion, including the Notch, epidermal growth factor receptor, phosphatidylinositol 3-kinase/Akt, sonic hedgehog, transforming growth factor beta, Wnt, signal transducer and activator of transcription 3, and inhibitors of differentiation pathways. We also review epigenomic changes in GSCs that influence their transcriptional state, including DNA methylation, histone methylation and acetylation, and miRNA expression. The constituent molecular components of the signaling pathways and epigenomic regulators represent potential sites for targeted therapy, and representative examples of inhibitory molecules and pharmaceuticals are discussed. Continued investigation into the molecular pathways of GSCs and candidate therapeutics is needed to discover new effective treatments for GBM and improve survival.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Hallie Gaitsch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
- NIH Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| |
Collapse
|
19
|
Zhou B, Yang F, Qin L, Kuai J, Yang L, Zhang L, Sun P, Li G, Wang X. Computational study on novel natural compound inhibitor targeting IDH1_R132H. Aging (Albany NY) 2022; 14:5478-5492. [PMID: 35802554 PMCID: PMC9320544 DOI: 10.18632/aging.204162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/27/2022] [Indexed: 12/14/2022]
Abstract
Isocitrate dehydrogenases (IDH) catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate. IDH1 mutation has been reported in various tumors especially Cholangiocarcinoma, while the IDH1_R132H is reported to be the most common mutation of IDH1. IDH1_R132H inhibitors are effective anti-cancer drugs and have shown significant therapeutic effects in clinical. In this study, two novel natural compounds were identified to combine respectively with IDH1_R132H with a stronger binding force with conductive to interaction energy. They also showed low toxicity potential. Molecular dynamics simulation analysis demonstrated that the candidate ligands-IDH1_R132H complexes is stable in natural circumstances with favorable potential energy. Thus, Styraxlignolide F and Tremulacin were screened as promising IDH1_R132H inhibitors. We provide a solid foundation for the design and development of IDH1_R132H targeted drugs.
Collapse
Affiliation(s)
- Baolin Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Fang Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Lei Qin
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Jun Kuai
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Lu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Lanfang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Peisheng Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Guangpeng Li
- Department of Emergency, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Xinhui Wang
- Department of Oncology, First People's Hospital of Xinxiang, Xin Xiang 453100, China
| |
Collapse
|
20
|
Di Nunno V, Franceschi E, Tosoni A, Gatto L, Bartolini S, Brandes AA. Tumor-Associated Microenvironment of Adult Gliomas: A Review. Front Oncol 2022; 12:891543. [PMID: 35875065 PMCID: PMC9301282 DOI: 10.3389/fonc.2022.891543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The glioma-associated tumor microenvironment involves a multitude of different cells ranging from immune cells to endothelial, glial, and neuronal cells surrounding the primary tumor. The interactions between these cells and glioblastoma (GBM) have been deeply investigated while very little data are available on patients with lower-grade gliomas. In these tumors, it has been demonstrated that the composition of the microenvironment differs according to the isocitrate dehydrogenase status (mutated/wild type), the presence/absence of codeletion, and the expression of specific alterations including H3K27 and/or other gene mutations. In addition, mechanisms by which the tumor microenvironment sustains the growth and proliferation of glioma cells are still partially unknown. Nonetheless, a better knowledge of the tumor-associated microenvironment can be a key issue in the optic of novel therapeutic drug development.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- *Correspondence: Enrico Franceschi,
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
21
|
Machine learning in neuro-oncology: toward novel development fields. J Neurooncol 2022; 159:333-346. [PMID: 35761160 DOI: 10.1007/s11060-022-04068-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/11/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Artificial Intelligence (AI) involves several and different techniques able to elaborate a large amount of data responding to a specific planned outcome. There are several possible applications of this technology in neuro-oncology. METHODS We reviewed, according to PRISMA guidelines, available studies adopting AI in different fields of neuro-oncology including neuro-radiology, pathology, surgery, radiation therapy, and systemic treatments. RESULTS Neuro-radiology presented the major number of studies assessing AI. However, this technology is being successfully tested also in other operative settings including surgery and radiation therapy. In this context, AI shows to significantly reduce resources and costs maintaining an elevated qualitative standard. Pathological diagnosis and development of novel systemic treatments are other two fields in which AI showed promising preliminary data. CONCLUSION It is likely that AI will be quickly included in some aspects of daily clinical practice. Possible applications of these techniques are impressive and cover all aspects of neuro-oncology.
Collapse
|
22
|
Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer. Nat Rev Cardiol 2022; 19:414-425. [PMID: 35440740 PMCID: PMC10112835 DOI: 10.1038/s41569-022-00698-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared risk factors that predispose individuals to both cardiovascular disease and cancer, as well the possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in understanding the fundamental biological mechanisms that are central to the relationship between cardiovascular disease and cancer. Metabolism, appropriate regulation of energy, energy substrate utilization, and macromolecular synthesis and breakdown are fundamental processes for cellular and organismal survival. In this Review, we explore the emerging data identifying metabolic dysregulation as an important theme in cardio-oncology. We discuss the growing recognition of metabolic reprogramming in cardiovascular disease and cancer and view the novel area of cardio-oncology through the lens of metabolism.
Collapse
|
23
|
Yao K, Liu H, Yu S, Zhu H, Pan J. Resistance to mutant IDH inhibitors in acute myeloid leukemia: Molecular mechanisms and therapeutic strategies. Cancer Lett 2022; 533:215603. [DOI: 10.1016/j.canlet.2022.215603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
|
24
|
Clinical and Molecular Features of Patients with Gliomas Harboring IDH1 Non-canonical Mutations: A Systematic Review and Meta-Analysis. Adv Ther 2022; 39:165-177. [PMID: 34853984 DOI: 10.1007/s12325-021-01977-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The canonical isocitrate dehydrogenase 1 R132 mutation (IDH1 R132) is the most frequent mutation among IDH-mutated gliomas. Non-canonical IDH1 mutations or IDH2 mutations are unusual and their clinical and biological role is still unclear. METHODS We performed a systematic review and meta-analysis to assess the clinical role of IDH non-canonical mutations. RESULTS Overall, we selected 13 of 3513 studies reporting data of 4007 patients with a diagnosis of grade 2 and grade 3 glioma including 3091 patients with a molecularly proven IDH1 or IDH2 mutation. Patients with non-canonical IDH1 mutations were younger and presented a higher DNA methylation level as compared to those with canonical IDH1 R132H alteration. The overall incidence of non-canonical IDH1 mutations was 7.9% (95% CI 5.4-10.7%) in patients with IDH-mutated gliomas. There was no statistical difference in terms of incidence between patients with grade 2 or grade 3 glioma. Patients with non-canonical IDH mutations had a lower rate of 1p19q codeletion (risk difference 31%, 95% CI 23-38%) and presented a significantly prolonged survival (pooled HR 0.47, 95% CI 0.28-0.81) as compared to those with IDH1 R132H mutation. CONCLUSION Non-canonical IDH1 mutations occur in 7.9% of IDH-mutated gliomas and identify a specific subgroup of patients with an improved survival despite a lower rate of 1p19q codeletion. Data about the type of IDH mutation should be collected in clinical practice and within interventional trials as this could be a critical variable for improved stratification and selection of patients.
Collapse
|
25
|
Fontana F, Limonta P. The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radic Biol Med 2021; 176:203-221. [PMID: 34597798 DOI: 10.1016/j.freeradbiomed.2021.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are the cytoplasmic organelles mostly known as the "electric engine" of the cells; however, they also play pivotal roles in different biological processes, such as cell growth/apoptosis, Ca2+ and redox homeostasis, and cell stemness. In cancer cells, mitochondria undergo peculiar functional and structural dynamics involved in the survival/death fate of the cell. Cancer cells use glycolysis to support macromolecular biosynthesis and energy production ("Warburg effect"); however, mitochondrial OXPHOS has been shown to be still active during carcinogenesis and even exacerbated in drug-resistant and stem cancer cells. This metabolic rewiring is associated with mutations in genes encoding mitochondrial metabolic enzymes ("oncometabolites"), alterations of ROS production and redox biology, and a fine-tuned balance between anti-/proapoptotic proteins. In cancer cells, mitochondria also experience dynamic alterations from the structural point of view undergoing coordinated cycles of biogenesis, fusion/fission and mitophagy, and physically communicating with the endoplasmic reticulum (ER), through the Ca2+ flux, at the MAM (mitochondria-associated membranes) levels. This review addresses the peculiar mitochondrial metabolic and structural dynamics occurring in cancer cells and their role in coordinating the balance between cell survival and death. The role of mitochondrial dynamics as effective biomarkers of tumor progression and promising targets for anticancer strategies is also discussed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|