1
|
Sim ES, Rhoades J, Xiong K, Walsh L, Crnjac A, Blewett T, Al-Inaya Y, Mendel J, Ruiz-Torres DA, Efthymiou V, Lumaj G, Benjamin WJ, Makrigiorgos GM, Tabrizi S, Adalsteinsson VA, Faden DL. Immediate postoperative minimal residual disease detection with MAESTRO predicts recurrence and survival in head and neck cancer patients treated with surgery. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.27.25321202. [PMID: 39974077 PMCID: PMC11838961 DOI: 10.1101/2025.01.27.25321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Purpose While circulating tumor DNA (ctDNA) is a promising biomarker for minimal residual disease (MRD) detection in head and neck squamous cell carcinoma (HNSCC), more sensitive assays are needed for accurate MRD detection at clinically-relevant timepoints. Ultrasensitive MRD detection immediately after surgery could guide adjuvant therapy decisions, but early ctDNA dynamics are poorly understood. Experimental Design We applied MAESTRO, a whole-genome, tumor-informed, mutation-enrichment sequencing assay, in a pooled testing format called MAESTRO-Pool, to plasma samples from HNSCC patients collected immediately after surgery and during surveillance. We evaluated whether early MRD detection could predict outcomes. Results Among 24 predominantly HPV-independent (95.8%) HNSCC patients, rapid ctDNA clearance occurred by the first postoperative sample (1-3 days postoperatively) in 9 patients without an event (recurrence or death). 13/15 patients with an event were MRD+ (PPV = 92.9%; NPV = 80%) with a median tumor fraction (TFx) of 54 ppm (range 6-1,177 ppm). In the first and last sample of the immediate postoperative window, 8/13 and 10/13 patients had TFx below 100 ppm, respectively, the detection limit of leading commercial assays. Early MRD detection correlated with worse overall survival (HR = 8.3; 95% CI: 1.1-66.1; P = 0.02) and event-free survival (HR = 27.4; 95% CI: 3.5-214.5; P < 0.0001) independent of high-risk pathology. Conclusions Immediate postoperative MRD detection by MAESTRO was predictive of recurrence and death. Given the ultralow TFxs observed, ultrasensitive assays will be essential for reliable MRD detection during early postoperative timepoints to enable personalized adjuvant therapy decision-making in HNSCC.
Collapse
|
2
|
Sergeev AV, Kisil OV, Eremin AA, Petrov AS, Zvereva ME. "Aging Clocks" Based on Cell-Free DNA. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S342-S355. [PMID: 40164165 DOI: 10.1134/s0006297924604076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 04/02/2025]
Abstract
Aging is associated with systemic changes in the physiological and molecular parameters of the body. These changes are referred to as biomarkers of aging. Statistical models that link changes in individual biomarkers to biological age are called aging clocks. These tools facilitate a comprehensive evaluation of bodily health and permit the quantitative determination of the rate of aging. A particularly promising area for the development of aging clocks is the analysis of cell-free DNA (cfDNA), which is present in the blood and contains numerous potential biomarkers. This review explores in detail the fragmentomics, topology, and epigenetic landscape of cfDNA as possible biomarkers of aging. The review further underscores the potential of leveraging single-molecule sequencing of cfDNA in conjunction with long-read technologies to simultaneously profile multiple biomarkers, a strategy that could lead to the development of more precise aging clocks.
Collapse
Affiliation(s)
- Aleksandr V Sergeev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Orekhovich Scientific Research Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Olga V Kisil
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Gauze Scientific Research Institute of New Antibiotics, Moscow, 119021, Russia
| | - Andrey A Eremin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Aleksandr S Petrov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria E Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Tabrizi S, Martin-Alonso C, Xiong K, Bhatia SN, Adalsteinsson VA, Love JC. Modulating cell-free DNA biology as the next frontier in liquid biopsies. Trends Cell Biol 2024:S0962-8924(24)00249-6. [PMID: 39730275 DOI: 10.1016/j.tcb.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/29/2024]
Abstract
Technical advances over the past two decades have enabled robust detection of cell-free DNA (cfDNA) in biological samples. Yet, higher clinical sensitivity is required to realize the full potential of liquid biopsies. This opinion article argues that to overcome current limitations, the abundance of informative cfDNA molecules - such as circulating tumor DNA (ctDNA) - collected in a sample needs to increase. To accomplish this, new methods to modulate the biological processes that govern cfDNA production, trafficking, and clearance in the body are needed, informed by a deeper understanding of cfDNA biology. Successful development of such methods could enable a major leap in the performance of liquid biopsies and vastly expand their utility across the spectrum of clinical care.
Collapse
Affiliation(s)
- Shervin Tabrizi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Radiation Oncology, Mass General Brigham, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Carmen Martin-Alonso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute at Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA
| | | | - J Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Kumar S, Poria R, Kala D, Nagraik R, Dhir Y, Dhir S, Singh B, Kaushik NK, Noorani MS, Kumar D, Gupta S, Kaushal A. Recent advances in ctDNA detection using electrochemical biosensor for cancer. Discov Oncol 2024; 15:517. [PMID: 39356360 PMCID: PMC11448507 DOI: 10.1007/s12672-024-01365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
In the quest for early cancer diagnosis, early identification and treatment are paramount. Recently, ctDNA detection has emerged as a viable avenue for early screening of cancer. The examination of ctDNA in fluid biopsies has gained substantial attention in tumor diagnosis and therapy. Both the scientific community and industry are actively exploring this field. However, developing cost-effective, portable, and real-time ctDNA measurement methods using conventional gene detection equipment poses a significant challenge. This challenge has led to the exploration of alternative approaches. Electrochemical biosensors, distinguished by their heightened sensitivity, remarkable specificity, affordability, and excellent portability, have emerged as a promising avenue for ctDNA detection. This review is dedicated to the specific focus on ctDNA detection, highlighting recent advancements in this evolving detection technology. We aimed to reference previous studies related to ctDNA-targeted cancer detection using electrochemical biosensors to advocate the utilization of electrochemical biosensors in healthcare diagnostics. Further research is imperative for the effective integration of ctDNA analysis into point-of-care cancer testing. Innovative approaches utilizing multiple markers need to be explored to advance this technology and make substantial contributions to societal well-being.
Collapse
Affiliation(s)
- Sahil Kumar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Deepak Kala
- NL-11 Centera Tetrahertz Laboratory, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, Warsaw, 01142, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Yashika Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Sunny Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Bharat Singh
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Naveen Kumar Kaushik
- Department of Industrial Biotechnology, College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India.
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India.
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India.
| |
Collapse
|
5
|
Martin-Alonso C, Tabrizi S, Xiong K, Blewett T, Sridhar S, Crnjac A, Patel S, An Z, Bekdemir A, Shea D, Wang ST, Rodriguez-Aponte S, Naranjo CA, Rhoades J, Kirkpatrick JD, Fleming HE, Amini AP, Golub TR, Love JC, Bhatia SN, Adalsteinsson VA. Priming agents transiently reduce the clearance of cell-free DNA to improve liquid biopsies. Science 2024; 383:eadf2341. [PMID: 38236959 PMCID: PMC11529396 DOI: 10.1126/science.adf2341] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
Liquid biopsies enable early detection and monitoring of diseases such as cancer, but their sensitivity remains limited by the scarcity of analytes such as cell-free DNA (cfDNA) in blood. Improvements to sensitivity have primarily relied on enhancing sequencing technology ex vivo. We sought to transiently augment the level of circulating tumor DNA (ctDNA) in a blood draw by attenuating its clearance in vivo. We report two intravenous priming agents given 1 to 2 hours before a blood draw to recover more ctDNA. Our priming agents consist of nanoparticles that act on the cells responsible for cfDNA clearance and DNA-binding antibodies that protect cfDNA. In tumor-bearing mice, they greatly increase the recovery of ctDNA and improve the sensitivity for detecting small tumors.
Collapse
Affiliation(s)
- Carmen Martin-Alonso
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology,
Institute for Medical Engineering and Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
| | - Shervin Tabrizi
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
- Department of Radiation Oncology, Massachusetts General
Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
| | - Timothy Blewett
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
| | | | - Andjela Crnjac
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
| | - Sahil Patel
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
- Division of Pulmonary and Critical Care, Department of
Medicine, Massachusetts General Hospital, Boston, MA 02124, USA
| | - Zhenyi An
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
| | - Ahmet Bekdemir
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas Shea
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
| | - Shih-Ting Wang
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergio Rodriguez-Aponte
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A. Naranjo
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin Rhoades
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
| | - Jesse D. Kirkpatrick
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology,
Institute for Medical Engineering and Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
| | - Heather E. Fleming
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Todd R. Golub
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Boston, MA 02115, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
- Department of Chemical Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology,
Institute for Medical Engineering and Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
- Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medicine, Brigham and Women’s
Hospital, Boston, MA 02115, USA
- Wyss Institute at Harvard University, Boston, MA 02215,
USA
- Howard Hughes Medical Institute, Cambridge, MA 02138,
USA
| | | |
Collapse
|
6
|
Dyrskjøt L, Hansel DE, Efstathiou JA, Knowles MA, Galsky MD, Teoh J, Theodorescu D. Bladder cancer. Nat Rev Dis Primers 2023; 9:58. [PMID: 37884563 PMCID: PMC11218610 DOI: 10.1038/s41572-023-00468-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Bladder cancer is a global health issue with sex differences in incidence and prognosis. Bladder cancer has distinct molecular subtypes with multiple pathogenic pathways depending on whether the disease is non-muscle invasive or muscle invasive. The mutational burden is higher in muscle-invasive than in non-muscle-invasive disease. Commonly mutated genes include TERT, FGFR3, TP53, PIK3CA, STAG2 and genes involved in chromatin modification. Subtyping of both forms of bladder cancer is likely to change considerably with the advent of single-cell analysis methods. Early detection signifies a better disease prognosis; thus, minimally invasive diagnostic options are needed to improve patient outcomes. Urine-based tests are available for disease diagnosis and surveillance, and analysis of blood-based cell-free DNA is a promising tool for the detection of minimal residual disease and metastatic relapse. Transurethral resection is the cornerstone treatment for non-muscle-invasive bladder cancer and intravesical therapy can further improve oncological outcomes. For muscle-invasive bladder cancer, radical cystectomy with neoadjuvant chemotherapy is the standard of care with evidence supporting trimodality therapy. Immune-checkpoint inhibitors have demonstrated benefit in non-muscle-invasive, muscle-invasive and metastatic bladder cancer. Effective management requires a multidisciplinary approach that considers patient characteristics and molecular disease characteristics.
Collapse
Affiliation(s)
- Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Donna E Hansel
- Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremy Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Theodorescu
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Moser T, Kühberger S, Lazzeri I, Vlachos G, Heitzer E. Bridging biological cfDNA features and machine learning approaches. Trends Genet 2023; 39:285-307. [PMID: 36792446 DOI: 10.1016/j.tig.2023.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Liquid biopsies (LBs), particularly using circulating tumor DNA (ctDNA), are expected to revolutionize precision oncology and blood-based cancer screening. Recent technological improvements, in combination with the ever-growing understanding of cell-free DNA (cfDNA) biology, are enabling the detection of tumor-specific changes with extremely high resolution and new analysis concepts beyond genetic alterations, including methylomics, fragmentomics, and nucleosomics. The interrogation of a large number of markers and the high complexity of data render traditional correlation methods insufficient. In this regard, machine learning (ML) algorithms are increasingly being used to decipher disease- and tissue-specific signals from cfDNA. Here, we review recent insights into biological ctDNA features and how these are incorporated into sophisticated ML applications.
Collapse
Affiliation(s)
- Tina Moser
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Stefan Kühberger
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Isaac Lazzeri
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Georgios Vlachos
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria.
| |
Collapse
|